• Armstrong, R. L., and M. J. Brodzik, 2001: Recent Northern Hemisphere snow extent: A comparison of data derived from visible and microwave satellite sensors. Geophys. Res. Lett., 28, 36733676, https://doi.org/10.1029/2000GL012556.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Arnold, J. G., R. Srinivasan, R. S. Muttiah, and J. R. Williams, 1998: Large area hydrologic modeling and assessment part I: Model development. J. Amer. Water Resour. Assoc., 34, 7389, https://doi.org/10.1111/j.1752-1688.1998.tb05961.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Barnett, T., J. Adam, and D. Lettenmaier, 2005: Potential impacts of a warming climate on water availability in snow-dominated regions. Nature, 438, 303309, https://doi.org/10.1038/nature04141.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Berghuijs, W. R., R. A. Woods, and M. Hrachowitz, 2014: A precipitation shift from snow towards rain leads to a decrease in streamflow. Nat. Climate Change, 4, 583586, https://doi.org/10.1038/nclimate2246.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Berthier, E., and F. Burn, 2019: Karakoram geodetic glacier mass balances between 2008 and 2016: Persistence of the anomaly and influence of a large rock avalanche on Siachen Glacier. J. Glaciol., 65, 494507, https://doi.org/10.1017/jog.2019.32.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bian, Q. Y., and Coauthors, 2020: Multiscale changes in snow over the Tibetan Plateau during 1980–2018 represented by reanalysis data sets and satellite observations. J. Geophys. Res. Atmos., 125, e2019JD031914, https://doi.org/10.1029/2019JD031914.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bintanja, R., 2018: The impact of Arctic warming on increased rainfall. Sci. Rep., 8, 16001, https://doi.org/10.1038/s41598-018-34450-3.

  • Brown, R. D., and D. A. Robinson, 2011: Northern Hemisphere spring snow cover variability and change over 1922–2010 including an assessment of uncertainty. Cryosphere, 5, 219229, https://doi.org/10.5194/tc-5-219-2011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bunn, S. E., and A. H. Arthington, 2002: Basic principles and ecological consequences of altered flow regimes for aquatic biodiversity. Environ. Manage., 30, 492507, https://doi.org/10.1007/s00267-002-2737-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, A. A., N. L. Wang, Y. W. Wu, Q. Zhang, and Z. M. Guo, 2020: Impact of glacier shape on the mass balance changes: A case study of Dongkemadi region, central Tibetan Plateau. Adv. Climate Change Res., 11, 2230, https://doi.org/10.1016/j.accre.2020.05.010.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, R. S., S. H. Lu, E. S. Kang, X. B. Ji, Z. H. Zhang, and Y. Yang, 2008: A distributed water heat coupled model for mountainous watershed of an inland river basin in Northwest China (I) model structure and equations. Environ. Geol., 53, 12991309, https://doi.org/10.1007/s00254-007-0738-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, R. S., J. Liu, and Y. Song, 2014: Precipitation type estimation and validation in China. J. Mt. Sci., 11, 917925, https://doi.org/10.1007/s11629-012-2625-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Choi, G., D. A. Robinson, and S. Kang, 2010: Changing Northern Hemisphere snow seasons. J. Climate, 23, 53055310, https://doi.org/10.1175/2010JCLI3644.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Clark, M. P., A. G. Slater, A. P. Barrett, L. E. Hay, G. J. McCabe, B. Rajagopalan, and G. H. Leavesley, 2006: Assimilation of snow covered area information into hydrologic and land-surface models. Adv. Water Resour. Res., 29, 12091221, https://doi.org/10.1016/j.advwatres.2005.10.001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cogley, G., C. Kienholz, E. Miles, M. Sharp, and F. Wyatt, 2015: GLIMS glacier database, version 1. National Snow and Ice Data Center, accessed 21 July 2005, https://doi.org/10.7265/N5V98602.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cuo, L., Y. X. Zhang, Q. C. Wang, L. L. Zhang, B. R. Zhou, Z. C. Hao, and F. G. Su, 2013: Climate change on the northern Tibetan Plateau during 1957–2009: Spatial patterns and possible mechanisms. J. Climate, 26, 85109, https://doi.org/10.1175/JCLI-D-11-00738.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cuo, L., Y. X. Zhang, F. X. Zhu, and L. Q. Liang, 2014: Characteristics and changes of streamflow on the Tibetan Plateau: A review. J. Hydrol. Reg. Stud., 2, 4968, https://doi.org/10.1016/j.ejrh.2014.08.004.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Deng, H., N. C. Pepin, and Y. Chen, 2017: Changes of snowfall under warming in the Tibetan Plateau. J. Geophys. Res. Atmos., 122, 73237341, https://doi.org/10.1002/2017JD026524.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Diffenbaugh, N., M. Scherer, and M. Ashfaq, 2012: Response of snow-dependent hydrologic extremes to continued global warming. Nat. Climate Change, 3, 379384, https://doi.org/10.1038/nclimate1732.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dimri, A. P., 2021: Decoding the Karakoram anomaly. Sci. Total Environ., 788, 147864, https://doi.org/10.1016/j.scitotenv.2021.147864.

