• Afargan-Gerstman, H., and D. Domeisen, 2020: Pacific modulation of the North Atlantic storm track response to sudden stratospheric warming events. Geophys. Res. Lett., 47, e2019GL085007, https://doi.org/10.1029/2019GL085007.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Analitis, A., and Coauthors, 2008: Effects of cold weather on mortality: Results from 15 European cities within the PHEWE project. Amer. J. Epidemiol., 168, 13971408, https://doi.org/10.1093/aje/kwn266.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ayarzaguena, B., and Coauthors, 2020: Uncertainty in the response of sudden stratospheric warmings and stratosphere-troposphere coupling to quadrupled CO2 concentrations in CMIP6 models. J. Geophys. Res. Atmos., 125, e2019JD032345, https://doi.org/10.1029/2019JD032345.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Baldwin, M., and T. Dunkerton, 2001: Stratospheric harbingers of anomalous weather regimes. Science, 294, 581584, https://doi.org/10.1126/science.1063315.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • BBC News, 2021: Texas weather: Deadly winter storm sweeps Texas and US southern states. Accessed 22 July 2021, https://www.bbc.com/news/world-us-canada-56076686.

    • Search Google Scholar
    • Export Citation
  • Biernat, K., L. Bosart, and D. Keyser, 2021: A climatological analysis of the linkages between tropopause polar vortices, cold pools, and cold air outbreaks over the central and eastern United States. Mon. Wea. Rev., 149, 189206, https://doi.org/10.1175/MWR-D-20-0191.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Butler, A., J. Sjoberg, D. Seidel, and K. Rosenlof, 2017: A sudden stratospheric warming compendium. Earth Syst. Sci. Data, 9, 6376, https://doi.org/10.5194/essd-9-63-2017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cellitti, M., J. Walsh, R. Rauber, and D. Portis, 2006: Extreme cold air outbreaks over the United States, the polar vortex, and the large-scale circulation. J. Geophys. Res., 111, D02114, https://doi.org/10.1029/2005JD006273.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Charlton, A., and L. Polvani, 2007: A new look at stratospheric sudden warmings. Part I: Climatology and modeling benchmarks. J. Climate, 20, 449469, https://doi.org/10.1175/JCLI3996.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cohen, J., L. Agel, M. Barlow, C. Garfinkel, and I. White, 2021: Linking Arctic variability and change with extreme winter weather in the United States. Climate Dyn., 373, 11161121, https://doi.org/10.1126/science.abi9167.

    • Search Google Scholar
    • Export Citation
  • Domeisen, D., L. Sun, and G. Chen, 2013: The role of synoptic eddies in the tropospheric response to stratospheric variability. Geophys. Res. Lett., 40, 49334937, https://doi.org/10.1002/grl.50943.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Green, M., and J. Furtado, 2019: Evaluating the joint influence of the Madden-Julian oscillation and the stratospheric polar vortex on weather patterns in the Northern Hemisphere. J. Geophys. Res. Atmos., 124, 11 69311 709, https://doi.org/10.1029/2019JD030771.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grotjahn, R., and Coauthors, 2015: North American extreme temperature events and related large scale meteorological patterns: A review of statistical methods, dynamics, modeling, and trends. Climate Dyn., 46, 11511184, https://doi.org/10.1007/s00382-015-2638-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hamouda, M., C. Pasquero, and E. Tziperman, 2021: Decoupling of the Arctic Oscillation and North Atlantic Oscillation in a warmer climate. Nat. Climate Change, 11, 137142, https://doi.org/10.1038/s41558-020-00966-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Harnik, N., 2009: Observed stratospheric downward reflection and its relation to upward pulses of wave activity. J. Geophys. Res., 114, D08120, https://doi.org/10.1029/2008JD010493.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Henderson, S., and E. Maloney, 2018: The impact of the Madden–Julian oscillation on high-latitude winter blocking during El Niño–Southern Oscillation events. J. Climate, 31, 52935318, https://doi.org/10.1175/JCLI-D-17-0721.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hersbach, H., and Coauthors, 2020: The ERA5 global reanalysis. Quart. J. Roy. Meteor. Soc., 146, 19992049, https://doi.org/10.1002/qj.3803.

  • Hitchcock, P., and I. Simpson, 2014: The downward influence of stratospheric sudden warmings. J. Atmos. Sci., 71, 38563876, https://doi.org/10.1175/JAS-D-14-0012.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kloesel, K., and Coauthors, 2018: Southern Great Plains. Impacts, Risks, and Adaptation in the United States: Fourth National Climate Assessment, D. Reidmiller, Ed., Vol. II, U.S. Global Change Research Program, 9871035.

