• Abram, N. J., M. K. Gagan, M. T. McCulloch, J. Chappell, and W. S. Hantoro, 2003: Coral reef death during the 1997 Indian Ocean dipole linked to Indonesian wildfires. Science, 301, 952955, https://doi.org/10.1126/science.1083841.

    • Search Google Scholar
    • Export Citation
  • Allan, R. J., and Coauthors, 2001: Is there an Indian Ocean dipole and is it independent of the El Niño–Southern Oscillation? CLIVAR Exchanges, No. 6, International CLIVAR Project Office, Southampton, United Kingdom, 1822.

    • Search Google Scholar
    • Export Citation
  • Ashok, K., Z. Guan, and T. Yamagata, 2001: Impact of the Indian Ocean dipole on the relationship between the Indian monsoon rainfall and ENSO. Geophys. Res. Lett., 28, 44994502, https://doi.org/10.1029/2001GL013294.

    • Search Google Scholar
    • Export Citation
  • Ashok, K., Z. Guan, N. H. Saji, and T. Yamagata, 2004: Individual and combined influences of ENSO and the Indian Ocean dipole on the Indian summer monsoon. J. Climate, 17, 31413155, https://doi.org/10.1175/1520-0442(2004)017<3141:IACIOE>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Behera, S. K., J. J. Luo, S. Masson, S. A. Rao, H. Sakuma, and T. Yamagata, 2006: A CGCM study on the interaction between IOD and ENSO. J. Climate, 19, 16881705, https://doi.org/10.1175/JCLI3797.1.

    • Search Google Scholar
    • Export Citation
  • Cai, W., and Y. Qiu, 2013: An observation-based assessment of nonlinear feedback processes associated with the Indian Ocean dipole. J. Climate, 26, 28802890, https://doi.org/10.1175/JCLI-D-12-00483.1.

    • Search Google Scholar
    • Export Citation
  • Cai, W., P. van Rensch, T. Cowan, and H. H. Hendon, 2011: Teleconnection pathways of ENSO and the IOD and the mechanisms for impacts on Australian rainfall. J. Climate, 24, 39103923, https://doi.org/10.1175/2011JCLI4129.1.

    • Search Google Scholar
    • Export Citation
  • Chakravorty, S., C. Gnanaseelan, J. S. Chowdary, and J.-J. Luo, 2014: Relative role of El Niño and IOD forcing on the southern tropical Indian Ocean Rossby waves. J. Geophys. Res. Oceans, 119, 51055122, https://doi.org/10.1002/2013JC009713.

    • Search Google Scholar
    • Export Citation
  • Chen, M., P. Xie, J. E. Janowiak, and P. A. Arkin, 2002: Global land precipitation: A 50‐yr monthly analysis based on gauge observations. J. Hydrometeor., 3, 249266, https://doi.org/10.1175/1525-7541(2002)003<0249:GLPAYM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Dommenget, D., 2011: An objective analysis of the observed spatial structure of the tropical Indian Ocean SST variability. Climate Dyn., 36, 21292145, https://doi.org/10.1007/s00382-010-0787-1.

    • Search Google Scholar
    • Export Citation
  • Du, Y., T. Qu, and G. Meyers, 2008: Interannual variability of sea surface temperature off Java and Sumatra in a global GCM. J. Climate, 21, 24512465, https://doi.org/10.1175/2007JCLI1753.1.

    • Search Google Scholar
    • Export Citation
  • Du, Y., W. Cai, and Y. Wu, 2013: A new type of the Indian Ocean dipole since the mid-1970s. J. Climate, 26, 959972, https://doi.org/10.1175/JCLI-D-12-00047.1.

    • Search Google Scholar
    • Export Citation
  • Du, Y., Y. Zhang, L.-Y. Zhang, T. Tozuka, B. Ng, and W. Cai, 2020: Thermocline warming induced extreme Indian Ocean dipole in 2019. Geophys. Res. Lett., 47, e2020GL090079, https://doi.org/10.1029/2020GL090079.

    • Search Google Scholar
    • Export Citation
  • Duan, Y., L. Liu, G. Han, H. Liu, W. Yu, and G. Yan, 2016: Anomalous behaviors of Wyrtki jets in the equatorial Indian Ocean during 2013. Sci. Rep., 6, 29688, https://doi.org/10.1038/srep29688.

