• Adcroft, A., and Coauthors, 2019: The GFDL global ocean and sea ice model OM4.0: Model description and simulation features. J. Adv. Model. Earth Syst., 11, 31673211, https://doi.org/10.1029/2019MS001726.

    • Search Google Scholar
    • Export Citation
  • Benjamini, Y., and Y. Hochberg, 1995: Controlling the false discovery rate: A practical and powerful approach to multiple testing. J. Roy. Stat. Soc., 57B, 289300, https://doi.org/10.1111/j.2517-6161.1995.tb02031.x.

    • Search Google Scholar
    • Export Citation
  • Bushuk, M., and Coauthors, 2021: Seasonal prediction and predictability of regional Antarctic sea ice. J. Climate, 34, 62076233, https://doi.org/10.1175/JCLI-D-20-0965.1.

    • Search Google Scholar
    • Export Citation
  • Chang, P., R. Saravanan, L. Ji, and G. C. Hegerl, 2000: The effect of local sea surface temperatures on atmospheric circulation over the tropical Atlantic sector. J. Climate, 13, 21952216, https://doi.org/10.1175/1520-0442(2000)013<2195:TEOLSS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Changnon, S., K. Kunkel, and B. Reinke, 1996: Impacts and responses to the 1995 heat wave: A call to action. Bull. Amer. Meteor. Soc., 77, 14971506, https://doi.org/10.1175/1520-0477(1996)077<1497:IARTTH>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Cheruy, F., J. L. Dufresne, F. Hourdin, and A. Ducharne, 2014: Role of clouds and land–atmosphere coupling in midlatitude continental summer warm biases and climate change amplification in CMIP5 simulations. Geophys. Res. Lett., 41, 64936500, https://doi.org/10.1002/2014GL061145.

    • Search Google Scholar
    • Export Citation
  • Curtis, S., 2008: The Atlantic multidecadal oscillation and extreme daily precipitation over the US and Mexico during the hurricane season. Climate Dyn., 30, 343351, https://doi.org/10.1007/s00382-007-0295-0.

    • Search Google Scholar
    • Export Citation
  • DeFlorio, M. J., D. W. Pierce, D. R. Cayan, and A. J. Miller, 2013: Western U.S. extreme precipitation events and their relation to ENSO and PDO in CCSM4. J. Climate, 26, 42314243, https://doi.org/10.1175/JCLI-D-12-00257.1.

    • Search Google Scholar
    • Export Citation
  • DelSole, T., and M. K. Tippett, 2009a: Average predictability time. Part I: Theory. J. Atmos. Sci., 66, 11721187, https://doi.org/10.1175/2008JAS2868.1.

    • Search Google Scholar
    • Export Citation
  • DelSole, T., and M. K. Tippett, 2009b: Average predictability time. Part II: Seamless diagnoses of predictability on multiple time scales. J. Atmos. Sci., 66, 11881204, https://doi.org/10.1175/2008JAS2869.1.

    • Search Google Scholar
    • Export Citation
  • DelSole, T., M. K. Tippett, and J. Shukla, 2011: A significant component of unforced multidecadal variability in the recent acceleration of global warming. J. Climate, 24, 909926, https://doi.org/10.1175/2010JCLI3659.1.

    • Search Google Scholar
    • Export Citation
  • Delworth, T., and Coauthors, 2020: The next generation GFDL modeling system for seasonal to multidecadal prediction and projection. J. Adv. Model. Earth Syst., e2019MS001895, https://doi.org/10.1029/2019MS001895.

    • Search Google Scholar
    • Export Citation
  • Enfield, D., A. Mestas-Nuñez, and P. Trimble, 2001: The Atlantic Multidecadal Oscillation and its relationship to rainfall and river flows in the continental U.S. Geophys. Res. Lett., 28, 20772080, https://doi.org/10.1029/2000GL012745.

    • Search Google Scholar
    • Export Citation
  • Fischer, E. M., S. I. Seneviratne, D. Lüthi, and C. Schär, 2007: Contribution of land–atmosphere coupling to recent European summer heat waves. Geophys. Res. Lett., 34, L06707, https://doi.org/10.1029/2006GL029068.