  • Ding, B. H., and Coauthors, 2017: Development of a Water and Enthalpy Budget-based Glacier mass balance Model (WEB-GM) and its preliminary validation. Water Resour. Res., 53, 31463178, https://doi.org/10.1002/2016WR018865.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dong, W. H., and Coauthors, 2016: Summer rainfall over the southwestern Tibetan Plateau controlled by deep convection over the Indian subcontinent. Nat. Commun., 7, 10925, https://doi.org/10.1038/ncomms10925.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dong, W. H., and Coauthors, 2018: Connections between a late summer snowstorm over the southwestern Tibetan Plateau and a concurrent Indian monsoon low-pressure system. J. Geophys. Res. Atmos., 123, ‏13 67613 691, https://doi.org/10.1029/2018JD029710.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dye, D. G., 2002: Variability and trends in the annual snow-cover cycle in Northern Hemisphere land areas. 1972–2000. Hydrol. Processes, 16, 30653077, https://doi.org/10.1002/hyp.1089.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Farinotti, D., W. W. Immerzeel, R. J. de Kok, D. J. Quincey, and A. Dehecq, 2020: Manifestations and mechanisms of the Karakoram glacier anomaly. Nat. Geosci., 13, 816, https://doi.org/10.1038/s41561-019-0513-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Feng, S., and Q. Hu, 2004: Changes in the agro-meteorological indicators in the contiguous United States: 1951–2000. Theor. Appl. Climatol., 78, 247264, https://doi.org/10.1007/s00704-004-0061-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fujita, K., 2008: Effect of precipitation seasonality on climatic sensitivity of glacier mass balance. Earth Planet. Sci. Lett., 276, 1419, https://doi.org/10.1016/j.epsl.2008.08.028.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fujita, K., and Y. Ageta, 2000: Effect of summer accumulation on glacier mass balance on the Tibetan Plateau revealed by mass-balance model. J. Glaciol., 46, 244252, https://doi.org/10.3189/172756500781832945.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fujita, K., Y. Ageta, J. C. Pu, and T. D. Yao, 2000: Mass balance of Xiao Dongkemadi Glacier on the central Tibetan Plateau from 1989 to 1995. Ann. Glaciol., 31, 159163, https://doi.org/10.3189/172756400781820075.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fujita, K., T. Kadota, B. Rana, R. B. Kayastha, and Y. Ageta, 2001: Shrinkage of Glacier AX010 in Shorong region, Nepal Himalayas in the 1990s. Bull. Glaciol. Res., 18, 5154.

    • Search Google Scholar
    • Export Citation
  • Fujita, K., T. Ohta, and Y. Ageta, 2007: Characteristics and climatic sensitivities of runoff from a cold-type glacier on the Tibetan Plateau. Hydrol. Processes, 21, 28822891, https://doi.org/10.1002/hyp.6505.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gao, H. K., X. B. He, B. S. Ye, and J. C. Pu, 2012: Modeling the runoff and glacier mass balance in a small watershed on the central Tibetan Plateau, China, from 1955 to 2008. Hydrol. Processes, 26, 15931603, https://doi.org/10.1002/hyp.8256.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gardelle, J., E. Berthier, and Y. Arnaud, 2012: Slight mass gain of Karakoram glaciers in the early twenty-first century. Nat. Geosci., 5, 322325, https://doi.org/10.1038/ngeo1450.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Guo, L., and L. Li, 2015: Variation of the proportion of precipitation occurring as snow in the Tian Shan Mountains, China. Int. J. Climatol., 35, 13791393, https://doi.org/10.1002/joc.4063.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gustafsson, D., M. Stähli, and P. E. Jansson, 2001: The surface energy balance of a snow cover: Comparing measurements to two different simulation models. Theor. Appl. Climatol., 70, 8196, https://doi.org/10.1007/s007040170007.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Han, C. T., R. S. Chen, J. F. Liu, Y. Yang, and W. W. Qing, 2010: A discuss of the separating solid and liquid precipitations (in Chinese with English abstract). J. Glaciol. Geocryol., 32, 249256.

