• Cai, W., and Coauthors, 2019: Pantropical climate interactions. Science, 363, eaav4236, https://doi.org/10.1126/science.aav4236.

  • Cao, Q., Z. Hao, F. Yuan, Z. Su, R. Berndtsson, J. Hao, and T. Nyima, 2017: Impact of ENSO regimes on developing- and decaying-phase precipitation during rainy season in China. Hydrol. Earth Syst. Sci., 21, 54155426, https://doi.org/10.5194/hess-21-5415-2017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chang, C. P., Y. Zhang, and T. Li, 2000: Interannual and interdecadal variations of the East Asian summer monsoon and tropical Pacific SSTs. Part I: Roles of the subtropical ridge. J. Climate, 13, 43104325, https://doi.org/10.1175/1520-0442(2000)013<4310:IAIVOT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, D., S. E. Zebiak, A. J. Busalacchi, and M. A. Cane, 1995: An improved procedure for El Niño forecasting: Implications for predictability. Science, 269, 16991702, https://doi.org/10.1126/science.269.5231.1699.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, D., M. A. Cane, A. Kaplan, S. E. Zebiak, and D. J. Huang, 2004: Predictability of El Niño over the past 148 years. Nature, 428, 733736, https://doi.org/10.1038/nature02439.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, W., J.-K. Park, B. Dong, R. Lu, and W.-S. Jung, 2012: The relationship between El Niño and the western North Pacific summer climate in a coupled GCM: Role of the transition of El Niño decaying phases. J. Geophys. Res., 117, D12111, https://doi.org/10.1029/2011JD017385.

    • Search Google Scholar
    • Export Citation
  • Chiang, J. C. H., and A. H. Sobel, 2002: Tropical tropospheric temperature variations caused by ENSO and their influence on the remote tropical climate. J. Climate, 15, 26162631, https://doi.org/10.1175/1520-0442(2002)015<2616:TTTVCB>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chikamoto, Y., Z. F. Johnson, S. Y. S. Wang, M. J. McPhaden, and T. Mochizuki, 2020: El Niño–Southern Oscillation evolution modulated by Atlantic forcing. J. Geophys. Res. Oceans, 125, e2020JC016318, https://doi.org/10.1029/2020JC016318.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Choi, J., and S.-I. An, 2013: Quantifying the residual effects of ENSO on low-frequency variability in the tropical Pacific. Int. J. Climatol., 33, 10471052, https://doi.org/10.1002/joc.3470.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Deser, C., M. A. Alexander, S. P. Xie, and A. S. Phillips, 2010: Sea surface temperature variability: Patterns and mechanisms. Annu. Rev. Mar. Sci., 2, 115143, https://doi.org/10.1146/annurev-marine-120408-151453.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ding, H., N. S. Keenlyside, and M. Latif, 2012: Impact of the equatorial Atlantic on the El Niño–Southern Oscillation. Climate Dyn., 38, 19651972, https://doi.org/10.1007/s00382-011-1097-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Du, Y., S.-P. Xie, G. Huang, and K. Hu, 2009: Role of air–sea interaction in the long persistence of El Niño–induced North Indian Ocean warming. J. Climate, 22, 20232038, https://doi.org/10.1175/2008JCLI2590.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Duan, W., and J. Hu, 2015: The initial errors that induce a significant “spring predictability barrier” for El Niño events and their implications for target observation: Results from an earth system model. Climate Dyn., 46, 35993615, https://doi.org/10.1007/s00382-015-2789-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Duan, W., X. Liu, K. Zhu, and M. Mu, 2009: Exploring the initial errors that cause a significant “spring predictability barrier” for El Niño events. J. Geophys. Res., 114, C04022, https://doi.org/10.1029/2008JC004925.

    • Search Google Scholar
    • Export Citation
  • Enfield, D. B., and D. A. Mayer, 1997: Tropical Atlantic sea surface temperature variability and its relation to El Niño–Southern Oscillation. J. Geophys. Res., 102, 929945, https://doi.org/10.1029/96JC03296.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Exarchou, E., P. Ortega, B. Rodriguez-Fonseca, T. Losada, I. Polo, and C. Prodhomme, 2021: Impact of equatorial Atlantic variability on ENSO predictive skill. Nat. Commun., 12, 1612, https://doi.org/10.1038/s41467-021-21857-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fedorov, A. V., and S. G. Philander, 2000: Is El Niño changing? Science, 288, 19972002, https://doi.org/10.1126/science.288.5473.1997.