    • Search Google Scholar
    • Export Citation
  • Goddard, L., and A. Gershunov, 2020: Impact of El Niño on weather and climate extremes. El Niño Southern Oscillation in a Changing Climate, M. J. McPhaden, A. Santoso, and W. Cai, Eds., Wiley, 361–375, https://doi.org/10.1002/9781119548164.ch16.

  • Hamilton, E., R. Eade, R. J. Graham, A. A. Scaife, D. M. Smith, A. Maidens, and C. MacLachlan, 2012: Forecasting the number of extreme daily events on seasonal timescales. J. Geophys. Res., 117, D03114, https://doi.org/10.1029/2011JD016541.

    • Search Google Scholar
    • Export Citation
  • Hanlon, H. M., G. C. Hegerl, S. F. B. Tett, and D. M. Smith, 2013: Can a decadal forecasting system predict temperature extreme indices? J. Climate, 26, 37283744, https://doi.org/10.1175/JCLI-D-12-00512.1.

    • Search Google Scholar
    • Export Citation
  • Hersbach, H., and Coauthors, 2020: The ERA5 global reanalysis. Quart. J. Roy. Meteor. Soc., 146, 19992049, https://doi.org/10.1002/qj.3803.

    • Search Google Scholar
    • Export Citation
  • Hu, Z.-Z., and B. Huang, 2009: Interferential impact of ENSO and PDO on dry and wet conditions in the U.S. Great Plains. J. Climate, 22, 60476065, https://doi.org/10.1175/2009JCLI2798.1.

    • Search Google Scholar
    • Export Citation
  • Hudson, D., A. G. Marshall, and O. Alves, 2011: Intraseasonal forecasting of the 2009 summer and winter Australian heat waves using POAMA. Wea. Forecasting, 26, 257279, https://doi.org/10.1175/WAF-D-10-05041.

    • Search Google Scholar
    • Export Citation
  • Jia, L., 2011: Robust multi-year predictability on continental scales. Ph.D. dissertation, George Mason University, 101 pp., https://www.researchgate.net/publication/258541704_Robust_multi-year_predictability_on_continental_scales.

  • Jia, L., and T. DelSole, 2011: Diagnosis of multiyear predictability on continental scales. J. Climate, 24, 51085124, https://doi.org/10.1175/2011JCLI4098.1.

    • Search Google Scholar
    • Export Citation
  • Jia, L., and T. DelSole, 2012: Multi-year predictability of temperature and precipitation in multiple climate models. Geophys. Res. Lett., 39, L17705, https://doi.org/10.1029/2012GL052778.

    • Search Google Scholar
    • Export Citation
  • Jia, L., and Coauthors, 2015: Improved seasonal prediction of temperature and precipitation over land in a high-resolution GFDL climate model. J. Climate, 28, 20442062, https://doi.org/10.1175/JCLI-D-14-00112.1.

    • Search Google Scholar
    • Export Citation
  • Jia, L., and Coauthors, 2016: The roles of radiative forcing, sea surface temperatures, and atmospheric and land initial conditions in U.S. summer warming episodes. J. Climate, 29, 41214135, https://doi.org/10.1175/JCLI-D-15-0471.1.

    • Search Google Scholar
    • Export Citation
  • Johnson, N. C., S.-P. Xie, Y. Kosaka, and X. Li, 2018: Increasing occurrence of cold and warm extremes during the recent global warming slowdown. Nat. Commun., 9, 1724, https://doi.org/10.1038/s41467-018-04040-y.

    • Search Google Scholar
    • Export Citation
  • Kamae, Y., H. Shiogama, M. Watanabe, and M. Kimoto, 2014: Attributing the increase in Northern Hemisphere hot summers since the late 20th century. Geophys. Res. Lett., 41, 51925199, https://doi.org/10.1002/2014GL061062.

    • Search Google Scholar
    • Export Citation
  • Lin, Y., W. Dong, M. Zhang, Y. Xie, W. Xue, J. Huang, and Y. Luo, 2017: Causes of model dry and warm bias over central U.S. and impact on climate projections. Nat. Commun., 8, 881, https://doi.org/10.1038/s41467-017-01040-2.