    • Search Google Scholar
    • Export Citation
  • Hock, R., and B. Holmgren, 2005: A distributed surface energy–balance model for complex topography and its application to Storglaciären, Sweden. J. Glaciol., 51, 2536, https://doi.org/10.3189/172756505781829566.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huang, X. D., J. Deng, W. Wang, Q. S. Feng, and T. G. Liang, 2017: Impact of climate and elevation on snow cover using integrated remote sensing snow products in Tibetan Plateau. Remote Sens. Environ., 190, 274288, https://doi.org/10.1016/j.rse.2016.12.028.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huntington, T. G., G. A. Hodgkins, B. D. Keim, and R. W. Dudley, 2004: Changes in the proportion of precipitation occurring as snow in New England (1949–2000). J. Climate, 17, 26262636, https://doi.org/10.1175/1520-0442(2004)017<2626:CITPOP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huss, M., and R. Hock, 2018: Global-scale hydrological response to future glacier mass loss. Nat. Climate Change, 8, 135140, https://doi.org/10.1038/s41558-017-0049-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Immerzeel, W. W., and Coauthors, 2020: Importance and vulnerability of the world’s water towers. Nature, 577, 364369, https://doi.org/10.1038/s41586-019-1822-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kang, E. S., G. D. Cheng, Y. C. Lan, and H. J. Jin, 1999: A model for simulating the response of runoff from the mountainous watershed of inland river basins in the arid area of northwest China to climatic changes. Sci. China, 42D (Suppl.), 5263, https://doi.org/10.1007/BF02878853.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kapnick, S. B., T. L. Delworth, M. Ashfaq, S. Malyshev, and P. C. D. Milly, 2014: Snowfall less sensitive to warming in Karakoram than in Himalayas due to a unique seasonal cycle. Nat. Geosci., 7, 834840, https://doi.org/10.1038/ngeo2269.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kendall, M. G., 1948: Rank Correlation Methods. Charles Griffin and Company, 160 pp.

  • Koistinen, J., and E. Saltikoff, 1998: Experience of customer products of accumulated snow, sleet and rain. Advanced Weather Radar Systems, COST 75th Int. Seminar, Locarno, Switzerland, European Commission, 397406.

