• Baxter, I., and Coauthors, 2019: How tropical Pacific surface cooling contributed to accelerated sea ice melt from 2007 to 2012 as ice is thinned by anthropogenic forcing. J. Climate, 32, 85838602, https://doi.org/10.1175/JCLI-D-18-0783.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Castruccio, F. S., Y. Ruprich-Robert, S. G. Yeager, G. Danabasoglu, R. Msadek, and T. L. Delworth, 2019: Modulation of Arctic sea ice loss by atmospheric teleconnections from Atlantic multidecadal variability. J. Climate, 32, 14191441, https://doi.org/10.1175/JCLI-D-18-0307.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cavalieri, D. J., C. L. Parkinson, P. Gloersen, and H. J. Zwally, 1996: Sea ice concentrations from Nimbus-7 SMMR and DMSP SSM/I-SSMIS passive microwave data, version 1 (subset used: V3-NH). National Snow and Ice Data Center Distributed Active Archive Center, https://doi.org/10.5067/8GQ8LZQVL0VL.

    • Crossref
    • Export Citation
  • Choi, N., K.-M. Kim, Y.-K. Lim, and M.-I. Lee, 2019: Decadal changes in the leading patterns of sea level pressure in the Arctic and their impacts on the sea ice variability in boreal summer. Cryosphere, 13, 30073021, https://doi.org/10.5194/tc-13-3007-2019.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Comiso, J. C., W. N. Meier, and R. Gersten, 2017: Variability and trends in the Arctic sea ice cover: Results from different techniques. J. Geophys. Res. Oceans, 122, 68836900, https://doi.org/10.1002/2017JC012768.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dai, A., D. Luo, M. Song, and J. Liu, 2019: Arctic amplification is caused by sea-ice loss under increasing CO2. Nat. Commun., 10, 121, https://doi.org/10.1038/s41467-018-07954-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Day, J. J., J. C. Hargreaves, J. D. Annan, and A. Abe-Ouchi, 2012: Sources of multi-decadal variability in Arctic sea ice extent. Environ. Res. Lett., 7, 034011, https://doi.org/10.1088/1748-9326/7/3/034011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Deser, C., J. Walsh, and M. Timlin, 2000: Arctic sea ice variability in the context of recent atmospheric circulation trends. J. Climate, 13, 617633, https://doi.org/10.1175/1520-0442(2000)013<0617:ASIVIT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Deser, C., R. Tomas, M. Alexander, and D. Lawrence, 2010: The seasonal atmospheric response to projected Arctic sea ice loss in the late twenty-first century. J. Climate, 23, 333351, https://doi.org/10.1175/2009JCLI3053.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Deser, C., and Coauthors, 2020: Insights from Earth system model initial-condition large ensembles and future prospects. Nat. Climate Change, 10, 277286, https://doi.org/10.1038/s41558-020-0731-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ding, Q., J. M. Wallace, D. S. Battisti, E. J. Steig, A. J. Gallant, H. J. Kim, and L. Geng, 2014: Tropical forcing of the recent rapid Arctic warming in northeastern Canada and Greenland. Nature, 509, 209212, https://doi.org/10.1038/nature13260.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ding, Q., and Coauthors, 2017: Influence of high-latitude atmospheric circulation changes on summertime Arctic sea ice. Nat. Climate Change, 7, 289295, https://doi.org/10.1038/nclimate3241.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ding, Q., and Coauthors, 2019: Fingerprints of internal drivers of Arctic sea ice loss in observations and model simulations. Nat. Geosci., 12, 2833, https://doi.org/10.1038/s41561-018-0256-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • England, M. R., I. Eisenman, N. J. Lutsko, T. J. W. Wagner, 2021: The recent emergence of Arctic amplification. Geophys. Res. Lett., 48, e2021GL094086, https://doi.org/10.1029/2021GL094086.

    • Crossref
    • Export Citation
  • Francis, J. A., and B. Wu, 2020: Why has no new record-minimum Arctic sea-ice extent occurred since September 2012? Environ. Res. Lett., 15, 114034, https://doi.org/10.1088/1748-9326/abc047.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grunseich, G., and B. Wang, 2016: Arctic sea ice patterns driven by the Asian summer monsoon. J. Climate, 29, 90979112, https://doi.org/10.1175/JCLI-D-16-0207.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hanna, E., T. E. Cropper, R. J. Hall, and J. Cappelen, 2016: Greenland blocking index 1851–2015: A regional climate change signal. Int. J. Climatol., 36, 48474861, https://doi.org/10.1002/joc.4673.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Heo, E. S., M.-K. Sung, S.-I. An, and Y.-M. Yang, 2021: Decadal phase shift of summertime Arctic dipole pattern and its nonlinear effect on sea ice extent. Int. J. Climatol., 41, 47324742, https://doi.org/10.1002/joc.7097.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hersbach, H., and Coauthors, 2020: The ERA5 global reanalysis. Quart. J. Roy. Meteor. Soc., 146, 19992049, https://doi.org/10.1002/qj.3803.