    • Search Google Scholar
    • Export Citation
  • Lu, F., and Coauthors, 2020: GFDL’s SPEAR seasonal prediction system: Initialization and ocean tendency adjustment (OTA) for coupled model predictions. J. Adv. Model. Earth Syst., 12, e2020MS002149, https://doi.org/10.1029/2020MS002149.

    • Search Google Scholar
    • Export Citation
  • Mandal, R., S. Joseph, A. K. Sahai, R. Phani, A. Dey, R. Chattopadhyay, and D. R. Pattanaik, 2019: Real time extended range prediction of heat waves over India. Sci. Rep., 9, 9008, https://doi.org/10.1038/s41598-019-45430-6.

    • Search Google Scholar
    • Export Citation
  • Mantua, N. J., and S. R. Hare, 2002: The Pacific Decadal Oscillation. J. Oceanogr., 58, 3544, https://doi.org/10.1023/A:1015820616384.

    • Search Google Scholar
    • Export Citation
  • Mantua, N. J., S. R. Hare, Y. Zhang, J. M. Wallace, and R. C. Francis, 1997: A Pacific interdecadal climate oscillation with impacts on salmon production. Bull. Amer. Meteor. Soc., 78, 10691079, https://doi.org/10.1175/1520-0477(1997)078<1069:APICOW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • McKinnon, K., A. Rhines, M. Tingley, and P. Huybers, 2016: Long-lead predictions of eastern United States hot days from Pacific sea surface temperatures. Nat. Geosci., 9, 389394, https://doi.org/10.1038/ngeo2687.

    • Search Google Scholar
    • Export Citation
  • Newman, M., and Coauthors, 2016: The Pacific decadal oscillation, revisited. J. Climate, 29, 43994427, https://doi.org/10.1175/JCLI-D-15-0508.1.

    • Search Google Scholar
    • Export Citation
  • Pepler, A. S., L. B. Díaz, C. Prodhomme, F. J. Doblas-Reyes, and A. Kumar, 2015: The ability of a multi-model seasonal forecasting ensemble to forecast the frequency of warm, cold, and wet extremes. Wea. Climate Extremes, 9, 6877, https://doi.org/10.1016/j.wace.2015.06.005.

    • Search Google Scholar
    • Export Citation
  • Reynolds, R. W., N. A. Rayner, T. M. Smith, D. C. Stokes, and W. Wang, 2002: An improved in situ and satellite SST analysis for climate. J. Climate, 15, 16091625, https://doi.org/10.1175/1520-0442(2002)015<1609:AIISAS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Riahi, K., and Coauthors, 2017: The shared socioeconomic pathways and their energy, land use, and greenhouse gas emissions implications: An overview. Global Environ. Change, 42, 153168, https://doi.org/10.1016/j.gloenvcha.2016.05.009.

    • Search Google Scholar
    • Export Citation
  • Ruprich-Robert, Y., T. Delworth, R. Msadek, F. Castruccio, S. Yeager, and G. Danabasoglu, 2018: Impacts of the Atlantic multidecadal variability on North American summer climate and heat waves. J. Climate, 31, 36793700, https://doi.org/10.1175/JCLI-D-17-0270.1.

    • Search Google Scholar
    • Export Citation
  • Saha, S., and Coauthors, 2010: The NCEP Climate Forecast System Reanalysis. Bull. Amer. Meteor. Soc., 91, 10151058, https://doi.org/10.1175/2010BAMS3001.1.

    • Search Google Scholar
    • Export Citation
  • Scaife, A. A., and Coauthors, 2014: Skillful long-range prediction of European and North American winters. Geophys. Res. Lett., 41, 25142519, https://doi.org/10.1002/2014GL059637.

    • Search Google Scholar
    • Export Citation
  • Seneviratne, S. I., D. Lüthi, M. Litschi, and C. Schär, 2006: Land–atmosphere coupling and climate change in Europe. Nature, 443, 205209, https://doi.org/10.1038/nature05095.