    • Search Google Scholar
    • Export Citation
  • Krasting, J. P., A. J. Broccoli, K. W. Dixon, and J. R. Lanzante, 2013: Future changes in Northern Hemisphere snowfall. J. Climate, 26, 78137828, https://doi.org/10.1175/JCLI-D-12-00832.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kumar, P., M. S. Saharwardi, A. Banerjee, M. F. Azam, A. K. Dubey, and R. Murtugudde, 2019: Snowfall variability dictates glacier mass balance variability in Himalaya-Karakoram. Sci. Rep., 9, 18192, https://doi.org/10.1038/s41598-019-54553-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kunkel, K. E., M. A. Palecki, K. G. Hubbard, D. A. Robinson, K. T. Redmond, and D. R. Easterling, 2007: Trend identification in twentieth-century U.S. snowfall: The challenges. J. Atmos. Oceanic Technol., 24, 6473, https://doi.org/10.1175/jtech2017.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, S. H., T. D. Yao, W. S. Yu, W. Yang, and M. L. Zhu, 2019: Energy and mass balance characteristics of the Guliya ice cap in the West Kunlun Mountains, Tibetan Plateau. Cold Reg. Sci. Technol., 159, 7185, https://doi.org/10.1016/j.coldregions.2018.12.001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, Y. P., Y. N. Chen, F. Wang, Y. Q. He, and Z. Li, 2020: Evaluation and projection of snowfall changes in high mountain Asia based on NASA’s NEX-GDDP high-resolution daily downscaled dataset. Environ. Res. Lett., 15, 104040, https://doi.org/10.1088/1748-9326/aba926.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liang, L. Q., L. J. Li, and Q. Liu, 2011: Precipitation variability in northeast China from 1961 to 2008. J. Hydrol., 404, 6776, https://doi.org/10.1016/j.jhydrol.2011.04.020.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liang, L. Q., L. J. Li, C. M. Liu, and L. Cuo, 2013: Climate change in the Tibetan Plateau Three Rivers source region: 1960–2009. Int. J. Climatol., 33, 29002916, https://doi.org/10.1002/joc.3642.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liang, L. Q., L. Cuo, and Q. Liu, 2018: The energy and mass balance of a continental glacier: Dongkemadi Glacier in central Tibetan Plateau. Sci. Rep., 8, 12788, https://doi.org/10.1038/s41598-018-31228-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liang, L. Q., L. Cuo, and Q. Liu, 2019: Mass balance variation and associative climate drivers for the Dongkemadi Glacier in the central Tibetan Plateau. J. Geophys. Res. Atmos., 124, 10 81410 825, https://doi.org/10.1029/2019JD030615.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liang, L. Q., L. Cuo, and Q. Liu, 2020: Long-term temporal scale-dependent warming effects on the mass balance in the Dongkemadi Glacier, Tibetan Plateau. J. Geophys. Res. Atmos., 125, e2020JD033105, https://doi.org/10.1029/2020JD033105.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liang, X., E. F. Wood, and D. P. Lettenmaier, 1996: Surface soil moisture parameterization of the VIC-2L model: Evaluation and modification. Global Planet. Change, 13, 195206, https://doi.org/10.1016/0921-8181(95)00046-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lin, R. S., G. Mei, Z. Y. Liu, N. Xi, and X. N. Zhang, 2021: Susceptibility analysis of glacier debris flow by investigating the changes in glaciers based on remote sensing: A case study. Sustainability, 13, 7196, https://doi.org/10.3390/su13137196.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, Q., Z. F. Yang, and B. S. Cui, 2008: Spatial and temporal variability of annual precipitation during 1961–2006 in Yellow River basin, China. J. Hydrol., 361, 330338, https://doi.org/10.1016/j.jhydrol.2008.08.002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, Q., J. L. Liu, H. F. Liu, L. Q. Liang, Y. P. Cai, X. Wang, and C. H. Li, 2020: Vegetation dynamics under water-level fluctuations: Implications for wetland restoration. J. Hydrol., 581, 124418, https://doi.org/10.1016/j.jhydrol.2019.124418.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lutz, A. F., W. W. Immerzeel, A. B. Shrestha, and M. F. P. Bierkens, 2014: Consistent increase in high Asia’s runoff due to increasing glacier melt and precipitation. Nat. Climate Change, 4, 587592, https://doi.org/10.1038/nclimate2237.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mann, H. B., 1945: Non-parametric test against trend. Econometrica, 13, 245259, https://doi.org/10.2307/1907187.

