• Andrews, T., C. J. Smith, G. Myhre, P. M. Forster, R. Chadwick, and D. Ackerley, 2021: Effective radiative forcing in a GCM with fixed surface temperatures. J. Geophys. Res. Atmos., 126, e2020JD033880, https://doi.org/10.1029/2020jd033880.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Colman, R., 2015: Climate radiative feedbacks and adjustments at the Earth’s surface. J. Geophys. Res. Atmos., 120, 31733182, https://doi.org/10.1002/2014JD022896.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • De Nevers, N., 2012: Physical and Chemical Equilibrium for Chemical Engineers. John Wiley & Sons, 384 pp.

  • Donner, L. J., and Coauthors, 2011: The dynamical core, physical parameterizations, and basic simulation characteristics of the atmospheric component AM3 of the GFDL global coupled model CM3. J. Climate, 24, 34843519, https://doi.org/10.1175/2011JCLI3955.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Friedlingstein, P., and Coauthors, 2006: Climate–carbon cycle feedback analysis: Results from the C4MIP model intercomparison. J. Climate, 19, 33373353, https://doi.org/10.1175/JCLI3800.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gent, P. R., and Coauthors, 2011: The Community Climate System Model version 4. J. Climate, 24, 49734991, https://doi.org/10.1175/2011JCLI4083.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gettelman, A., and S. Sherwood, 2016: Processes responsible for cloud feedback. Curr. Climate Change Rep., 2, 179189, https://doi.org/10.1007/s40641-016-0052-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hansen, J., and Coauthors, 2005: Efficacy of climate forcings. J. Geophys. Res., 110, D18104, https://doi.org/10.1029/2005JD005776.

  • Held, I. M., and B. J. Soden, 2000: Water vapor feedback and global warming. Annu. Rev. Energy Environ., 25, 441475, https://doi.org/10.1146/annurev.energy.25.1.441.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Held, I. M., and B. J. Soden, 2006: Robust responses of the hydrological cycle to global warming. J. Climate, 19, 56865699, https://doi.org/10.1175/JCLI3990.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kiss, A. E., and Coauthors, 2020: ACCESS-OM2 v1.0: A global ocean–sea ice model at three resolutions. Geosci. Model Dev., 13, 401442, https://doi.org/10.5194/gmd-13-401-2020.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Loeb, N. G., G. C. Johnson, T. J. Thorsen, J. M. Lyman, F. G. Rose, and S. Kato, 2021: Satellite and ocean data reveal marked increase in Earth’s heating rate. Geophys. Res. Lett., 48, e2021GL093047, https://doi.org/10.1029/2021GL093047.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Myhre, G., and Coauthors, 2013: Anthropogenic and natural radiative forcing. Climate Change 2013: The Physical Science Basis, T. F. Stocker et al., Eds., Cambridge University Press, 659740.

    • Search Google Scholar
    • Export Citation
  • Pendergrass, A. G., A. Conley, and F. M. Vitt, 2018: Surface and top-of-atmosphere radiative feedback kernels for CESM-CAM5. Earth Syst. Sci. Data, 10, 317324, https://doi.org/10.5194/essd-10-317-2018.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Prather, M., G. Flato, P. Friedlingstein, C. Jones, J. Lamarque, H. Liao, and P. Rasch, 2013: Annex II: Climate system scenario tables. Climate Change 2013: The Physical Science Basis, T. F. Stocker et al., Eds., Cambridge University Press, p. 1422.

    • Search Google Scholar
    • Export Citation
  • Previdi, M., 2010: Radiative feedbacks on global precipitation. Environ. Res. Lett., 5, 025211, https://doi.org/10.1088/1748-9326/5/2/025211.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rodell, M., and Coauthors, 2004: The Global Land Data Assimilation System. Bull. Amer. Meteor. Soc., 85, 381394, https://doi.org/10.1175/BAMS-85-3-381.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Roderick, M., F. Sun, W. H. Lim, and G. Farquhar, 2014: A general framework for understanding the response of the water cycle to global warming over land and ocean. Hydrol. Earth Syst. Sci., 18, 15751589, https://doi.org/10.5194/hess-18-1575-2014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Serreze, M. C., and J. A. Francis, 2006: The Arctic amplification debate. Climatic Change, 76, 241264, https://doi.org/10.1007/s10584-005-9017-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shakespeare, C. J., and M. L. Roderick, 2021: The clear sky downwelling longwave radiation at the surface in current and future climates. Quart. J. Roy. Meteor. Soc., 147, 42514268, https://doi.org/10.1002/qj.4176.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sherwood, S. C., S. Bony, O. Boucher, C. Bretherton, P. M. Forster, J. M. Gregory, and B. Stevens, 2015: Adjustments in the forcing-feedback framework for understanding climate change. Bull. Amer. Meteor. Soc., 96, 217228, https://doi.org/10.1175/BAMS-D-13-00167.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Soden, B. J., and I. M. Held, 2006: An assessment of climate feedbacks in coupled ocean–atmosphere models. J. Climate, 19, 33543360, https://doi.org/10.1175/JCLI3799.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Soden, B. J., I. M. Held, R. Colman, K. M. Shell, J. T. Kiehl, and C. A. Shields, 2008: Quantifying climate feedbacks using radiative kernels. J. Climate, 21, 35043520, https://doi.org/10.1175/2007JCLI2110.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • van den Broeke, M., P. Smeets, J. Ettema, and P. K. Munneke, 2008: Surface radiation balance in the ablation zone of the West Greenland ice sheet. J. Geophys. Res., 113, D13105, https://doi.org/10.1029/2007JD009283.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vargas Zeppetello, L., A. Donohoe, and D. Battisti, 2019: Does surface temperature respond to or determine downwelling longwave radiation? Geophys. Res. Lett., 46, 27812789, https://doi.org/10.1029/2019GL082220.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Voldoire, A., and Coauthors, 2013: The CNRM-CM5.1 global climate model: Description and basic evaluation. Climate Dyn., 40, 20912121, https://doi.org/10.1007/s00382-011-1259-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Watanabe, S., and Coauthors, 2011: MIROC-ESM 2010: Model description and basic results of CMIP5-20c3m experiments. Geosci. Model Dev., 4, 845872, https://doi.org/10.5194/gmd-4-845-2011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, T., and Coauthors, 2014: An overview of BCC climate system model development and application for climate change studies. J. Meteor. Res., 28, 3456, https://doi.org/10.1007/s13351-014-3041-7.