  • Fedorov, A. V., S. Hu, A. T. Wittenberg, A. F. Z. Levine, and C. Deser, 2020: ENSO low-frequency modulation and mean state interactions. El Niño Southern Oscillation in a Changing Climate, M. J. McPhaden, A. Santoso, and W. Cai, Eds., Wiley, 173198, https://doi.org/10.1002/9781119548164.ch8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Feng, J., L. Wang, and W. Chen, 2014: How does the East Asian summer monsoon behave in the decaying phase of El Niño during different PDO phases? J. Climate, 27, 26822698, https://doi.org/10.1175/JCLI-D-13-00015.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Funk, C. C., and A. Hoell, 2015: The leading mode of observed and CMIP5 ENSO-residual sea surface temperatures and associated changes in Indo-Pacific climate. J. Climate, 28, 43094329, https://doi.org/10.1175/JCLI-D-14-00334.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ham, Y.-G., and J.-S. Kug, 2015: Role of north tropical Atlantic SST on the ENSO simulated using CMIP3 and CMIP5 models. Climate Dyn., 45, 31033117, https://doi.org/10.1007/s00382-015-2527-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ham, Y.-G., J.-S. Kug, and J.-Y. Park, 2013a: Two distinct roles of Atlantic SSTs in ENSO variability: North tropical Atlantic SST and Atlantic Niño. Geophys. Res. Lett., 40, 40124017, https://doi.org/10.1002/grl.50729.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ham, Y.-G., J.-S. Kug, J.-Y. Park, and F.-F. Jin, 2013b: Sea surface temperature in the north tropical Atlantic as a trigger for El Niño/Southern Oscillation events. Nat. Geosci., 6, 112116, https://doi.org/10.1038/ngeo1686.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ham, Y.-G., J. H. Kim, and J. J. Luo, 2019: Deep learning for multi-year ENSO forecasts. Nature, 573, 568572, https://doi.org/10.1038/s41586-019-1559-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ham, Y.-G., H.-J. Lee, H.-S. Jo, S.-G. Lee, W. Cai, and R. R. Rodrigues, 2021: Inter-basin interaction between variability in the South Atlantic Ocean and the El Niño/Southern Oscillation. Geophys. Res. Lett., 48, e2021GL093338, https://doi.org/10.1029/2021GL093338.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hannachi, A., I. T. Jolliffe, and D. B. Stephenson, 2007: Empirical orthogonal functions and related techniques in atmospheric science: A review. Int. J. Climatol., 27, 11191152, https://doi.org/10.1002/joc.1499.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hirahara, S., M. Ishii, and Y. Fukuda, 2014: Centennial-scale sea surface temperature analysis and its uncertainty. J. Climate, 27, 5775, https://doi.org/10.1175/JCLI-D-12-00837.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hu, Z. Z., A. Kumar, B. H. Huang, J. H. Zhu, M. L’Heureux, M. J. McPhaden, and J. Y. Yu, 2020: The interdecadal shift of ENSO properties in 1999/2000: A review. J. Climate, 33, 44414462, https://doi.org/10.1175/JCLI-D-19-0316.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hua, L., and J. Su, 2020: Southeastern Pacific error leads to failed El Niño forecasts. Geophys. Res. Lett., 47, e2020GL088764, https://doi.org/10.1029/2020GL088764.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huang, R., and Y. Wu, 1989: The influence of ENSO on the summer climate change in China and its mechanism. Adv. Atmos. Sci., 6, 2132, https://doi.org/10.1007/BF02656915.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huang, B., and Coauthors, 2017: Extended reconstructed sea surface temperature, version 5 (ERSSTv5): Upgrades, validations, and intercomparisons. J. Climate, 30, 81798205, https://doi.org/10.1175/JCLI-D-16-0836.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jiang, W., G. Huang, P. Huang, R. Wu, K. Hu, and W. Chen, 2019: Northwest Pacific anticyclonic anomalies during post–El Niño summers determined by the pace of El Niño decay. J. Climate, 32, 34873503, https://doi.org/10.1175/JCLI-D-18-0793.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jin, F. F., S. T. Kim, and L. Bejarano, 2006: A coupled-stability index for ENSO. Geophys. Res. Lett., 33, L23708, https://doi.org/10.1029/2006GL027221.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jin, Y. S., Z. Y. Lu, and Z. Y. Liu, 2020: Controls of spring persistence barrier strength in different ENSO regimes and implications for 21st century changes. Geophys. Res. Lett., 47, e2020GL088010, https://doi.org/10.1029/2020GL088010.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jin, Y. S., Z. Y. Liu, C. F. He, and Y. C. Zhao, 2021: On the formation mechanism of the seasonal persistence barrier. J. Climate, 34, 479494, https://doi.org/10.1175/JCLI-D-19-0502.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kawamura, R., 1994: A rotated EOF analysis of global sea surface temperature variability with interannual and interdecadal scales. J. Phys. Oceanogr., 24, 707715, https://doi.org/10.1175/1520-0485(1994)024<0707:AREAOG>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Keenlyside, N. S., H. Ding, and M. Latif, 2013: Potential of equatorial Atlantic variability to enhance El Niño prediction. Geophys. Res. Lett., 40, 22782283, https://doi.org/10.1002/grl.50362.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Klein, S. A., B. J. Soden, and N. C. Lau, 1999: Remote sea surface temperature variations during ENSO: Evidence for a tropical atmospheric bridge. J. Climate, 12, 917932, https://doi.org/10.1175/1520-0442(1999)012<0917:RSSTVD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Latif, M., and Coauthors, 1994: A review of ENSO prediction studies. Climate Dyn., 9, 167179, https://doi.org/10.1007/BF00208250.