    • Search Google Scholar
    • Export Citation
  • Seneviratne, S. I., and Coauthors, 2012: Changes in climate extremes and their impacts on the natural physical environment. Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation, C. B. Field, Eds., Cambridge University Press, 109–230.

  • Sillmann, J., and Coauthors, 2017: Understanding, modeling and predicting weather and climate extremes: Challenges and opportunities. Weather Climate Extremes, 18, 6574, https://doi.org/10.1016/j.wace.2017.10.003.

    • Search Google Scholar
    • Export Citation
  • Teng, H., G. Branstator, H. Wang, G. A. Meehl, and W. M. Washington, 2013: Probability of US heat waves affected by a subseasonal planetary wave pattern. Nat. Geosci., 6, 10561061, https://doi.org/10.1038/ngeo1988.

    • Search Google Scholar
    • Export Citation
  • Ting, M., Y. Kushnir, R. Seager, and C. Li, 2009: Forced and internal twentieth-century SST trends in the North Atlantic. J. Climate, 22, 14691481, https://doi.org/10.1175/2008JCLI2561.1.

    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., and J. T. Fasullo, 2012: Climate extremes and climate change: The Russian heat wave and other climate extremes of 2010. J. Geophys. Res., 117, D17103, https://doi.org/10.1029/2012JD018020.

    • Search Google Scholar
    • Export Citation
  • Tseng, K.-C., and Coauthors, 2021: Are multiseasonal forecasts of atmospheric rivers possible? Geophys. Res. Lett., 48, e2021GL094000, https://doi.org/10.1029/2021GL094000.

    • Search Google Scholar
    • Export Citation
  • Venzke, S., M. R. Allen, R. T. Sutton, and D. P. Rowell, 1999: The atmospheric response over the North Atlantic to decadal changes in sea surface temperature. J. Climate, 12, 25622584, https://doi.org/10.1175/1520-0442(1999)012<2562:TAROTN>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Vitart, F., 2005: Monthly forecast and the summer 2003 heat wave over Europe: A case study. Atmos. Sci. Lett., 6, 112117, https://doi.org/10.1002/asl.99.

    • Search Google Scholar
    • Export Citation
  • Vitart, F., and A. Robertson, 2018: The sub-seasonal to seasonal prediction project (S2S) and the prediction of extreme events. npj Climate Atmos. Sci., 1, 3, https://doi.org/10.1038/s41612-018-0013-0.

    • Search Google Scholar
    • Export Citation
  • White, C., D. Hudson, and O. Alves, 2014: ENSO, the IOD and the intraseasonal prediction of heat extremes across Australia using POAMA-2. Climate Dyn., 43, 17911810, https://doi.org/10.1007/s00382-013-2007-2.

    • Search Google Scholar
    • Export Citation
  • Wu, Y., M. Latif, and W. Park, 2016: Multiyear predictability of Northern Hemisphere surface air temperature in the Kiel Climate Model. Climate Dyn., 47, 793804, https://doi.org/10.1007/s00382-015-2871-z.

    • Search Google Scholar
    • Export Citation
  • Xiang, B., S. J. Lin, M. Zhao, N. Johnson, X. Yang, and X. Jiang, 2019: Subseasonal week 3–5 surface air temperature prediction during boreal wintertime in a GFDL model. Geophys. Res. Lett., 46, 416425, https://doi.org/10.1029/2018GL081314.

    • Search Google Scholar
    • Export Citation
  • Yang, X., G. A. Vecchi, R. G. Gudgel, T. Delworth, and S. Zhang, 2015: Seasonal predictability of extratropical storm tracks in GFDL’s high-resolution climate prediction model. J. Climate, 28, 35923611, https://doi.org/10.1175/JCLI-D-14-00517.1.

    • Search Google Scholar
    • Export Citation
  • Zhang, G., and Coauthors, 2021: Seasonal predictability of baroclinic wave activity. npj Climate Atmos. Sci., 4, 50, https://doi.org/10.1038/s41612-021-00209-3.

