• Adler, R. F., and Coauthors, 2003: The version 2 Global Precipitation Climatology Project (GPCP) monthly precipitation analysis (1979–present). J. Hydrometeor., 4, 11471167, https://doi.org/10.1175/1525-7541(2003)004<1147:TVGPCP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Barnston, A. G., and R. E. Livezey, 1987: Classifications, seasonality, and persistence of low-frequency atmospheric circulation patterns. Mon. Wea. Rev., 115, 10831126, https://doi.org/10.1175/1520-0493(1987)115<1083:CSAPOL>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bengtsson, L., and Coauthors, 2019: Convectively coupled equatorial wave simulations using the ECMWF IFS and the NOAA GFS cumulus convection schemes in the NOAA GFS model. Mon. Wea. Rev., 147, 40054025, https://doi.org/10.1175/MWR-D-19-0195.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chu, P.-S., 1989: Hawaiian drought and the Southern Oscillation, 1989. Int. J. Climatol., 9, 619631, https://doi.org/10.1002/joc.3370090606.

  • Chu, P.-S., 1995: Hawaii rainfall anomalies and El Niño. J. Climate, 8, 16971703, https://doi.org/10.1175/1520-0442(1995)008<1697:HRAAEN>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chu, P.-S., and H. Chen, 2005: Interannual and interdecadal rainfall variations in the Hawaiian Islands. J. Climate, 18, 47964813, https://doi.org/10.1175/JCLI3578.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chu, P.-S., Y. R. Chen, and T. A. Schroeder, 2010: Changes in precipitation extremes in the Hawaiian Islands in a warming climate. J. Climate, 23, 48814900, https://doi.org/10.1175/2010JCLI3484.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Compo, G. P., and P. D. Sardeshmukh, 2009: Oceanic influences on recent continental warming. Climate Dyn., 32, 333342, https://doi.org/10.1007/s00382-008-0448-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Diaz, H. F., and T. W. Giambelluca, 2012: Changes in atmospheric circulation patterns associated with high and low rainfall regimes in the Hawaiian Islands region on multiple time scales. Global Planet. Change, 98–99, 97108, https://doi.org/10.1016/j.gloplacha.2012.08.011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Diaz, H. F., M. Hoerling, and J. Eischeid, 2001: ENSO variability, teleconnections, and climate change. Int. J. Climatol., 21, 18451862, https://doi.org/10.1002/joc.631.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Diaz, H. F., E. R. Wahl, E. Zorita, T. W. Giambelluca, and J. K. Eischeid, 2016: A five-century reconstruction of Hawaiian Islands rainfall. J. Climate, 29, 56615674, https://doi.org/10.1175/JCLI-D-15-0815.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Frazier, A. G., and T. W. Giambelluca, 2017: Spatial trend analysis of Hawaiian rainfall from 1920 to 2012. Int. J. Climatol., 37, 25222531, https://doi.org/10.1002/joc.4862.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Frazier, A. G., T. W. Giambelluca, H. F. Diaz, and H. L. Needham, 2016: Comparison of geostatistical approaches to spatially interpolate month-year rainfall for the Hawaiian Islands. Int. J. Climatol., 36, 14591470, https://doi.org/10.1002/joc.4437.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Frazier, A. G., O. E. Timm, T. W. Giambelluca, and H. F. Diaz, 2018: The influence of ENSO, PDO and PNA on secular rainfall variations in Hawai’i. Climate Dyn., 51, 21272140, https://doi.org/10.1007/s00382-017-4003-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gates, W. L., and Coauthors, 1998: An overview of the results of the Atmospheric Model Intercomparison Project (AMIP-I). Bull. Amer. Meteor. Soc., 73, 19621970, https://doi.org/10.1175/1520-0477(1992)073<1962:ATAMIP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Guan, H., and Coauthors, 2022: GEFSv12 reforecast dataset for supporting subseasonal and hydrometerological applications. Mon. Wea. Rev., 150, 647665, https://doi.org/10.1175/MWR-D-21-0245.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Heede, U. K., and A. V. Fedorov, 2021: Eastern equatorial Pacific warming delayed by aerosols and thermostat response to CO2 increase. Nat. Climate Change, 11, 696703, https://doi.org/10.1038/s41558-021-01101-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Heede, U. K., A. V. Fedorov, and N. Burls, 2021: A stronger versus weaker Walker circulation: Understanding model differences in fast and slow tropical Pacific responses to global warming. Climate Dyn., 57, 25052522, https://doi.org/10.1007/s00382-021-05818-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hersbach, H., and Coauthors, 2020: The ERA5 global reanalysis. Quart. J. Roy. Meteor. Soc., 146, 19992049, https://doi.org/10.1002/qj.3803.