    • Search Google Scholar
    • Export Citation
  • Endo, S., and T. Tozuka, 2016: Two flavors of the Indian Ocean dipole. Climate Dyn., 46, 33713385, https://doi.org/10.1007/s00382-015-2773-0.

    • Search Google Scholar
    • Export Citation
  • England, M. H., C. C. Ummenhofer, and A. Santoso, 2006: Interannual rainfall extremes over southwest western Australia linked to Indian Ocean climate variability. J. Climate, 19, 19481969, https://doi.org/10.1175/JCLI3700.1.

    • Search Google Scholar
    • Export Citation
  • Fischer, A. S., P. Terray, E. Guilyardi, S. Gualdi, and P. Delecluse, 2005: Two independent triggers for the Indian Ocean dipole/zonal mode in a coupled GCM. J. Climate, 18, 34283449, https://doi.org/10.1175/JCLI3478.1.

    • Search Google Scholar
    • Export Citation
  • Gill, A. E., 1980: Some simple solutions for heat‐induced tropical circulation. Quart. J. Roy. Meteor. Soc., 106, 447462, https://doi.org/10.1002/qj.49710644905.

    • Search Google Scholar
    • Export Citation
  • Han, W., P. Webster, R. Lukas, P. Hacker, and A. Hu, 2004: Impact of atmospheric intraseasonal variability in the Indian Ocean: Low-frequency rectification in equatorial surface current and transport. J. Phys. Oceanogr., 34, 13501372, https://doi.org/10.1175/1520-0485(2004)034<1350:IOAIVI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Han, W., J. Vialard, M. J. McPhaden, T. Lee, Y. Masumoto, M. Feng, and W. P. de Ruijter, 2014: Indian Ocean decadal variability: A review. Bull. Amer. Meteor. Soc., 95, 16791703, https://doi.org/10.1175/BAMS-D-13-00028.1.

    • Search Google Scholar
    • Export Citation
  • Hastenrath, S., 2002: Dipoles, temperature gradients, and tropical climate anomalies. Bull. Amer. Meteor. Soc., 83, 735738, https://doi.org/10.1175/1520-0477(2002)083<0735:WLACNM>2.3.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hendon, H. H., E. Lim, and G. Liu, 2012: The role of air–sea interaction for prediction of Australian summer monsoon rainfall. J. Climate, 25, 12781290, https://doi.org/10.1175/JCLI-D-11-00125.1.

    • Search Google Scholar
    • Export Citation
  • Hong, C.-C., T. Li, and J.-S. Kug, 2008a: Asymmetry of the Indian Ocean dipole. Part I: Observational analysis. J. Climate, 21, 48344848, https://doi.org/10.1175/2008JCLI2222.1.

    • Search Google Scholar
    • Export Citation
  • Hong, C.-C., M.-M. Lu, and M. Kanamitsu, 2008b: Temporal and spatial characteristics of positive and negative Indian Ocean dipole with and without ENSO. J. Geophys. Res., 113, D08107, https://doi.org/10.1029/2007JD009151.

    • Search Google Scholar
    • Export Citation
  • Huang, B., T. Su, S. Qu, H. Zhang, S. Hu, and G. Feng, 2021: Strengthened relationship between tropical Indian Ocean dipole and subtropical Indian Ocean dipole after the late 2000s. Geophys. Res. Lett., 48, e2021GL094835, https://doi.org/10.1029/2021GL094835.

    • Search Google Scholar
    • Export Citation
  • Ishii, M., A. Shouji, S. Sugimoto, and T. Matsumoto, 2005: Objective analyses of sea‐surface temperature and marine meteorological variables for the 20th century using ICOADS and the Kobe collection. Int. J. Climatol., 25, 865879, https://doi.org/10.1002/joc.1169.

    • Search Google Scholar
    • Export Citation
  • Izumo, T., and Coauthors, 2010: Influence of the state of the Indian Ocean dipole on the following year’s El Niño. Nat. Geosci., 3, 168172, https://doi.org/10.1038/ngeo760.