  • Li, T., B. Wang, B. Wu, T. Zhou, C.-P. Chang, and R. Zhang, 2018: Theories on formation of an anomalous anticyclone in western North Pacific during El Niño: A review. J. Meteor. Res., 31, 9871006, https://doi.org/10.1007/s13351-017-7147-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Martin-Rey, M., B. Rodriguez-Fonseca, I. Polo, and F. Kucharski, 2014: On the Atlantic-Pacific Niños connection: A multidecadal modulated mode. Climate Dyn., 43, 31633178, https://doi.org/10.1007/s00382-014-2305-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Martin-Rey, M., B. Rodriguez-Fonseca, and I. Polo, 2015: Atlantic opportunities for ENSO prediction. Geophys. Res. Lett., 42, 68026810, https://doi.org/10.1002/2015GL065062.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Polo, I., M. Martin-Rey, B. Rodriguez-Fonseca, F. Kucharski, and C. R. Mechoso, 2014: Processes in the Pacific La Niña onset triggered by the Atlantic Niño. Climate Dyn., 44, 115131, https://doi.org/10.1007/s00382-014-2354-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rayner, N. A., and Coauthors, 2003: Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J. Geophys. Res., 108, 4407, https://doi.org/10.1029/2002JD002670.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rodríguez-Fonseca, B., I. Polo, J. García-Serrano, T. Losada, E. Mohino, C. R. Mechoso, and F. Kucharski, 2009: Are Atlantic Niños enhancing Pacific ENSO events in recent decades? Geophys. Res. Lett., 36, L20705, https://doi.org/10.1029/2009GL040048.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rong, X., R. Zhang, and T. Li, 2010: Impacts of Atlantic sea surface temperature anomalies on Indo-East Asian summer monsoon-ENSO relationship. Chin. Sci. Bull., 55, 24582468, https://doi.org/10.1007/s11434-010-3098-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shi, H., and B. Wang, 2018: How does the Asian summer precipitation-ENSO relationship change over the past 544 years? Climate Dyn., 52, 45834598, https://doi.org/10.1007/s00382-018-4392-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Takahashi, K., A. Montecinos, K. Goubanova, and B. Dewitte, 2011: ENSO regimes: Reinterpreting the canonical and modoki El Niño. Geophys. Res. Lett., 38, L10704, https://doi.org/10.1029/2011GL047364.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tang, H., K. Hu, G. Huang, Y. Wang, and W. Tao, 2022: Intensification and northward extension of northwest Pacific anomalous anticyclone in El Niño decaying mid-summer: An energetic perspective. Climate Dyn., 58, 591606, https://doi.org/10.1007/s00382-021-05923-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Timmermann, A., and Coauthors, 2018: El Niño–Southern Oscillation complexity. Nature, 559, 535545, https://doi.org/10.1038/s41586-018-0252-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wallace, J. M., E. M. Rasmusson, T. P. Mitchell, V. E. Kousky, E. S. Sarachik, and H. Von Storch, 1998: On the structure and evolution of ENSO-related climate variability in the tropical Pacific: Lessons from TOGA. J. Geophys. Res., 103, 14 24114 259, https://doi.org/10.1029/97JC02905.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, B., and S. I. An, 2001: Why the properties of El Niño changed during the late 1970s. Geophys. Res. Lett., 28, 37093712, https://doi.org/10.1029/2001GL012862.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, B., R. Wu, and X. Fu, 2000: Pacific–East Asian teleconnection: How does ENSO affect East Asian climate? J. Climate, 13, 15171536, https://doi.org/10.1175/1520-0442(2000)013<1517:PEATHD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, B., X. Luo, W. Sun, Y. M. Yang, and J. Liu, 2020: El Niño diversity across boreal spring predictability barrier. Geophys. Res. Lett., 47, e2020GL087354, https://doi.org/10.1029/2020GL087354.