    • Search Google Scholar
    • Export Citation
  • Zhang, J., Z. Yang, and L. Wu, 2018: Skillful prediction of hot temperature extremes over the source region of ancient Silk Road. Sci. Rep., 8, 6677, https://doi.org/10.1038/s41598-018-25063-x.

    • Search Google Scholar
    • Export Citation
  • Zhang, J., Z. Yang, L. Wu, and K. Yang, 2019: Summer high temperature extremes over northeastern China predicted by spring soil moisture. Sci. Rep., 9, 12577, https://doi.org/10.1038/s41598-019-49053-9.

    • Search Google Scholar
    • Export Citation
  • Zhang, L., and T. Delworth, 2015: Analysis of the characteristics and mechanisms of the Pacific decadal oscillation in a suite of coupled models from the Geophysical Fluid Dynamics Laboratory. J. Climate, 28, 76787701, https://doi.org/10.1175/JCLI-D-14-00647.1.

    • Search Google Scholar
    • Export Citation
  • Zhang, Y., J. M. Wallace, and D. S. Battisti, 1997: ENSO-like interdecadal variability: 1900–93. J. Climate, 10, 10041020, https://doi.org/10.1175/1520-0442(1997)010<1004:ELIV>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Zhao, M., and Coauthors, 2018: The GFDL global atmosphere and land model AM4.0/LM4.0: 1. Simulation characteristics with prescribed SSTs. J. Adv. Model. Earth Syst., 10, 691734, https://doi.org/10.1002/2017MS001208.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 158 158 158
Full Text Views 85 85 85
PDF Downloads 77 77 77

Skillful Seasonal Prediction of North American Summertime Heat Extremes

View More View Less
  • 1 aGeophysical Fluid Dynamics Laboratory, NOAA, Princeton, New Jersey
  • | 2 bUniversity Corporation for Atmospheric Research, Boulder, Colorado
  • | 3 cDepartment of Geosciences, Princeton University, Princeton, New Jersey
  • | 4 dScience Applications International Corporation, Reston, Virginia
Restricted access

Abstract

This study shows that the frequency of North American summertime (June–August) heat extremes is skillfully predicted several months in advance in the newly developed Geophysical Fluid Dynamics Laboratory (GFDL) Seamless System for Prediction and Earth System Research (SPEAR) seasonal forecast system. Using a statistical optimization method, the average predictability time, we identify three large-scale components of the frequency of North American summer heat extremes that are predictable with significant correlation skill. One component, which is related to a secular warming trend, shows a continent-wide increase in the frequency of summer heat extremes and is highly predictable at least 9 months in advance. This trend component is likely a response to external radiative forcing. The second component is largely driven by the sea surface temperatures in the North Pacific and North Atlantic and is significantly correlated with the central U.S. soil moisture. The second component shows largest loadings over the central United States and is significantly predictable 9 months in advance. The third component, which is related to the central Pacific El Niño, displays a dipole structure over North America and is predictable up to 4 months in advance. Potential implications for advancing seasonal predictions of North American summertime heat extremes are discussed.

© 2022 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Liwei Jia, liwei.jia@noaa.gov

Abstract

This study shows that the frequency of North American summertime (June–August) heat extremes is skillfully predicted several months in advance in the newly developed Geophysical Fluid Dynamics Laboratory (GFDL) Seamless System for Prediction and Earth System Research (SPEAR) seasonal forecast system. Using a statistical optimization method, the average predictability time, we identify three large-scale components of the frequency of North American summer heat extremes that are predictable with significant correlation skill. One component, which is related to a secular warming trend, shows a continent-wide increase in the frequency of summer heat extremes and is highly predictable at least 9 months in advance. This trend component is likely a response to external radiative forcing. The second component is largely driven by the sea surface temperatures in the North Pacific and North Atlantic and is significantly correlated with the central U.S. soil moisture. The second component shows largest loadings over the central United States and is significantly predictable 9 months in advance. The third component, which is related to the central Pacific El Niño, displays a dipole structure over North America and is predictable up to 4 months in advance. Potential implications for advancing seasonal predictions of North American summertime heat extremes are discussed.

© 2022 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Liwei Jia, liwei.jia@noaa.gov
Save