    • Search Google Scholar
    • Export Citation
  • Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40‐Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77, 437471, https://doi.org/10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kumar, K. K., B. Rajagopalan, M. Hoerling, G. Bates, and M. Cane, 2006: Unraveling the mystery of Indian monsoon failure during El Niño. Science, 314, 115119, https://doi.org/10.1126/science.1131152.

    • Search Google Scholar
    • Export Citation
  • Lee, S.-K., P. N. DiNezio, E.-S. Chung, S.-W. Yeh, A. T. Wittenberg, and C. Wang, 2014: Spring persistence, transition, and resurgence of El Niño. Geophys. Res. Lett., 41, 85788585, https://doi.org/10.1002/2014GL062484.

    • Search Google Scholar
    • Export Citation
  • Lee, S.-K., H. Lopez, E.-S. Chung, P. N. DiNezio, S.-W. Yeh, and A. T. Wittenberg, 2018: On the fragile relationship between El Niño and California rainfall. Geophys. Res. Lett., 45, 907915, https://doi.org/10.1002/2017GL076197.

    • Search Google Scholar
    • Export Citation
  • Li, T., B. Wang, C.-P. Chang, and Y. Zhang, 2003: A theory for the Indian Ocean dipole–zonal mode. J. Atmos. Sci., 60, 21192135, https://doi.org/10.1175/1520-0469(2003)060<2119:ATFTIO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Lim, E.-P., and H. H. Hendon, 2017: Causes and predictability of the negative Indian Ocean dipole and its impact on La Niña during 2016. Sci. Rep., 7, 12619, https://doi.org/10.1038/s41598-017-12674-z.

    • Search Google Scholar
    • Export Citation
  • Lim, E.-P., H. H. Hendon, M. Zhao, and Y. Yin, 2017: Inter-decadal variations in the linkages between ENSO, the IOD and south-eastern Australian springtime rainfall in the past 30 years. Climate Dyn., 49, 97112, https://doi.org/10.1007/s00382-016-3328-8.

    • Search Google Scholar
    • Export Citation
  • Lim, E.-P., and Coauthors, 2021: The 2019 Southern Hemisphere stratospheric polar vortex weakening and its impacts. Bull. Amer. Meteor. Soc., 102, E1150E1171, https://doi.org/10.1175/BAMS-D-20-0112.1.

    • Search Google Scholar
    • Export Citation
  • Lu, B., and H.-L. Ren, 2020: What caused the extreme Indian Ocean dipole event in 2019? Geophys. Res. Lett., 47, e2020GL087768, https://doi.org/10.1029/2020GL087768.

    • Search Google Scholar
    • Export Citation
  • Luo, J.-J., S. K. Behera, Y. Masumoto, H. Sakuma, and T. Yamagata, 2008: Successful prediction of the consecutive IOD in 2006 and 2007. Geophys. Res. Lett., 35, L14S02, https://doi.org/10.1029/2007GL032793.

    • Search Google Scholar
    • Export Citation
  • Luo, J.-J., R. Zhang, S. K. Behera, Y. Masumoto, F.-F. Jin, R. Lukas, and T. Yamagata, 2010: Interaction between El Niño and extreme Indian Ocean dipole. J. Climate, 23, 726742, https://doi.org/10.1175/2009JCLI3104.1.

    • Search Google Scholar
    • Export Citation
  • McPhaden, M. J., and M. Nagura, 2014: Indian Ocean dipole interpreted in terms of recharge oscillator theory. Climate Dyn., 42, 15691586, https://doi.org/10.1007/s00382-013-1765-1.

    • Search Google Scholar
    • Export Citation
  • McPhaden, M. J., Y. Wang, and M. Ravichandran, 2015: Volume transports of the Wyrtki jets and their relationship to the Indian Ocean dipole. J. Geophys. Res. Oceans, 120, 53025317, https://doi.org/10.1002/2015JC010901.

    • Search Google Scholar
    • Export Citation
  • Meyers, G., P. McIntosh, L. Pigot, and M. Pook, 2007: The years of El Niño, La Niña, and interactions with the tropical Indian Ocean. J. Climate, 20, 28722880, https://doi.org/10.1175/JCLI4152.1.

    • Search Google Scholar
    • Export Citation
  • Murtugudde, R., J. P. McCreary, and A. J. Busalacchi, 2000: Oceanic processes associated with anomalous events in the Indian Ocean with relevance to 1997–1998. J. Geophys. Res., 105, 32953306, https://doi.org/10.1029/1999JC900294.