    • Search Google Scholar
    • Export Citation
  • Wang, C., 2019: Three-ocean interactions and climate variability: A review and perspective. Climate Dyn., 53, 51195136, https://doi.org/10.1007/s00382-019-04930-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, J. Z., and C. Z. Wang, 2021: Joint boost to super El Niño from the Indian and Atlantic oceans. J. Climate, 34, 49374954, https://doi.org/10.1175/JCLI-D-20-0710.1.

    • Search Google Scholar
    • Export Citation
  • Wang, L., J. Y. Yu, and H. Paek, 2017: Enhanced biennial variability in the Pacific due to Atlantic capacitor effect. Nat. Commun., 8, 14887, https://doi.org/10.1038/ncomms14887.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, Y., K. Hu, G. Huang, and W. Tao, 2021: Asymmetric impacts of El Niño and La Niña on the Pacific–North American teleconnection pattern: The role of subtropical jet stream. Environ. Res. Lett., 16, 114040, https://doi.org/10.1088/1748-9326/ac31ed.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Weare, B. C., and J. S. Nasstrom, 1982: Examples of extended empirical orthogonal function analyses. Mon. Wea. Rev., 110, 481485, https://doi.org/10.1175/1520-0493(1982)110<0481:EOEEOF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Webster, P. J., and S. Yang, 1992: Monsoon and ENSO: Selectively interactive systems. Quart. J. Roy. Meteor. Soc., 118, 877926, https://doi.org/10.1002/qj.49711850705.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Webster, P. J., and T. N. Palmer, 1997: The past and the future of El Niño. Nature, 390, 562564, https://doi.org/10.1038/37499.

  • Wei, K., and Coauthors, 2020: Reflections on the catastrophic 2020 Yangtze River basin flooding in southern China. Innovation, 1, 100038, https://doi.org/10.1016/j.xinn.2020.100038.

