• Agosta, C., and Coauthors, 2019a: Estimation of the Antarctic surface mass balance using the regional climate model MAR (1979–2015) and identification of dominant processes. Cryosphere, 13, 281296, https://doi.org/10.5194/tc-13-281-2019.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Agosta, C., and Coauthors, 2019b: Highlights on key polar processes driving the Antarctic surface mass balance. 2019 Fall Meeting, San Francisco, CA, Amer. Geophys. Union, Abstract C34A-02, https://doi.org/10.5281/zenodo.4327066.

    • Search Google Scholar
    • Export Citation
  • Bintanja, R., and O. Andry, 2017: Towards a rain-dominated Arctic. Nat. Climate Change, 7, 263267, https://doi.org/10.1038/nclimate3240.

  • Bromwich, D. H., 1988: Snowfall in high southern latitudes. Rev. Geophys., 26, 149168, https://doi.org/10.1029/RG026i001p00149.

  • Bromwich, D. H., J. P. Nicolas, and A. J. Monaghan, 2011: An assessment of precipitation changes over Antarctica and the Southern Ocean since 1989 in contemporary global reanalyses. J. Climate, 24, 41894209, https://doi.org/10.1175/2011JCLI4074.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cai, M., and H. M. van den Dool, 1994: Dynamical decomposition of low-frequency tendencies. J. Atmos. Sci., 51, 20862100, https://doi.org/10.1175/1520-0469(1994)051<2086:DDOLFT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cazenave, A., and Coauthors, 2018: Global sea-level budget 1993–present. Earth Syst. Sci. Data, 10, 15511590, https://doi.org/10.5194/essd-10-1551-2018.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, Y., and P. Zhai, 2014: Precursor circulation features for persistent extreme precipitation in central-eastern China. Wea. Forecasting, 29, 226240, https://doi.org/10.1175/WAF-D-13-00065.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dee, D. P., and Coauthors, 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597, https://doi.org/10.1002/qj.828.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ding, M., W. Han, T. Zhang, X. Yue, J. Fyke, G. Liu, and C. Xiao, 2020: Towards more snow days in summer since 2001 at the Great Wall Station, Antarctic Peninsula: The role of the Amundsen Sea low. Adv. Atmos. Sci., 37, 494504, https://doi.org/10.1007/s00376-019-9196-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Edwards, T. L., and Coauthors, 2021: Projected land ice contributions to twenty-first-century sea level rise. Nature, 593, 7482, https://doi.org/10.1038/s41586-021-03302-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Feldstein, S. B., 2002: Fundamental mechanisms of the growth and decay of the PNA teleconnection pattern. Quart. J. Roy. Meteor. Soc., 128, 775796, https://doi.org/10.1256/0035900021643683.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Feldstein, S. B., 2003: The dynamics of NAO teleconnection pattern growth and decay. Quart. J. Roy. Meteor. Soc., 129, 901924, https://doi.org/10.1256/qj.02.76.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Genthon, C., G. Krinner, and H. Castebrunet, 2009: Antarctic precipitation and climate-change predictions: Horizontal resolution and margin vs plateau issues. Ann. Glaciol., 50, 5560, https://doi.org/10.3189/172756409787769681.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gorodetskaya, I. V., M. Tsukernik, K. Claes, M. F. Ralph, W. D. Neff, and N. P. M. Van Lipzig, 2014: The role of atmospheric rivers in anomalous snow accumulation in East Antarctica. Geophys. Res. Lett., 41, 61996206, https://doi.org/10.1002/2014GL060881.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Han, W., C. Xiao, T. Dou, and M. Ding, 2018: Changes in the proportion of precipitation occurring as rain in northern Canada during spring–summer from 1979–2015. Adv. Atmos. Sci., 35, 11291136, https://doi.org/10.1007/s00376-018-7226-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hendon, H. H., and D. L. Hartmann, 1985: Variability in a nonlinear model of the atmosphere with zonally symmetric forcing. J. Atmos. Sci., 42, 27832797, https://doi.org/10.1175/1520-0469(1985)042<2783:VIANMO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hersbach, H., and Coauthors, 2020: The ERA5 global reanalysis. Quart. J. Roy. Meteor. Soc., 146, 19992049, https://doi.org/10.1002/qj.3803.