  • Hoerling, M., and A. Kumar, 2002: Atmospheric response patterns associated with tropical forcing. J. Climate, 15, 21842203, https://doi.org/10.1175/1520-0442(2002)015<2184:ARPAWT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hoerling, M., and A. Kumar, 2003: The perfect ocean for drought. Science, 299, 691694, https://doi.org/10.1126/science.1079053.

  • Hoerling, M., J. Hurrell, J. Eischeid, and A. Phillips, 2006: Detection and attribution of twentieth-century northern and southern African rainfall change. J. Climate, 19, 39894008, https://doi.org/10.1175/JCLI3842.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hoerling, M., J. Eischeid, and J. Perlwitz, 2010: Regional precipitation trends: Distinguishing natural variability from anthropogenic forcing. J. Climate, 23, 21312145, https://doi.org/10.1175/2009JCLI3420.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hoerling, M., J. Eischeid, J. Perlwitz, X. Quan, T. Zhang, and P. Pegion, 2012: On the increased frequency of Mediterranean drought. J. Climate, 25, 21462161, https://doi.org/10.1175/JCLI-D-11-00296.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huffman, G., J. R. F. Adler, M. M. Morrissey, S. Curtis, R. Joyce, B. McGavock, and J. Susskind, 2001: Global precipitation at one-degree daily resolution from multi-satellite observations. J. Hydrometeor., 2, 3650, https://doi.org/10.1175/1525-7541(2001)002<0036:GPAODD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hurrell, J., J. Hack, D. Shea, J. Caron, and J. Rosinski, 2008: A new sea surface temperature and sea ice boundary dataset for the Community Atmosphere Model. J. Climate, 21, 51455153, https://doi.org/10.1175/2008JCLI2292.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Knutson, T. R., F. Zeng, and A. Wittenberg, 2013: Multimodel assessment of regional surface, temperature trends: CMIP3 and CMIP5 twentieth century simulations. J. Climate, 26, 87098743, https://doi.org/10.1175/JCLI-D-12-00567.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Longman, R. J., H. F. Diaz, and T. W. Giambelluca, 2015: Sustained increases in lower tropospheric subsidence over the central tropical North Pacific drives a decline in high elevation precipitation in Hawaii. J. Climate, 28, 87438759, https://doi.org/10.1175/JCLI-D-15-0006.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Longman, R. J., O. E. Timm, T. W. Giambelluca, and L. Kaiser, 2021: A 20-year analysis of disturbance-driven rainfall on O‘ahu, Hawai‘i. Mon. Wea. Rev., 149, 17671783, https://doi.org/10.1175/MWR-D-20-0287.1.

    • Search Google Scholar
    • Export Citation
  • Lu, B., P.-S. Chu, S.-H. Kim, and C. Karamperidou, 2020: Hawaiian regional climate variability during two types of El Niño. J. Climate, 33, 99299943, https://doi.org/10.1175/JCLI-D-19-0985.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lucas, M. P., R. J. Longman, T. W. Giambelluca, A. G. Frazier, J. McLean, S. B. Cleveland, Y.-F. Huang, and J. Lee, 2022: Optimizing automated kriging to improve spatial interpolation of monthly rainfall over complex terrain. J. Hydrometeor., 23, 561–572, https://doi.org/10.1175/JHM-D-21-0171.1.

    • Crossref
    • Export Citation
  • Mantua, N. J., S. R. Hare, Y. Zhang, J. M. Wallace, and R. C. Francis, 1997: A Pacific interdecadal climate oscillation with impacts on salmon production. Bull. Amer. Meteor. Soc., 78, 10691079, https://doi.org/10.1175/1520-0477(1997)078<1069:APICOW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Murray, D., and Coauthors, 2020: Facility for Weather and Climate Assessments (FACTS)—A community resource for assessing weather and climate variability. Bull. Amer. Meteor. Soc., 101, E1214E1224, https://doi.org/10.1175/BAMS-D-19-0224.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Neale, R. B. , and Coauthors, 2010: Description of the NCAR Community Atmosphere Model (CAM5.0). NCAR Tech. Note NCAR/TN-486+STR, 268 pp., www.cesm.ucar.edu/models/cesm1.1/cam/docs/description/cam5_desc.pdf.