    • Search Google Scholar
    • Export Citation
  • Wu, B., T. Zhou, and T. Li, 2009: Seasonally evolving dominant interannual variability modes of East Asian climate. J. Climate, 22, 29923005, https://doi.org/10.1175/2008JCLI2710.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, R., and B. Wang, 2002: A contrast of the East Asian summer monsoon–ENSO relationship between 1962–77 and 1978–93. J. Climate, 15, 32663279, https://doi.org/10.1175/1520-0442(2002)015<3266:ACOTEA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, R., Z.-Z. Hu, and B. P. Kirtman, 2003: Evolution of ENSO-related rainfall anomalies in East Asia. J. Climate, 16, 37423758, https://doi.org/10.1175/1520-0442(2003)016<3742:EOERAI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, R. G., W. Chen, G. H. Wang, and K. M. Hu, 2014: Relative contribution of ENSO and East Asian winter monsoon to the South China sea SST anomalies during ENSO decaying years. J. Geophys. Res. Atmos., 119, 50465064, https://doi.org/10.1002/2013JD021095.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xie, S.-P., K. Hu, J. Hafner, H. Tokinaga, Y. Du, G. Huang, and T. Sampe, 2009: Indian Ocean capacitor effect on Indo–Western Pacific climate during the summer following El Niño. J. Climate, 22, 730747, https://doi.org/10.1175/2008JCLI2544.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xie, S.-P., Y. Kosaka, Y. Du, K. Hu, J. S. Chowdary, and G. Huang, 2016: Indo-western Pacific ocean capacitor and coherent climate anomalies in post-ENSO summer: A review. Adv. Atmos. Sci., 33, 411432, https://doi.org/10.1007/s00376-015-5192-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xu, H., J. J. Xu, C. L. Liu, and N. S. Ou, 2020: Distinguishing characteristics of spring and summer onset El Niño events. J. Climate, 33, 45794597, https://doi.org/10.1175/JCLI-D-19-0605.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yan, J. N., L. Mu, L. Z. Wang, R. Ranjan, and A. Y. Zomaya, 2020: Temporal convolutional networks for the advance prediction of ENSO. Sci. Rep., 10, 8055, https://doi.org/10.1038/s41598-020-65070-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yang, J., Q. Liu, S.-P. Xie, Z. Liu, and L. Wu, 2007: Impact of the Indian Ocean SST basin mode on the Asian summer monsoon. Geophys. Res. Lett., 34, L02708, https://doi.org/10.1029/2006GL028571.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yang, X., and P. Huang, 2021: Restored relationship between ENSO and Indian summer monsoon rainfall around 1999/2000. Innovation, 2, 100102, https://doi.org/10.1016/j.xinn.2021.100102.

    • Search Google Scholar
    • Export Citation
  • Zhang, J., W. Duan, and X. Zhi, 2014: Using CMIP5 model outputs to investigate the initial errors that cause the “spring predictability barrier” for El Niño events. Sci. China Earth Sci., 58, 685696, https://doi.org/10.1007/s11430-014-4994-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, R., A. Sumi, and M. Kimoto, 1996: Impact of El Niño on the East Asian monsoon: A diagnostic study of the ‘86/87 and ’91/92 events. J. Meteor. Soc. Japan, 74, 4962, https://doi.org/10.2151/jmsj1965.74.1_49.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, W., and Coauthors, 2016: Unraveling El Niño’s impact on the East Asian monsoon and Yangtze River summer flooding. Geophys. Res. Lett., 43, 11 37511 382, https://doi.org/10.1002/2016GL071190.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhao, Y., G. Feng, Z. Zheng, D. Zhang, and Z. Jia, 2020: Evolution of tropical interannual sea surface temperature variability and its connection with boreal summer atmospheric circulations. Int. J. Climatol., 40, 27022716, https://doi.org/10.1002/joc.6361.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhou, Q., M. Mu, and W. Duan, 2019a: The initial condition errors occurring in the Indian Ocean temperature that cause “spring predictability barrier” for El Niño in the Pacific Ocean. J. Geophys. Res. Oceans, 124, 12441261, https://doi.org/10.1029/2018JC014403.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhou, X., F. Liu, B. Wang, B. Xiang, C. Xing, and H. Wang, 2019b: Different responses of East Asian summer rainfall to El Niño decays. Climate Dyn., 53, 14971515, https://doi.org/10.1007/s00382-019-04684-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 198 197 28
Full Text Views 80 80 16
PDF Downloads 92 92 21

The Diversity of ENSO Evolution during the Typical Decaying Periods Determined by an ENSO Developing Mode