  • Hoskins, B. J., 1983: The shape, propagation and mean-flow interaction of large-scale weather systems. J. Atmos. Sci., 40, 15951612, https://doi.org/10.1175/1520-0469(1983)040<1595:TSPAMF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huai, B., Y. Wang, M. Ding, J. Zhang, and X. Dong, 2019: An assessment of recent global atmospheric reanalyses for Antarctic near surface air temperature. Atmos. Res., 226, 181191, https://doi.org/10.1016/j.atmosres.2019.04.029.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jevrejeva, S., J. C. Moore, A. Grinsted, A. P. Matthews, and G. Spada, 2014: Trends and acceleration in global and regional sea levels since 1807. Global Planet. Change, 113, 1122, https://doi.org/10.1016/j.gloplacha.2013.12.004.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kirchgäßner, A., 2011: An analysis of precipitation data from the Antarctic base Faraday/Vernadsky. Int. J. Climatol., 31, 404414, https://doi.org/10.1002/joc.2083.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Krinner, G., O. Magand, I. Simmonds, C. Genthon, and J. L. Dufresne, 2007: Simulated Antarctic precipitation and surface mass balance at the end of the twentieth and twenty-first centuries. Climate Dyn., 28, 215230, https://doi.org/10.1007/s00382-006-0177-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kurita, N., N. Hirasawa, S. Koga, J. Matsushita, H. C. Steen-Larsen, V. Masson-Delmotte, and Y. Fujiyoshi, 2016: Influence of large-scale atmospheric circulation on marine air intrusion toward the East Antarctic coast. Geophys. Res. Lett., 43, 92989305, https://doi.org/10.1002/2016GL070246.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lee, S.-S., and Coauthors, 2012: Interdecadal changes in the storm track activity over the North Pacific and North Atlantic. Climate Dyn., 39, 313327, https://doi.org/10.1007/s00382-011-1188-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lenaerts, J. T. M., E. van Meijgaard, M. R. van den Broeke, S. R. M. Ligtenberg, M. Horwath, and E. Isaksson, 2013: Recent snowfall anomalies in Dronning Maud Land, East Antarctica, in a historical and future climate perspective. Geophys. Res. Lett., 40, 26842688, https://doi.org/10.1002/grl.50559.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marshall, G. J., D. W. J. Thompson, and M. R. van den Broeke, 2017: The signature of Southern Hemisphere atmospheric circulation patterns in Antarctic precipitation. Geophys. Res. Lett., 44, 11 58011 589, https://doi.org/10.1002/2017GL075998.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Massom, R. A., M. J. Pook, J. C. Comiso, N. Adams, J. Turner, T. Lachlan-Cope, and T. T. Gibson, 2004: Precipitation over the interior East Antarctic ice sheet related to midlatitude blocking-high activity. J. Climate, 17, 19141928, https://doi.org/10.1175/1520-0442(2004)017<1914:POTIEA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Miao, R., M. Wen, R. Zhang, and L. Li, 2019: The influence of wave trains in mid-high latitudes on persistent heavy rain during the first rainy season over South China. Climate Dyn., 53, 29492968, https://doi.org/10.1007/s00382-019-04670-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nick, F. M., and Coauthors, 2013: Future sea-level rise from Greenland’s main outlet glaciers in a warming climate. Nature, 497, 235238, https://doi.org/10.1038/nature12068.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Noone, D., J. Turner, and R. Mulvaney, 1999: Atmospheric signals and characteristics of accumulation in Dronning Maud Land, Antarctica. J. Geophys. Res., 104, 19 19119 211, https://doi.org/10.1029/1999JD900376.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Palerme, C., C. Genthon, C. Claud, J. E. Kay, N. B. Wood, and T. L’Ecuyer, 2017: Evaluation of current and projected Antarctic precipitation in CMIP5 models. Climate Dyn., 48, 225239, https://doi.org/10.1007/s00382-016-3071-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Payne, A. J., and Coauthors, 2021: Future sea level change under Coupled Model Intercomparison Project phase 5 and phase 6 scenarios from the Greenland and Antarctic ice sheets. Geophys. Res. Lett., 48, e2020GL091741, https://doi.org/10.1029/2020GL091741.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pollard, D., R. M. DeConto, and R. B. Alley, 2015: Potential Antarctic ice sheet retreat driven by hydrofracturing and ice cliff failure. Earth Planet. Sci. Lett., 412, 112121, https://doi.org/10.1016/j.epsl.2014.12.035.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reijmer, C. H., and M. R. van den Broeke, 2001: Moisture source of precipitation in Western Dronning Maud Land, Antarctica. Antarct. Sci., 13, 210220, https://doi.org/10.1017/S0954102001000293.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ropert-Coudert, Y., and Coauthors, 2015: A complete breeding failure in an Adélie penguin colony correlates with unusual and extreme environmental events. Ecography, 38, 111113, https://doi.org/10.1111/ecog.01182.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Scarchilli, C., M. Frezzotti, and P. M. Ruti, 2011: Snow precipitation at four ice core sites in East Antarctica: Provenance, seasonality and blocking factors. Climate Dyn., 37, 21072125, https://doi.org/10.1007/s00382-010-0946-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Seroussi, H., and Coauthors, 2020: ISMIP6 Antarctica: A multi-model ensemble of the Antarctic ice sheet evolution over the 21st century. Cryosphere, 14, 30333070, https://doi.org/10.5194/tc-14-3033-2020.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shepherd, A., and D. Wingham, 2007: Recent sea-level contributions of the Antarctic and Greenland ice sheets. Science, 315, 15291532, https://doi.org/10.1126/science.1136776.