    • Search Google Scholar
    • Export Citation
  • Nagura, M., and M. J. McPhaden, 2010: Dynamics of zonal current variations associated with the Indian Ocean dipole. J. Geophys. Res., 115, C11026, https://doi.org/10.1029/2010JC006423.

    • Search Google Scholar
    • Export Citation
  • North, G. R., T. L. Bell, R. F. Cahalan, and F. J. Moeng, 1982: Sampling errors in the estimation of empirical orthogonal functions. Mon. Wea. Rev., 110, 699706, https://doi.org/10.1175/1520-0493(1982)110<0699:SEITEO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Pujiana, K., and M. J. McPhaden, 2020: Intraseasonal Kelvin waves in the equatorial Indian Ocean and their propagation into the Indonesian seas. J. Geophys. Res. Oceans, 125, e2019JC015839, https://doi.org/10.1029/2019JC015839.

    • Search Google Scholar
    • Export Citation
  • Rao, S. A., and T. Yamagata, 2004: Abrupt termination of Indian Ocean dipole events in response to intraseasonal disturbances. Geophys. Res. Lett., 31, L19306, https://doi.org/10.1029/2004GL020842.

    • Search Google Scholar
    • Export Citation
  • Rao, S. A., and S. K. Behera, 2005: Subsurface influence on SST in the tropical Indian Ocean: Structure and interannual variability. Dyn. Atmos. Oceans, 39, 103135, https://doi.org/10.1016/j.dynatmoce.2004.10.014.

    • Search Google Scholar
    • Export Citation
  • Rao, S. A., J.-J. Luo, S. K. Behera, and T. Yamagata, 2009: Generation and termination of Indian Ocean dipole events in 2003, 2006 and 2007. Climate Dyn., 33, 751767, https://doi.org/10.1007/s00382-008-0498-z.

    • Search Google Scholar
    • Export Citation
  • Ratna, S. B., A. Cherchi, T. J. Osborn, M. Joshi, and U. Uppara, 2020: The extreme positive Indian Ocean dipole of 2019 and associated Indian summer monsoon rainfall response. Geophys. Res. Lett., 47, e2020GL091497, https://doi.org/10.1029/2020GL091497.

    • Search Google Scholar
    • Export Citation
  • Risbey, J. S., M. J. Pook, P. C. McIntosh, M. C. Wheeler, and H. H. Hendon, 2009: On the remote drivers of rainfall variability in Australia. Mon. Wea. Rev., 137, 32333253, https://doi.org/10.1175/2009MWR2861.1.

    • Search Google Scholar
    • Export Citation
  • Saji, N. H., B. N. Goswami, P. N. Vinayachandran, and T. Yamagata, 1999: A dipole mode in the tropical Indian Ocean. Nature, 401, 360363, https://doi.org/10.1038/43854.

    • Search Google Scholar
    • Export Citation
  • Shinoda, T., H. H. Hendon, and M. A. Alexander, 2004: Surface and subsurface dipole variability in the Indian Ocean and its relation with ENSO. Deep-Sea Res. I, 51, 619635, https://doi.org/10.1016/j.dsr.2004.01.005.

    • Search Google Scholar
    • Export Citation
  • Sreelekha, P. N., and C. A. Babu, 2019: Is the negative IOD during 2016 the reason for monsoon failure over southwest peninsular India? Meteor. Atmos. Phys., 131, 413420, https://doi.org/10.1007/s00703-017-0574-1.

    • Search Google Scholar
    • Export Citation
  • Srivastava, A. K., J. V. Revadekar, and M. Rajeevan, 2020: South Asia [in “State of the Climate in 2019”]. Bull. Amer. Meteor. Soc., 101 (8), S394S397, https://doi.org/10.1175/2020BAMSStateoftheClimate_Chapter7.1.

    • Search Google Scholar
    • Export Citation
  • Stuecker, M. F., A. Timmermann, F.-F. Jin, Y. Chikamoto, W. Zhang, A. T. Wittenberg, E. Widiasih, and S. Zhao, 2017: Revisiting ENSO/Indian Ocean dipole phase relationships. Geophys. Res. Lett., 44, 24812492, https://doi.org/10.1002/2016GL072308.