  • Newman, M., and Coauthors, 2016: The Pacific decadal oscillation, revisited. J. Climate, 29, 43994427, https://doi.org/10.1175/JCLI-D-15-0508.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Norton, C. W., P.-S. Chu, and T. A. Schroeder, 2011: Projecting changes in future heavy rainfall events for Oahu, Hawaii: A statistical downscaling approach. J. Geophys. Res., 116, D17110, https://doi.org/10.1029/2011JD015641.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • O’Connor, C. F., P.-S. Chu, P. Hsu, and K. Kodama, 2015: Variability of Hawaiian winter rainfall during La Niña events since 1956. J. Climate, 28, 78097823, https://doi.org/10.1175/JCLI-D-14-00638.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Quan, X.-W., M. P. Hoerling, J. Perlwitz, and H. F. Diaz, 2018: On the time of emergence of tropical width change. J. Climate, 31, 72257236, https://doi.org/10.1175/JCLI-D-18-0068.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Roeckner, E. , and Coauthors, 2003: The atmospheric general circulation model ECHAM5. Part I: Model description. Max Planck Institute for Meteorology Rep. 349, 127 pp., www.mpimet.mpg.de/fileadmin/publikationen/Reports/max_scirep_349.pdf.

  • Schneider, U., A. Becker, P. Finger, E. Rustemeier, and M. Ziese, 2020: GPCC full data monthly product version 2020 at 0.25°: Monthly land-surface precipitation from rain-gauges built on GTS-based and historical data, DWD, accessed June 2021, https://doi.org/10.5676/DWD_GPCC/FD_M_V2020_025.

    • Crossref
    • Export Citation
  • Schubert, S. D., M. J. Suarez, P. J. Pegion, R. D. Koster, and J. T. Bacmeister, 2004: On the cause of the 1930s Dust Bowl. Science, 33, 18551859, https://doi.org/10.1126/science.1095048.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schubert, S. D., and Coauthors, 2007: Predicting drought on seasonal-to-decadal time scales. Bull. Amer. Meteor. Soc., 88, 16251630, http://ocp.ldeo.columbia.edu/res/div/ocp/pub/schubert/Schubert_etal_2007_BAMS.pdf.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Seager, R., and M. Hoerling, 2014: Atmosphere and ocean origins of North American droughts. J. Climate, 27, 45814606, https://doi.org/10.1175/JCLI-D-13-00329.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Seager, R., Y. Kushnir, C. Herweijer, N. Naik, and J. Velez, 2005: Modeling the tropical forcing of persistent droughts and pluvials over western North America: 1856–2000. J. Climate, 18, 40684091, https://doi.org/10.1175/JCLI3522.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Seager, R., and Coauthors, 2015: Causes of the 2011–2014 California drought. J. Climate, 28, 69977024, https://doi.org/10.1175/JCLI-D-14-00860.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Serreze, M., and J. Stroeve, 2015: Arctic sea ice trends, variability, and implications for seasonal ice forecasting. Philos. Trans. Roy. Soc., A373, 20140159, https://doi.org/10.1098/rsta.2014.0159.

    • Crossref
    • Export Citation
  • Slivinski, L. C., and Coauthors, 2019: Towards a more reliable historical reanalysis: Improvements for version 3 of the Twentieth Century Reanalysis system. Quart. J. Roy. Meteor. Soc., 145, 28762908, https://doi.org/10.1002/qj.3598.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sun, L., D. Allured, M. Hoerling, L. Smith, J. Perlwitz, D. Murray, and J. Eischeid, 2018: Drivers of 2016 record Arctic warmth assessed using climate simulations subjected to factual and counterfactual forcing. Wea. Climate Extremes, 19, 1–9, https://doi.org/10.1016/j.wace.2017.11.001.

    • Crossref
    • Export Citation
  • Taylor, K. E., R. J. Stouffer, and G. A. Meehl, 2012: An overview of CMIP5 and the experiment design. Bull. Amer. Meteor. Soc., 93, 485498, https://doi.org/10.1175/BAMS-D-11-00094.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Timm, O., and H. F. Diaz, 2009: Synoptic-statistical approach to regional downscaling of IPCC twenty-first-century climate projections: Seasonal rainfall over the Hawaiian Islands. J. Climate, 22, 42614280, https://doi.org/10.1175/2009JCLI2833.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Timm, O., H. F. Diaz, T. W. Giambelluca, and M. Takahashi, 2011: Projection of changes in the frequency of heavy rain events over Hawaii based on leading Pacific climate modes. J. Geophys. Res., 116, D04109, https://doi.org/10.1029/2010JD014923.

    • Search Google Scholar
    • Export Citation
  • Timm, O., S. Li, J. Liu, and D. W. Beilman, 2021: On the changing relationship between North Pacific climate variability and synoptic activity over the Hawaiian Islands. Int. J. Climatol., 41 (Suppl. 1), E1566E1582, https://doi.org/10.1002/joc.6789.