  • Marks, D., and J. Dozier, 1992: Climate and energy exchange at the snow surface in the Alpine region of the Sierra Nevada: 2. Snow cover energy balance. Water Resour. Res., 28, 30433054, https://doi.org/10.1029/92WR01483.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ning, L., and R. S. Bradley, 2015: Snow occurrence changes over the central and eastern United States under future warming scenarios. Sci. Rep., 5, 17073, https://doi.org/10.1038/srep17073.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • O’Gorman, P. A., 2014: Contrasting responses of mean and extreme snowfall to climate change. Nature, 512, 416418, https://doi.org/10.1038/nature13625.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pepin, N., and Coauthors, 2015: Elevation-dependent warming in mountain regions of the world. Nat. Climate Change, 5, 424430, https://doi.org/10.1038/nclimate2563.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pu, J. C., T. D. Yao, M. X. Yang, L. D. Tian, N. L. Wang, Y. Ageta, and K. Fujita, 2008: Rapid decrease of mass balance observed in the Xiao (Lesser) Dongkemadi Glacier, in the central Tibetan Plateau. Hydrol. Processes, 22, 29532958, https://doi.org/10.1002/hyp.6865.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Radchenko, I., Y. Dernedde, B. Mannig, H.-G. Frede, and L. Breuer, 2017: Climate change impacts on runoff in the Ferghana Valley (central Asia). Water Resour., 44, 707730, https://doi.org/10.1134/S0097807817050098.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Radić, V., and R. Hock, 2014: Glaciers in the Earth’s hydrological cycle: Assessments of glacier mass and runoff changes on global and regional scales. Surv. Geophys., 35, 813837, https://doi.org/10.1007/s10712-013-9262-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Refsgaard, A., S. M. Seth, J. C. Bathurst, M. Erlich, and S. Chandra, 1992: Application of the SHE to catchments in India part 1: General results. J. Hydrol., 140, 123, https://doi.org/10.1016/0022-1694(92)90232-K.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reuter, H. I., A. Nelson, and A. Jarvis, 2007: An evaluation of void filling interpolation methods for SRTM data. Int. J. Geogr. Inf. Sci., 21, 9831008, https://doi.org/10.1080/13658810601169899.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sakai, A., T. Nuimura, K. Fujita, S. Takenaka, H. Nagai, and D. Lamsal, 2015: Climate regime of Asian glaciers revealed by GAMDAM glacier inventory. Cryosphere, 9, 865880, https://doi.org/10.5194/tc-9-865-2015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Serquet, G., C. Marty, J. P. Dulex, and M. Rebetez, 2011: Seasonal trends and temperature dependence of the snowfall/precipitation-day ratio in Switzerland. Geophys. Res. Lett., 38, L07703, https://doi.org/10.1029/2011GL046976.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shi, P. L., K. Q. Duan, K. N. Nicholson, B. S. Han, N. Klaus, and J. Yang, 2020: Modeling past and future variation of glaciers in the Dongkemadi ice field on central Tibetan Plateau from 1989 to 2050. Arct. Antarct. Alp. Res., 191209, 52, https://doi.org/10.1080/15230430.2020.1743157.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Su, F. G., L. L. Zhang, T. Ou, D. L. Chen, T. D. Yao, K. Tong, and Y. Qi, 2016: Hydrological response to future climate changes for the major upstream river basins in the Tibetan Plateau. Global Planet. Change, 136, 8295, https://doi.org/10.1016/j.gloplacha.2015.10.012.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, J., M. J. Zhang, S. J. Wang, Z. G. Ren, Y. J. Che, Q. Fang, and D. Y. Qu, 2016: Decrease in snowfall/rainfall ratio in the Tibetan Plateau from 1961 to 2013. J. Geogr. Sci., 26, 12771288, https://doi.org/10.1007/s11442-016-1326-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, L., and Coauthors, 2021: TP-River: Monitoring and quantifying total river runoff from the Third Pole. Bull. Amer. Meteor. Soc., 102, E948E965, https://doi.org/10.1175/BAMS-D-20-0207.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wigmosta, M. S., L. Vail, and D. P. Lettenmaier, 1994: A distributed hydrology-vegetation model for complex terrain. Water Resour. Res., 30, 16651679, https://doi.org/10.1029/94WR00436.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yang, W., T. D. Yao, X. F. Guo, M. L. Zhu, S. H. Li, and D. B. Kattel, 2013: Mass balance of a maritime glacier on the southeast Tibetan Plateau and its climatic sensitivity. J. Geophys. Res. Atmos., 118, 95799594, https://doi.org/10.1002/jgrd.50760.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yang, W., X. F. Guo, T. D. Yao, M. L. Zhu, and Y. J. Wang, 2016: Recent accelerating mass loss of southeast Tibetan glaciers and the relationship with changes in macroscale atmospheric circulations. Climate Dyn., 47, 805815, https://doi.org/10.1007/s00382-015-2872-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yao, T. D., and Coauthors, 2012: Different glacier status with atmospheric circulations in Tibetan Plateau and surroundings. Nat. Climate Change, 2, 663667, https://doi.org/10.1038/nclimate1580.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yao, T. D., and Coauthors, 2019: Recent Third Pole’s rapid warming accompanies cryospheric melt and water cycle intensification and interactions between monsoon and environment: Multidisciplinary approach with observations, modeling, and analysis. Bull. Amer. Meteor. Soc., 100, 423444, https://doi.org/10.1175/BAMS-D-17-0057.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ye, H., and Coauthors, 2020: Spatiotemporal variations of snow cover in the Qinghai-Tibetan Plateau from 2000 to 2019. Ziyuan Kexue, 42, 24342450, https://doi.org/10.18402/resci.2020.12.14.

    • Search Google Scholar
    • Export Citation
  • Zhang, G. Q., H. J. Xie, S. C. Kang, D. H. Yi, and S. F. Ackley, 2011: Monitoring lake level changes on the Tibetan Plateau using ICESat altimetry data (2003–2009). Remote Sens. Environ., 115, 17331742, https://doi.org/10.1016/j.rse.2011.03.005.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, J., X. B. He, B. S. Ye, and J. K. Wu, 2013: Recent variation of mass balance of the Xiao Dongkemadi Glacier in the Tanggula Range and its influencing factors. J. Glaciol. Geocryol., 263271, 35, https://doi.org/10.7522/j.issn.1000-0240.2013.0032.