    • Search Google Scholar
    • Export Citation
  • Kodera, K., H. Mukougawa, and S. Itoh, 2008: Tropospheric impact of reflected planetary waves from the stratosphere. Geophys. Res. Lett., 35, L16806, https://doi.org/10.1029/2008GL034575.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kodera, K., H. Mukougawa, and A. Fujii, 2013: Influence of the vertical and zonal propagation of stratospheric planetary waves on tropospheric blockings. J. Geophys. Res. Atmos., 118, 83338345, https://doi.org/10.1002/jgrd.50650.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kodera, K., H. Mukougawa, P. Maury, M. Ueda, and C. Claud, 2016: Absorbing and reflecting sudden stratospheric warming events and their relationship with tropospheric circulation. J. Geophys. Res. Atmos., 121, 8094, https://doi.org/10.1002/2015JD023359.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kolstad, E., T. Breiteig, and A. Scaife, 2010: The association between stratospheric weak polar vortex events and cold air outbreaks in the Northern Hemisphere. Quart. J. Roy. Meteor. Soc., 136, 886893, https://doi.org/10.1002/qj.620.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Konrad, C., and S. Colucci, 1989: An examination of extreme cold air outbreaks over eastern North America. Mon. Wea. Rev., 117, 26872700, https://doi.org/10.1175/1520-0493(1989)117<2687:AEOECA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kretschmer, M., J. Cohen, V. Matthias, J. Runge, and D. Coumou, 2018a: The different stratospheric influence on cold-extremes in Eurasia and North America. npj Climate Atmos. Sci., 1, 44, https://doi.org/10.1038/s41612-018-0054-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kretschmer, M., D. Coumou, L. Agel, M. Barlow, E. Tziperman, and J. Cohen, 2018b: More-persistent weak stratospheric polar vortex states linked to cold extremes. Bull. Amer. Meteor. Soc., 99, 4960, https://doi.org/10.1175/BAMS-D-16-0259.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lee, S., 2021: The January 2021 sudden stratospheric warming. Weather, 76, 135136, https://doi.org/10.1002/wea.3966.

  • Lee, S., J. Furtado, and A. Charlton-Perez, 2019: Wintertime North American weather regimes and the Arctic stratospheric polar vortex. Geophys. Res. Lett., 46, 14 89214 900, https://doi.org/10.1029/2019GL085592.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lillo, S., S. Cavallo, D. Parsons, and C. Riedel, 2021: The role of a tropopause polar vortex in the generation of the January 2019 extreme Arctic outbreak. J. Atmos. Sci., 78, 28012821, https://doi.org/10.1175/JAS-D-20-0285.1.

    • Search Google Scholar
    • Export Citation
  • Limpasuvan, V., D. Thompson, and D. Hartmann, 2004: The life cycle of the Northern Hemisphere sudden stratospheric warmings. J. Climate, 17, 25842596, https://doi.org/10.1175/1520-0442(2004)017<2584:TLCOTN>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Limpasuvan, V., D. Hartmann, D. Thompson, K. Jeev, and Y. Yung, 2005: Stratosphere-troposphere evolution during polar vortex intensification. J. Geophys. Res., 110, D24101, https://doi.org/10.1029/2005JD006302.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Loikith, P., and A. Broccoli, 2012: Characteristics of observed atmospheric circulation patterns associated with temperature extremes over North America. J. Climate, 25, 72667281, https://doi.org/10.1175/jcli-d-11-00709.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Matthias, V., and M. Kretschmer, 2020: The influence of stratospheric wave reflection on North American cold spells. Mon. Wea. Rev., 148, 16751690, https://doi.org/10.1175/MWR-D-19-0339.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Maycock, A., G. Masukwedza, P. Hitchock, and I. Simpson, 2020: A regime perspective on the North Atlantic eddy-driven jet response to sudden stratospheric warmings. J. Climate, 33, 39013917, https://doi.org/10.1175/JCLI-D-19-0702.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McManus, G., 2009: Oklahoma climate winter 2008–2009. Oklahoma Climatological Survey Tech. Rep., 30 pp.

  • Mitchell, D., L. Gray, J. Anstey, M. Baldwin, and A. Charlton-Perez, 2013: The influence of stratospheric vortex displacements and splits on surface climate. J. Climate, 26, 26682682, https://doi.org/10.1175/JCLI-D-12-00030.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Moore, R., O. Martius, and T. Spengler, 2010: The modulation of the subtropical and extratropical atmosphere in the Pacific basin in response to the Madden–Julian oscillation. Mon. Wea. Rev., 138, 27612779, https://doi.org/10.1175/2010MWR3194.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nakagawa, K., and K. Yamazaki, 2006: What kind of stratospheric sudden warming propagates to the troposphere? Geophys. Res. Lett., 33, L04801, https://doi.org/10.1029/2005GL024784.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • NCEI, 2021: Billion-dollar weather and climate disasters: Summary stats. Accessed 8 July 2021, https://www.ncdc.noaa.gov/billions/summary-stats.