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shepherd, A., and Coauthors, 2018: Mass balance of the Antarctic ice sheet from 1992 to 2017. Nature, 558, 219222, https://doi.org/10.1038/s41586-018-0179-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Takaya, K., and H. Nakamura, 2001: A formulation of a phase-independent wave-activity flux for stationary and migratory quasigeostrophic eddies on a zonally varying basic flow. J. Atmos. Sci., 58, 608627, https://doi.org/10.1175/1520-0469(2001)058<0608:AFOAPI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Trusel, L. D., K. E. Frey, S. B. Das, K. B. Karnauskas, P. Kuipers Munneke, E. van Meijgaard, and M. R. van den Broeke, 2015: Divergent trajectories of Antarctic surface melt under two twenty-first-century climate scenarios. Nat. Geosci., 8, 927932, https://doi.org/10.1038/ngeo2563.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Turner, J., T. A. Lachlan-Cope, J. P. Thomas, and S. R. Colwell, 1995: The synoptic origins of precipitation over the Antarctic Peninsula. Antarct. Sci., 7, 327337, https://doi.org/10.1017/S0954102095000447.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Turner, J., S. R. Colwell, and S. Harangozo, 1997: Variability of precipitation over the coastal western Antarctic Peninsula from synoptic observations. J. Geophys. Res., 102, 13 99914 007, https://doi.org/10.1029/96JD03359.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Turner, J., and Coauthors, 2019: The dominant role of extreme precipitation events in Antarctic snowfall variability. Geophys. Res. Lett., 46, 35023511, https://doi.org/10.1029/2018GL081517.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Turner, J., H. Lu, J. King, G. J. Marshall, T. Phillips, D. Bannister, and S. Colwell, 2021: Extreme temperatures in the Antarctic. J. Climate, 34, 26532668, https://doi.org/10.1175/JCLI-D-20-0538.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • van de Berg, W. J., M. R. van den Broeke, C. H. Reijmer, and E. van Meijgaard, 2005: Characteristics of the Antarctic surface mass balance, 1958–2002, using a regional atmospheric climate model. Ann. Glaciol., 41, 97104, https://doi.org/10.3189/172756405781813302.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Van Lipzig, N. P. M., E. van Meijgaard, and J. Oerlemans, 2002: The effect of temporal variations in the surface mass balance and temperature-inversion strength on the interpretation of ice-core signals. J. Glaciol., 48, 611621, https://doi.org/10.3189/172756502781831106.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vignon, É., N. Besic, N. Jullien, J. Gehring, and A. Berne, 2019: Microphysics of snowfall over coastal East Antarctica simulated by polar WRF and observed by radar. J. Geophys. Res. Atmos., 124, 1145211476, https://doi.org/10.1029/2019JD031028.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vignon, É., M. L. Roussel, I. V. Gorodetskaya, C. Genthon, and A. Berne, 2021: Present and future of rainfall in Antarctica. Geophys. Res. Lett., 48, e2020GL092281, https://doi.org/10.1029/2020GL092281.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, H., and Coauthors, 2020: Influence of sea-ice anomalies on Antarctic precipitation using source attribution in the Community Earth System Model. Cryosphere, 14, 429444, https://doi.org/10.5194/tc-14-429-2020.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, S., W. Chen, S. Chen, and S. Ding, 2020: Interdecadal change in the North Atlantic storm track during boreal summer around the mid-2000s: Role of the atmospheric internal processes. Climate Dyn., 55, 19291944, https://doi.org/10.1007/s00382-020-05360-w.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, S., G. Liu, M. Ding, W. Chen, W. Zhang, and J. Lv, 2021: Potential mechanisms governing the variation in rain/snow frequency over the northern Antarctic Peninsula during austral summer. Atmos. Res., 263, 105811, https://doi.org/10.1016/j.atmosres.2021.105811.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Weijer, W., and Coauthors, 2017: Local atmospheric response to an open-ocean polynya in a high-resolution climate model. J. Climate, 30, 16291641, https://doi.org/10.1175/JCLI-D-16-0120.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Welker, C., O. Martius, P. Froidevaux, C. H. Reijmer, and H. Fischer, 2014: A climatological analysis of high-precipitation events in Dronning Maud Land, Antarctica, and associated large-scale atmospheric conditions. J. Geophys. Res. Atmos., 119, 11 93211 954, https://doi.org/10.1002/2014JD022259.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wessem, J., C. H. Reijmer, M. Morlighem, J. Mouginot, and E. van Meijgaard, 2014: Improved representation of East Antarctic surface mass balance in a regional atmospheric climate model. J. Glaciol., 60, 761770, https://doi.org/10.3189/2014JoG14J051.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wild, M., P. Calanca, S. C. Scherrer, and A. Ohmura, 2003: Effects of polar ice sheets on global sea level in high-resolution greenhouse scenarios. J. Geophys. Res., 108, 4165, https://doi.org/10.1029/2002JD002451.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wille, J. D., V. Favier, A. Dufour, I. V. Gorodetskaya, J. Turner, C. Agosta, and F. Codron, 2019: West Antarctic surface melt triggered by atmospheric rivers. Nat. Geosci., 12, 911916, https://doi.org/10.1038/s41561-019-0460-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wille, J. D., and Coauthors, 2021: Antarctic atmospheric river climatology and precipitation impacts. J. Geophys. Res. Atmos., 126, e2020JD033788, https://doi.org/10.1029/2020JD033788.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wingham, D. J., A. Shepherd, A. Muir, and G. J. Marshall, 2006: Mass balance of the Antarctic ice sheet. Philos. Trans. Roy. Soc. Math., A364, 16271635, https://doi.org/10.1098/rsta.2006.1792.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yang, D., and Coauthors, 2021: On the differences in precipitation type between the Arctic, Antarctica and Tibetan Plateau. Front. Earth Sci., 9, 607487, https://doi.org/10.3389/feart.2021.607487.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 190 188 27
Full Text Views 78 78 7
PDF Downloads 97 97 7