    • Search Google Scholar
    • Export Citation
  • Zhong, R. D., Y. H. He, and X. H. Chen, 2018: Responses of the hydrological regime to variations in meteorological factors under climate change of the Tibetan Plateau. Atmos. Res., 214, 296310, https://doi.org/10.1016/j.atmosres.2018.08.008.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhu, X. F., and Coauthors, 2017: Characteristics of the ratios of snow, rain and sleet to precipitation on the Qinghai-Tibet Plateau during 1961–2014. Quat. Int., 444, 137150, https://doi.org/10.1016/j.quaint.2016.07.030.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhu, Y. X., and Y. F. Sang, 2018: Spatial variability in the seasonal distribution of precipitation on the Tibetan Plateau (in Chinese with English abstract). Prog. Geog., 37, 15331544, https://doi.org/10.18306/dlkxjz.2018.11.009.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 152 148 26
Full Text Views 62 58 12
PDF Downloads 65 56 16

The Role of the Snow Ratio in Mass Balance Change under a Warming Climate for the Dongkemadi Glacier, Tibetan Plateau

View More View Less
  • 1 aKey Laboratory of Tibetan Environment Changes and Land Surface Processes, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing, China
  • | 2 bUniversity of Chinese Academy of Sciences, Beijing, China
  • | 3 cState Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, China
  • | 4 dKey Laboratory for Water and Sediment Sciences, Ministry of Education, School of Environment, Beijing Normal University, Beijing, China
Restricted access

Abstract

Understanding the effects of the snow ratio on glacier mass balance under variable climatic conditions is crucial for predicting how glaciers will respond to climate change, and for forecasting water supplies to surrounding lowland areas. Due to recent climate change, the historical annual snow ratio of the Dongkemadi (DKMD) Glacier showed a significant increasing trend (0.0538% a−1, p < 0.05), and an abrupt upward change in 1977 due to decreasing precipitation concentration. Snow ratios with fixed precipitation concentration and nonwarming climate scenarios were calculated to isolate the impact of the snow ratio on glacier mass balance. Under nonwarming conditions, the snow ratio showed little variability, ranging from 88.4% to 99.9%. Glacier modeling results comparing five snow ratio scenarios from 1961 to 2009 showed three main features as follows. (i) Glacier mass balance was low and more sensitive to a warming climate for lower snow ratio scenarios. (ii) The difference in mass balance between the scenarios fluctuated, but generally increased with time. Spatially, the ablation area change was larger (0.4 km2), and the equilibrium line altitude was higher (5.9 m) in scenarios with lower snow ratios. (iii) The change in net shortwave radiation was the main reason for changes in glacial melt, and the albedo played a key role in controlling the difference of glacier energy balance between snow ratio scenarios. Rain increment only accounted for about 20%–33% of meltwater increment. Overall, this study provides valuable information to evaluate how snow ratios impact the mass balance of glaciers with ongoing climate change.

© 2022 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Liqiao Liang, liangliqiao@itpcas.ac.cn; Qiang Liu, liuqiang@bnu.edu.cn

Abstract

Understanding the effects of the snow ratio on glacier mass balance under variable climatic conditions is crucial for predicting how glaciers will respond to climate change, and for forecasting water supplies to surrounding lowland areas. Due to recent climate change, the historical annual snow ratio of the Dongkemadi (DKMD) Glacier showed a significant increasing trend (0.0538% a−1, p < 0.05), and an abrupt upward change in 1977 due to decreasing precipitation concentration. Snow ratios with fixed precipitation concentration and nonwarming climate scenarios were calculated to isolate the impact of the snow ratio on glacier mass balance. Under nonwarming conditions, the snow ratio showed little variability, ranging from 88.4% to 99.9%. Glacier modeling results comparing five snow ratio scenarios from 1961 to 2009 showed three main features as follows. (i) Glacier mass balance was low and more sensitive to a warming climate for lower snow ratio scenarios. (ii) The difference in mass balance between the scenarios fluctuated, but generally increased with time. Spatially, the ablation area change was larger (0.4 km2), and the equilibrium line altitude was higher (5.9 m) in scenarios with lower snow ratios. (iii) The change in net shortwave radiation was the main reason for changes in glacial melt, and the albedo played a key role in controlling the difference of glacier energy balance between snow ratio scenarios. Rain increment only accounted for about 20%–33% of meltwater increment. Overall, this study provides valuable information to evaluate how snow ratios impact the mass balance of glaciers with ongoing climate change.

© 2022 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Liqiao Liang, liangliqiao@itpcas.ac.cn; Qiang Liu, liuqiang@bnu.edu.cn
Save