    • Search Google Scholar
    • Export Citation
  • Sun, S., J. Lan, Y. Fang, and X. Gao, 2015: A triggering mechanism for the Indian Ocean dipoles independent of ENSO. J. Climate, 28, 50635076, https://doi.org/10.1175/JCLI-D-14-00580.1.

    • Search Google Scholar
    • Export Citation
  • Susanto, R. D., A. L. Gordon, and Q. Zheng, 2001: Upwelling along the coasts of Java and Sumatra and its relation to ENSO. Geophys. Res. Lett., 28, 15991602, https://doi.org/10.1029/2000GL011844.

    • Search Google Scholar
    • Export Citation
  • Tobin, S., and C. Ganter, 2020: Australia [in “State of the Climate in 2019”]. Bull. Amer. Meteor. Soc., 101 (8), S405S409, https://doi.org/10.1175/2020BAMSStateoftheClimate_Chapter7.1.

    • Search Google Scholar
    • Export Citation
  • Tozuka, T., T. Yokoi, and T. Yamagata, 2010: A modeling study of interannual variations of the Seychelles Dome. J. Geophys. Res., 115, C04005, https://doi.org/10.1029/2009JC005547.

    • Search Google Scholar
    • Export Citation
  • Vallès‐Casanova, I., S.-K. Lee, G. R. Foltz, and J. L. Pelegrí, 2020: On the spatiotemporal diversity of Atlantic Niño and associated rainfall variability over West Africa and South America. Geophys. Res. Lett., 47, e2020GL087108, https://doi.org/10.1029/2020GL087108.

    • Search Google Scholar
    • Export Citation
  • Vinayachandran, P. N., N. H. Saji, and T. Yamagata, 1999: Response of the equatorial Indian Ocean to an unusual wind event during 1994. Geophys. Res. Lett., 26, 16131616, https://doi.org/10.1029/1999GL900179.

    • Search Google Scholar
    • Export Citation
  • Vinayachandran, P. N., J. Kurian, and C. P. Neema, 2007: Indian Ocean response to anomalous conditions in 2006. Geophys. Res. Lett., 34, L15602, https://doi.org/10.1029/2007GL030194.

    • Search Google Scholar
    • Export Citation
  • Wang, G., W. Cai, K. Yang, A. Santoso, and T. Yamagata, 2020: A unique feature of the 2019 extreme positive Indian Ocean dipole event. Geophys. Res. Lett., 47, e2020GL088615, https://doi.org/10.1029/2020GL088615.

    • Search Google Scholar
    • Export Citation
  • Webster, P. J., A. M. Moore, J. P. Loschnigg, and R. R. Leben, 1999: Coupled ocean-atmosphere dynamics in the Indian Ocean during 1997–98. Nature, 401, 356360, https://doi.org/10.1038/43848.

    • Search Google Scholar
    • Export Citation
  • Weller, E., W. Cai, Y. Du, and S.-K. Min, 2014: Differentiating flavors of the Indian Ocean dipole using dominant modes in tropical Indian Ocean rainfall. Geophys. Res. Lett., 41, 89788986, https://doi.org/10.1002/2014GL062459.

    • Search Google Scholar
    • Export Citation
  • Wu, R., and B. P. Kirtman, 2004: Understanding the impacts of the Indian Ocean on ENSO variability in a coupled GCM. J. Climate, 17, 40194031, https://doi.org/10.1175/1520-0442(2004)017<4019:UTIOTI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Xie, S., H. Annamalai, F. A. Schott, and J. P. McCreary Jr., 2002: Structure and mechanisms of south Indian Ocean climate variability. J. Climate, 15, 864878, https://doi.org/10.1175/1520-0442(2002)015<0864:SAMOSI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Yamagata, T., S. K. Behera, S. A. Rao, Z. Guan, K. Ashok, and H. N. Saji, 2003: Comments on “Dipoles, temperature gradients, and tropical climate anomalies.” Bull. Amer. Meteor. Soc., 84, 14181422, https://doi.org/10.1175/BAMS-84-10-1415.

    • Search Google Scholar
    • Export Citation
  • Yang, J., Q. Liu, S.-P. Xie, Z. Liu, and L. Wu, 2007: Impact of the Indian Ocean SST basin mode on the Asian summer monsoon. Geophys. Res. Lett., 34, L02708, https://doi.org/10.1029/2006GL028571.