    • Search Google Scholar
    • Export Citation
  • Zhang, C., Y. Wang, K. Hamilton, and A. Lauer, 2016a: Dynamical downscaling of the climate for the Hawaiian Islands. Part I: Present day. J. Climate, 29, 30273048, https://doi.org/10.1175/JCLI-D-15-0432.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, C., Y. Wang, K. Hamilton, and A. Lauer, 2016b: Dynamical downscaling of the climate for the Hawaiian Islands. Part II: Projection for the late twenty-first century. J. Climate, 29, 83338354, https://doi.org/10.1175/JCLI-D-16-0038.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, T., M. Hoerling, A. Hoell, J. Perlwitz, and J. Eischeid, 2020: Confirmation for and predictability of distinct U.S. impacts of El Niño flavors. J. Climate, 33, 59715991, https://doi.org/10.1175/JCLI-D-19-0802.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 374 370 43
Full Text Views 123 123 25
PDF Downloads 166 166 26

Diagnosing Hawaii’s Recent Drought

View More View Less
  • 1 aCooperative Institute for Research in Environmental University of Colorado Boulder, CIRES, Boulder, Colorado
  • | 2 bNOAA/Physical Science Laboratory, Boulder, Colorado
  • | 3 cUniversity of Hawai‘i at Mānoa, Honolulu, Hawaii
Restricted access

Abstract

Hawaii’s recent drought is among the most severe on record. Wet-season (November–April) rainfall deficits during 2010–19 rank second lowest among consecutive 10-yr periods since 1900. Various lines of empirical and model evidence indicate a principal natural atmospheric cause for the low rainfall, mostly unrelated to either internal oceanic variability or external forcing. Empirical analysis reveals that traditional factors have favored wetness rather than drought in recent decades, including a cold phase of the Pacific decadal oscillation in sea surface temperatures (SSTs) and a weakened Aleutian low in atmospheric circulation. But correlations of Hawaiian rainfall with patterns of Pacific sea level pressure and SSTs that explained a majority of its variability during the twentieth century collapsed in the twenty-first century. Atmospheric model simulations indicate a forced decadal signal (2010–19 vs 1981–2000) of Aleutian low weakening, consistent with recent observed North Pacific circulation. However, model ensemble means do not generate reduced Hawaiian rainfall, indicating that neither oceanic boundary forcing nor a weakened Aleutian low caused recent low Hawaiian rainfall. Additional atmospheric model experiments explored the role of anthropogenic forcing. These reveal a strong sensitivity of Hawaiian rainfall to details of long-term SST change patterns. Under an assumption that anthropogenic forcing drives zonally uniform SST warming, Hawaiian rainfall declines, with a range of 3%–9% among three models. Under an assumption that anthropogenic forcing also increases the equatorial Pacific zonal SST gradient, Hawaiian rainfall increases 2%–6%. Large spread among ensemble members indicates that no forced signals are detectable.

© 2022 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: M. P. Hoerling, martin.hoerling@noaa.gov

Abstract

Hawaii’s recent drought is among the most severe on record. Wet-season (November–April) rainfall deficits during 2010–19 rank second lowest among consecutive 10-yr periods since 1900. Various lines of empirical and model evidence indicate a principal natural atmospheric cause for the low rainfall, mostly unrelated to either internal oceanic variability or external forcing. Empirical analysis reveals that traditional factors have favored wetness rather than drought in recent decades, including a cold phase of the Pacific decadal oscillation in sea surface temperatures (SSTs) and a weakened Aleutian low in atmospheric circulation. But correlations of Hawaiian rainfall with patterns of Pacific sea level pressure and SSTs that explained a majority of its variability during the twentieth century collapsed in the twenty-first century. Atmospheric model simulations indicate a forced decadal signal (2010–19 vs 1981–2000) of Aleutian low weakening, consistent with recent observed North Pacific circulation. However, model ensemble means do not generate reduced Hawaiian rainfall, indicating that neither oceanic boundary forcing nor a weakened Aleutian low caused recent low Hawaiian rainfall. Additional atmospheric model experiments explored the role of anthropogenic forcing. These reveal a strong sensitivity of Hawaiian rainfall to details of long-term SST change patterns. Under an assumption that anthropogenic forcing drives zonally uniform SST warming, Hawaiian rainfall declines, with a range of 3%–9% among three models. Under an assumption that anthropogenic forcing also increases the equatorial Pacific zonal SST gradient, Hawaiian rainfall increases 2%–6%. Large spread among ensemble members indicates that no forced signals are detectable.

© 2022 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: M. P. Hoerling, martin.hoerling@noaa.gov

Supplementary Materials

    • Supplemental Materials (PDF 461 KB)
Save