    • Search Google Scholar
    • Export Citation
  • NWS, 2021a: February 2021: Historic winter storm and Arctic outbreak. Accessed 8 July 2021, https://www.weather.gov/fwd/Feb-2021-WinterEvent.

    • Search Google Scholar
    • Export Citation
  • NWS, 2021b: Weather related fatality and injury statistics. Accessed 8 July 2021, https://www.weather.gov/fwd/Feb-2021-WinterEvent.

  • Pedregosa, F., and Coauthors, 2011: Scikit-learn: Machine learning in Python. J. Mach. Learn. Res., 12, 28252830.

  • Perlwitz, J., and N. Harnik, 2003: Observational evidence of a stratospheric influence on the troposphere by planetary wave reflection. J. Climate, 16, 30113026, https://doi.org/10.1175/1520-0442(2003)016<3011:oeoasi>2.0.co;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Perlwitz, J., and N. Harnik, 2004: Downward coupling between the stratosphere and troposphere: The relative roles of wave and zonal mean processes. J. Climate, 17, 49024909, https://doi.org/10.1175/JCLI-3247.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Plumb, R., 1985: On the three-dimensional propagation of stationary waves. J. Atmos Sci., 42, 217229, https://doi.org/10.1175/1520-0469(1985)042<0217:ottdpo>2.0.co;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Quinting, J., and F. Vitart, 2019: Representation of synoptic-scale Rossby wave packets and blocking in the S2S prediction project database. Geophys. Res. Lett., 46, 10701078, https://doi.org/10.1029/2018GL081381.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Renwick, J., and J. Wallace, 1996: Relationships between North Pacific wintertime blocking, El Niño, and the PNA pattern. Mon. Wea. Rev., 124, 20712076, https://doi.org/10.1175/1520-0493(1996)124<2071:rbnpwb>2.0.co;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rossum, S., and S. Lavin, 2000: Where are the Great Plains? A cartographic analysis. Prof. Geogr., 52, 543552, https://doi.org/10.1111/0033-0124.00245.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Seo, K., and H. Lee, 2017: Mechanisms for a PNA-like teleconnection pattern in response to the MJO. J. Atmos. Sci., 74, 17671781, https://doi.org/10.1175/JAS-D-16-0343.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Seo, K., H. Lee, and D. Frierson, 2016: Unraveling the teleconnection mechanisms that induce wintertime temperature anomalies over the Northern Hemisphere continents in response to the MJO. J. Atmos. Sci., 73, 35573571, https://doi.org/10.1175/JAS-D-16-0036.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shaw, T., J. Perlwitz, and N. Harnik, 2010: Downward wave coupling between the stratosphere and troposphere: The importance of meridional wave guiding and comparison with zonal-mean coupling. J. Climate, 23, 63656381, https://doi.org/10.1175/2010JCLI3804.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smith, E., and S. Sheridan, 2018a: The characteristics of extreme cold events and cold air outbreaks in the eastern United States. Int. J. Climatol., 38, e807e820, https://doi.org/10.1002/joc.5408.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smith, E., and S. Sheridan, 2018b: The influence of atmospheric circulation patterns on cold air outbreaks in the eastern United States. Int. J. Climatol., 39, 20802095, https://doi.org/10.1002/joc.5935.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smith, E., and S. Sheridan, 2019: The influence of extreme cold events on mortality in the United States. Sci. Total Environ., 647, 342351, https://doi.org/10.1016/j.scitotenv.2018.07.466.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smith, E., and S. Sheridan, 2020: Where do cold air outbreaks occur, and how have they changed over time? Geophys. Res. Lett., 47, e2020GL086983, https://doi.org/10.1029/2020GL086983.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stan, C., and D. Straus, 2007: Is blocking a circulation regime? Mon. Wea. Rev., 135, 24062413, https://doi.org/10.1175/MWR3410.1.