Processes and Mechanisms of Persistent Extreme Rainfall Events in the Antarctic Peninsula during Austral Summer

View More View Less
  • 1 aState Key Laboratory of Severe Weather and Institute of Tibetan Plateau and Polar Meteorology, Chinese Academy of Meteorological Sciences, Beijing, China
  • | 2 bCenter for Monsoon System Research, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China
  • | 3 cCollege of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing, China
Restricted access

Abstract

Using ERA-Interim and output of the regional climate model MAR (Modèle Atmosphérique Régional) forced by ERA-Interim, this study investigates the mechanisms governing the persistent extreme rainfall events (PEREs) in the Antarctic Peninsula (AP) during austral summer (December–February) for the period 1980–2017. Due to the topography’s blocking effect on the warm and humid airflow, the increase in the rainfall is concentrated over the western AP during the periods of the PEREs. Contributed mainly by the low-frequency variations, the positive rainfall anomalies on the western AP can persist for multiple days, leading to the persistence of the extreme rainfall events. The additional rainfall anomalies can be attributed to the increase in the total precipitation. Through regulating the total precipitation, the low-frequency atmospheric circulation anomalies are vital to the formation of the PEREs. Specifically, a persistent circulation pattern with an anomalous cyclone (anticyclone) to the east (west) of the AP is conductive to the enhancement of poleward moisture fluxes. As a result, the total precipitation around the AP is strengthened, as well as the rainfall. Further investigation reveals that the barotropic feedback of the high-frequency eddies plays an important role in maintaining the low-frequency circulation anomalies.

© 2022 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Minghu Ding, dingminghu@foxmail.com

Abstract

Using ERA-Interim and output of the regional climate model MAR (Modèle Atmosphérique Régional) forced by ERA-Interim, this study investigates the mechanisms governing the persistent extreme rainfall events (PEREs) in the Antarctic Peninsula (AP) during austral summer (December–February) for the period 1980–2017. Due to the topography’s blocking effect on the warm and humid airflow, the increase in the rainfall is concentrated over the western AP during the periods of the PEREs. Contributed mainly by the low-frequency variations, the positive rainfall anomalies on the western AP can persist for multiple days, leading to the persistence of the extreme rainfall events. The additional rainfall anomalies can be attributed to the increase in the total precipitation. Through regulating the total precipitation, the low-frequency atmospheric circulation anomalies are vital to the formation of the PEREs. Specifically, a persistent circulation pattern with an anomalous cyclone (anticyclone) to the east (west) of the AP is conductive to the enhancement of poleward moisture fluxes. As a result, the total precipitation around the AP is strengthened, as well as the rainfall. Further investigation reveals that the barotropic feedback of the high-frequency eddies plays an important role in maintaining the low-frequency circulation anomalies.

© 2022 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Minghu Ding, dingminghu@foxmail.com
Save