View More View Less
  • 1 aCenter for Monsoon System Research, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China
  • | 2 bUniversity of Chinese Academy of Sciences, Beijing, China
  • | 3 cState Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China
Restricted access

Abstract

The evolution of El Niño–Southern Oscillation (ENSO) is an essential predictor for global climate anomalies, but ENSO’s effect is regulated by the considerable diversity of post-ENSO evolution. This study identified that there coexist a decaying mode and a developing mode of ENSO in the ENSO decaying periods (from September to August) through empirical orthogonal function (EOF) and extended EOF analyses. The diversity of ENSO evolution during the decaying periods is actually determined by the ENSO developing mode, which is unsteady and susceptible to other signals, whereas the ENSO decaying mode is quite steady. Using multiple datasets, segmented datasets, and sea surface temperature anomalies (SSTAs)-residual EOF, the key signals related to the diversity of ENSO evolution are identified and verified in the South Atlantic and equatorial South Pacific. Based on the decaying and developing modes, a prediction model was constructed to predict the boreal summer Niño-3 index. The ENSO developing mode, explaining very small variance, plays a decisive role in determining the prediction of the summer SSTAs in the Pacific. The forecasting skill of summer ENSO can also be greatly improved when continuous SSTAs and interbasin interactions in the whole tropics are considered. This prediction result indicates that identified precursory disturbance signals and interbasin interactions for ENSO development are crucial for boreal summer ENSO prediction.

Significance Statement

ENSO often shows great diversity in the temporal evolution during post-ENSO periods, thus limiting the predictability of tropical SSTAs in the following spring and summer. Identifying the signal impacting the diversity of ENSO is crucial for predicting ENSO. Here, we offer a new understanding of the essence of ENSO’s temporal diversity from the perspective of interbasin interactions. We identified that the ENSO typical decaying period contains a steady decaying mode and an unsteady developing mode simultaneously, and the developing mode induces the great diversity in ENSO’s evolution during post-ENSO periods. Two signals located in the South Atlantic and equatorial South Pacific are recognized as the main sources influencing the diversity of ENSO evolution.

© 2022 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Ping Huang, huangping@mail.iap.ac.cn

Abstract

The evolution of El Niño–Southern Oscillation (ENSO) is an essential predictor for global climate anomalies, but ENSO’s effect is regulated by the considerable diversity of post-ENSO evolution. This study identified that there coexist a decaying mode and a developing mode of ENSO in the ENSO decaying periods (from September to August) through empirical orthogonal function (EOF) and extended EOF analyses. The diversity of ENSO evolution during the decaying periods is actually determined by the ENSO developing mode, which is unsteady and susceptible to other signals, whereas the ENSO decaying mode is quite steady. Using multiple datasets, segmented datasets, and sea surface temperature anomalies (SSTAs)-residual EOF, the key signals related to the diversity of ENSO evolution are identified and verified in the South Atlantic and equatorial South Pacific. Based on the decaying and developing modes, a prediction model was constructed to predict the boreal summer Niño-3 index. The ENSO developing mode, explaining very small variance, plays a decisive role in determining the prediction of the summer SSTAs in the Pacific. The forecasting skill of summer ENSO can also be greatly improved when continuous SSTAs and interbasin interactions in the whole tropics are considered. This prediction result indicates that identified precursory disturbance signals and interbasin interactions for ENSO development are crucial for boreal summer ENSO prediction.

Significance Statement

ENSO often shows great diversity in the temporal evolution during post-ENSO periods, thus limiting the predictability of tropical SSTAs in the following spring and summer. Identifying the signal impacting the diversity of ENSO is crucial for predicting ENSO. Here, we offer a new understanding of the essence of ENSO’s temporal diversity from the perspective of interbasin interactions. We identified that the ENSO typical decaying period contains a steady decaying mode and an unsteady developing mode simultaneously, and the developing mode induces the great diversity in ENSO’s evolution during post-ENSO periods. Two signals located in the South Atlantic and equatorial South Pacific are recognized as the main sources influencing the diversity of ENSO evolution.

© 2022 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Ping Huang, huangping@mail.iap.ac.cn

Supplementary Materials

    • Supplemental Materials (PDF 9.18 MB)
Save