  • Thompson, D., and J. Wallace, 2000: Annular modes in the extratropical circulation. Part I: Month-to-month variability. J. Climate, 13, 10001016, https://doi.org/10.1175/1520-0442(2000)013<1000:AMITEC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tripathi, O. P., and Coauthors, 2015: The predictability of the extratropical stratosphere on monthly time-scales and its impact on the skill of tropospheric forecasts. Quart. J. Roy. Meteor. Soc., 141, 9871003, https://doi.org/10.1002/qj.2432.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vitart, F., and A. Robertson, 2018: The Sub-Seasonal to Seasonal Prediction Project (S2S) and the prediction of extreme events. npj Climate Atmos. Sci., 1, 3, https://doi.org/10.1038/s41612-018-0013-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wallace, J., and D. Gutzler, 1981: Teleconnections in the geopotential height field during the Northern Hemisphere winter. Mon. Wea. Rev., 109, 784812, https://doi.org/10.1175/1520-0493(1981)109<0784:TITGHF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Westby, R., and R. Black, 2015: Development of anomalous temperature regimes over the southeastern United States: Synoptic behavior and role of low-frequency modes. Wea. Forecasting, 30, 553570, https://doi.org/10.1175/WAF-D-14-00093.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wheeler, D., V. Harvey, D. Atkinson, R. Collins, and M. Mills, 2011: A climatology of cold air outbreaks over North America: WACCM and ERA-40 comparison and analysis. J. Geophys. Res., 116, D12107, https://doi.org/10.1029/2011JD015711.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • White, I., C. Garfinkel, E. Gerber, M. Jucker, V. Aquila, and L. Oman, 2019: The downward influence of sudden stratospheric warmings: Association with tropospheric precursors. J. Climate, 32, 85108, https://doi.org/10.1175/JCLI-D-18-0053.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xie, Z., R. Black, and Y. Deng, 2017: The structure and large-scale organization of extreme cold waves over the conterminous United States. Climate Dyn., 49, 40754088, https://doi.org/10.1007/s00382-017-3564-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 258 258 258
Full Text Views 89 89 89
PDF Downloads 99 99 99

Characteristics, Evolution, and Formation of Cold Air Outbreaks in the Great Plains of the United States

View More View Less
  • 1 aSchool of Meteorology, University of Oklahoma, Norman, Oklahoma
Restricted access

Abstract

Wintertime cold air outbreaks (CAOs) in the Great Plains of the United States have significant socioeconomic, environmental, and infrastructural impacts; the events of December 1983 and February 2021 are key examples of this. Previous studies have investigated CAOs in other parts of North America, particularly the eastern United States, but the development of CAOs in the Great Plains and their potential subseasonal-to-seasonal (S2S) predictability have yet to be assessed. This study first identifies 37 large-scale CAOs in the Great Plains between 1950 and 2021, before examining their characteristics, evolution, and driving mechanisms. These events occur under two dominant weather regimes at event onset: one set associated with anomalous ridging over Alaska and the other set associated with anomalous pan-Arctic ridging. Alaskan ridge CAOs evolve quickly (i.e., on synoptic time scales) and involve stratospheric wave reflection. Conversely, Arctic high CAOs are preceded by weak stratospheric polar vortex conditions several weeks prior to the event. Both categories of CAOs feature anomalous upward wave activity flux from Siberia, with downward wave activity flux over Canada seen only in the Alaskan ridge CAOs. The rapid development of the Alaskan ridge CAOs, also linked with a North Pacific wave train and anomalous wave activity flux from the central Pacific, suggests that these events could be forced by tropical modes of variability. These findings present evidence that different forcing mechanisms, with contrasting time scales, may produce distinct sources of predictability for these CAOs on the S2S time scale.

© 2022 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Oliver Millin, omillin@ou.edu

Abstract

Wintertime cold air outbreaks (CAOs) in the Great Plains of the United States have significant socioeconomic, environmental, and infrastructural impacts; the events of December 1983 and February 2021 are key examples of this. Previous studies have investigated CAOs in other parts of North America, particularly the eastern United States, but the development of CAOs in the Great Plains and their potential subseasonal-to-seasonal (S2S) predictability have yet to be assessed. This study first identifies 37 large-scale CAOs in the Great Plains between 1950 and 2021, before examining their characteristics, evolution, and driving mechanisms. These events occur under two dominant weather regimes at event onset: one set associated with anomalous ridging over Alaska and the other set associated with anomalous pan-Arctic ridging. Alaskan ridge CAOs evolve quickly (i.e., on synoptic time scales) and involve stratospheric wave reflection. Conversely, Arctic high CAOs are preceded by weak stratospheric polar vortex conditions several weeks prior to the event. Both categories of CAOs feature anomalous upward wave activity flux from Siberia, with downward wave activity flux over Canada seen only in the Alaskan ridge CAOs. The rapid development of the Alaskan ridge CAOs, also linked with a North Pacific wave train and anomalous wave activity flux from the central Pacific, suggests that these events could be forced by tropical modes of variability. These findings present evidence that different forcing mechanisms, with contrasting time scales, may produce distinct sources of predictability for these CAOs on the S2S time scale.

© 2022 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Oliver Millin, omillin@ou.edu

Supplementary Materials

    • Supplemental Materials (PDF 19.7 MB)
Save