    • Search Google Scholar
    • Export Citation
  • Yang, Y., and M. L. Roderick, 2019: Radiation, surface temperature and evaporation over wet surfaces. Quart. J. Roy. Meteor. Soc., 145, 11181129, https://doi.org/10.1002/qj.3481.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 129 125 15
Full Text Views 50 50 11
PDF Downloads 68 68 12

Diagnosing Instantaneous Forcing and Feedbacks of Downwelling Longwave Radiation at the Surface: A Simple Methodology and Its Application to CMIP5 Models

View More View Less
  • 1 aResearch School of Earth Sciences, Australian National University, Canberra, Australian Capital Territory, Australia
  • | 2 bARC Centre of Excellence in Climate Extremes, Australian National University, Canberra, Australian Capital Territory, Australia
Restricted access

Abstract

Climate models predict large increases in downwelling longwave radiation (DLR) at Earth’s surface as atmospheric CO2 concentrations increase. Here we introduce a novel methodology that allows these increases to be decomposed into direct radiative forcing due to enhanced CO2 and feedbacks due to subsequent changes in atmospheric properties. For the first time, we develop explicit analytic expressions for the radiative forcing and feedbacks, which are calculable from time-mean fields of near-surface air temperature, specific humidity, pressure, total column water vapor, and total cloud fraction. Our methodology captures 90%–98% of the variance in changes in clear-sky and all-sky DLR in five CMIP5 models, with a typical error of less than 10%. The longwave feedbacks are decomposed into contributions from changes in temperature, specific humidity, water vapor height scale, and cloud fraction. We show that changes in specific humidity and height scale are closely linked to changes in near-surface air temperature and therefore, in the global average, that 90% of the increase in all-sky DLR may be attributed to a feedback from increasing near-surface air temperature. Mean-state clouds play a major role in changes in DLR by masking the clear-sky longwave and enhancing the temperature feedback via increased blackbody radiation. The impact of changes in cloud cover (the cloud feedback) on the DLR is small (∼2%) in the global average, but significant in particular geographical regions.

© 2022 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Callum J. Shakespeare, callum.shakespeare@anu.edu.au

Abstract

Climate models predict large increases in downwelling longwave radiation (DLR) at Earth’s surface as atmospheric CO2 concentrations increase. Here we introduce a novel methodology that allows these increases to be decomposed into direct radiative forcing due to enhanced CO2 and feedbacks due to subsequent changes in atmospheric properties. For the first time, we develop explicit analytic expressions for the radiative forcing and feedbacks, which are calculable from time-mean fields of near-surface air temperature, specific humidity, pressure, total column water vapor, and total cloud fraction. Our methodology captures 90%–98% of the variance in changes in clear-sky and all-sky DLR in five CMIP5 models, with a typical error of less than 10%. The longwave feedbacks are decomposed into contributions from changes in temperature, specific humidity, water vapor height scale, and cloud fraction. We show that changes in specific humidity and height scale are closely linked to changes in near-surface air temperature and therefore, in the global average, that 90% of the increase in all-sky DLR may be attributed to a feedback from increasing near-surface air temperature. Mean-state clouds play a major role in changes in DLR by masking the clear-sky longwave and enhancing the temperature feedback via increased blackbody radiation. The impact of changes in cloud cover (the cloud feedback) on the DLR is small (∼2%) in the global average, but significant in particular geographical regions.

© 2022 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Callum J. Shakespeare, callum.shakespeare@anu.edu.au
Save