    • Search Google Scholar
    • Export Citation
  • Yang, Y., S.-P. Xie, L. Wu, Y. Kosaka, N. Lau, and G. A. Vecchi, 2015: Seasonality and predictability of the Indian Ocean dipole mode: ENSO forcing and internal variability. J. Climate, 28, 80218036, https://doi.org/10.1175/JCLI-D-15-0078.1.

    • Search Google Scholar
    • Export Citation
  • Yu, W., B. Xiang, L. Liu, and N. Liu, 2005: Understanding the origins of interannual thermocline variations in the tropical Indian Ocean. Geophys. Res. Lett., 32, L24706, https://doi.org/10.1029/2005GL024327.

    • Search Google Scholar
    • Export Citation
  • Yuan, D., and Coauthors, 2011: Forcing of the Indian Ocean dipole on the interannual variations of the tropical Pacific Ocean: Roles of the Indonesian Throughflow. J. Climate, 24, 35933608, https://doi.org/10.1175/2011JCLI3649.1.

    • Search Google Scholar
    • Export Citation
  • Zhang, D., M. J. McPhaden, and T. Lee, 2014: Observed interannual variability of zonal currents in the equatorial Indian Ocean thermocline and their relation to Indian Ocean dipole. Geophys. Res. Lett., 41, 79337941, https://doi.org/10.1002/2014GL061449.

    • Search Google Scholar
    • Export Citation
  • Zhang, L.-Y., Y. Du, W. Cai, Z. Chen, T. Tozuka, and J.-Y. Yu, 2020: Triggering the Indian Ocean dipole from the Southern Hemisphere. Geophys. Res. Lett., 47, e2020GL088648, https://doi.org/10.1029/2020GL088648.

    • Search Google Scholar
    • Export Citation
  • Zhang, L.-Y., W. Han, and Z.-Z. Hu, 2021: Inter-basin and multiple-time-scale interactions in generating the 2019 extreme Indian Ocean dipole. J. Climate, 34, 45534566, https://doi.org/10.1175/JCLI-D-20-0760.1.

    • Search Google Scholar
    • Export Citation
  • Zhang, W., Y. Wang, F.-F. Jin, M. F. Stuecker, and A. G. Turner, 2015: Impact of different El Niño types on the El Niño/IOD relationship. Geophys. Res. Lett., 42, 85708576, https://doi.org/10.1002/2015GL065703.

    • Search Google Scholar
    • Export Citation
  • Zhang, Y., J. Li, S. Zhao, F. Zheng, J. Feng, Y. Li, and Y. Xu, 2020: Indian Ocean tripole mode and its associated atmospheric and oceanic processes. Climate Dyn., 55, 13671383, https://doi.org/10.1007/s00382-020-05331-1.

    • Search Google Scholar
    • Export Citation
  • Zhao, M., and H. H. Hendon, 2009: Representation and prediction of the Indian Ocean dipole in the POAMA seasonal forecast model. Quart. J. Roy. Meteor. Soc., 135, 337352, https://doi.org/10.1002/qj.370.

    • Search Google Scholar
    • Export Citation
  • Zhao, Y., and S. Nigam, 2015: The Indian Ocean dipole: A monopole in SST. J. Climate, 28, 319, https://doi.org/10.1175/JCLI-D-14-00047.1.

    • Search Google Scholar
    • Export Citation
  • Zuo, H., M. A. Balmaseda, and K. Mogensen, 2017: The new eddy-permitting ORAP5 ocean reanalysis: Description, evaluation and uncertainties in climate signals. Climate Dyn., 49, 791811, https://doi.org/10.1007/s00382-015-2675-1.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 514 514 27
Full Text Views 122 122 2
PDF Downloads 150 150 2

Java–Sumatra Niño/Niña and Its Impact on Regional Rainfall Variability

Sang-Ki LeeaNOAA/Atlantic Oceanographic and Meteorological Laboratory, Miami, Florida

Search for other papers by Sang-Ki Lee in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0002-4047-3545
,
Hosmay LopezaNOAA/Atlantic Oceanographic and Meteorological Laboratory, Miami, Florida

Search for other papers by Hosmay Lopez in
Current site
Google Scholar
PubMed
Close
,
Gregory R. FoltzaNOAA/Atlantic Oceanographic and Meteorological Laboratory, Miami, Florida

Search for other papers by Gregory R. Foltz in
Current site
Google Scholar
PubMed
Close
,
Eun-Pa LimbBureau of Meteorology, Melbourne, Victoria, Australia

Search for other papers by Eun-Pa Lim in
Current site
Google Scholar
PubMed
Close
,
Dongmin KimcCooperative Institute for Marine and Atmospheric Studies, University of Miami, Miami, Florida
aNOAA/Atlantic Oceanographic and Meteorological Laboratory, Miami, Florida

Search for other papers by Dongmin Kim in
Current site
Google Scholar
PubMed
Close
,
Sarah M. LarsondMarine, Earth, and Atmospheric Sciences, North Carolina State University, Raleigh, North Carolina

Search for other papers by Sarah M. Larson in
Current site
Google Scholar
PubMed
Close
,
Kandaga PujianacCooperative Institute for Marine and Atmospheric Studies, University of Miami, Miami, Florida
aNOAA/Atlantic Oceanographic and Meteorological Laboratory, Miami, Florida

Search for other papers by Kandaga Pujiana in
Current site
Google Scholar
PubMed
Close
,
Denis L. VolkovcCooperative Institute for Marine and Atmospheric Studies, University of Miami, Miami, Florida
aNOAA/Atlantic Oceanographic and Meteorological Laboratory, Miami, Florida

Search for other papers by Denis L. Volkov in
Current site
Google Scholar
PubMed
Close
,
Soumi ChakravortycCooperative Institute for Marine and Atmospheric Studies, University of Miami, Miami, Florida
aNOAA/Atlantic Oceanographic and Meteorological Laboratory, Miami, Florida

Search for other papers by Soumi Chakravorty in
Current site
Google Scholar
PubMed
Close
, and
Fabian A. GomezeNorthern Gulf Institute, Mississippi State University, Mississippi State, Mississippi
aNOAA/Atlantic Oceanographic and Meteorological Laboratory, Miami, Florida

Search for other papers by Fabian A. Gomez in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

A phenomenon referred to here as Java–Sumatra Niño/Niña (JSN or JS Niño/Niña) is characterized by the appearance of warm/cold sea surface temperature anomalies (SSTAs) in the coastal upwelling region off Java–Sumatra in the southeastern equatorial Indian Ocean. JSN develops in July–September and sometimes as a precursor to the Indian Ocean dipole, but often without corresponding SSTAs in the western equatorial Indian Ocean. Although its spatiotemporal evolution varies considerably between individual events, JSN is essentially an intrinsic mode of variability driven by local atmosphere–ocean positive feedback, and thus does not rely on remote forcing from the Pacific for its emergence. JSN is an important driver of climate variability over the tropical Indian Ocean and the surrounding continents. Notably, JS Niña events developing in July–September project onto the South and Southeast Asian summer monsoons, increasing the probability of heavy rainfall and flooding across the most heavily populated regions of the world.

© 2022 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Sang-Ki Lee, sang-ki.lee@noaa.gov

Abstract

A phenomenon referred to here as Java–Sumatra Niño/Niña (JSN or JS Niño/Niña) is characterized by the appearance of warm/cold sea surface temperature anomalies (SSTAs) in the coastal upwelling region off Java–Sumatra in the southeastern equatorial Indian Ocean. JSN develops in July–September and sometimes as a precursor to the Indian Ocean dipole, but often without corresponding SSTAs in the western equatorial Indian Ocean. Although its spatiotemporal evolution varies considerably between individual events, JSN is essentially an intrinsic mode of variability driven by local atmosphere–ocean positive feedback, and thus does not rely on remote forcing from the Pacific for its emergence. JSN is an important driver of climate variability over the tropical Indian Ocean and the surrounding continents. Notably, JS Niña events developing in July–September project onto the South and Southeast Asian summer monsoons, increasing the probability of heavy rainfall and flooding across the most heavily populated regions of the world.

© 2022 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Sang-Ki Lee, sang-ki.lee@noaa.gov

Supplementary Materials

    • Supplemental Materials (PDF 9.62 MB)
Save