  • Huang, Y., G. Chou, Y. Xie, and N. Soulard, 2019: Radiative control of the interannual variability of Arctic sea ice. Geophys. Res. Lett., 46, 98999908, https://doi.org/10.1029/2019GL084204.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kanamitsu, M., W. Ebisuzaki, J. Woollen, S.-K. Yang, J. J. Hnilo, M. Fiorino, and G. L. Potter, 2002: NCEP–DOE AMIP-II Reanalysis (R-2). Bull. Amer. Meteor. Soc., 83, 16311644, https://doi.org/10.1175/BAMS-83-11-1631.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kay, J. E., T. L’Ecuyer, A. Gettelman, G. Stephens, and C. O’Dell, 2008: The contribution of cloud and radiation anomalies to the 2007 Arctic sea ice extent minimum. Geophys. Res. Lett., 35, L08503, https://doi.org/10.1029/2008GL033451.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kay, J. E., M. M. Holland, and A. Jahn, 2011: Inter-annual to multi-decadal Arctic sea ice extent trends in a warming world. Geophys. Res. Lett., 38, L15708, https://doi.org/10.1029/2011GL048008.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kay, J. E., and Coauthors, 2015: The Community Earth System Model (CESM) large ensemble project: A community resource for studying climate change in the presence of internal climate variability. Bull. Amer. Meteor. Soc., 96, 13331349, https://doi.org/10.1175/BAMS-D-13-00255.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kobayashi, S., and Coauthors, 2015: The JRA-55 reanalysis: General specifications and basic characteristics. J. Meteor. Soc. Japan, 93, 548, https://doi.org/10.2151/jmsj.2015-001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Koenigk, T., and L. Brodeau, 2014: Ocean heat transport into the Arctic in the twentieth and twenty-first century in EC-Earth. Climate Dyn., 42, 31013120, https://doi.org/10.1007/s00382-013-1821-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kumar, A., and Coauthors, 2010: Contribution of sea ice loss to Arctic amplification. Geophys. Res. Lett., 37, L21701, https://doi.org/10.1029/2010GL045022.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kwok, R., G. F. Cunningham, and S. S. Pang, 2004: Fram Strait sea ice outflow. J. Geophys. Res., 109, C01009, https://doi.org/10.1029/2003JC001785.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Labe, Z., G. Magnusdottir, and H. Stern, 2018: Variability of Arctic sea ice thickness using PIOMAS and the CESM Large Ensemble. J. Climate, 31, 32333247, https://doi.org/10.1175/JCLI-D-17-0436.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lim, Y. K., R. I. Cullather, S. M. J. Nowochi, and K. M. Kim, 2019: Inter-relationship between subtropical Pacific sea surface temperature, Arctic sea ice concentration, and North Atlantic Oscillation in recent summers. Sci. Rep., 9, 3481, https://doi.org/10.1038/s41598-019-39896-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, J., J. A. Curry, and Y. Hu, 2004: Recent Arctic sea ice variability: Connections to the Arctic Oscillation and the ENSO. Geophys. Res. Lett., 31, L09211, https://doi.org/10.1029/2004GL019858.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, J., Z. Chen, J. Francis, M. Song, T. Mote, and Y. Hu, 2016: Has Arctic sea ice loss contributed to increased surface melting of the Greenland Ice Sheet? J. Climate, 29, 33733386, https://doi.org/10.1175/JCLI-D-15-0391.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, Z., and Coauthors, 2021: Acceleration of western Arctic sea ice loss linked to the Pacific North American pattern. Nat. Commun., 12, 1519, https://doi.org/10.1038/s41467-021-21830-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Livina, V. N., and T. M. Lenton, 2013: A recent tipping point in the Arctic sea-ice cover: Abrupt and persistent increase in the seasonal cycle since 2007. Cryosphere, 7, 275286, https://doi.org/10.5194/tc-7-275-2013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Luo, R., Q. Ding, Z. Wu, I. Baxter, M. Bushuk, Y. Huang, and X. Dong, 2021: Summertime atmosphere–sea ice coupling in the Arctic simulated by CMIP5/6 models: Importance of large-scale circulation. Climate Dyn., 56, 14671485, https://doi.org/10.1007/s00382-020-05543-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Manabe, S., and R. J. Stouffer, 1980: Sensitivity of a global climate model to an increase of CO2 concentration in the atmosphere. J. Geophys. Res., 85, 55295554, https://doi.org/10.1029/JC085iC10p05529.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Maslanik, J., S. Drobot, C. Fowler, W. Emery, and R. Barry, 2007: On the Arctic climate paradox and the continuing role of atmospheric circulation in affecting sea ice conditions. Geophys. Res. Lett., 34, L03711, https://doi.org/10.1029/2006GL028269.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Notz, D., and J. Marotzke, 2012: Observations reveal external driver for Arctic sea-ice retreat. Geophys. Res. Lett., 39, L08502, https://doi.org/10.1029/2012GL051094.

    • Search Google Scholar
    • Export Citation
  • Notz, D., and J. Stroeve, 2016: Observed Arctic sea-ice loss directly follows anthropogenic CO2 emission. Science, 354, 747750, https://doi.org/10.1126/science.aag2345.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ogi, M., and J. M. Wallace, 2007: Summer minimum Arctic sea ice extent and the associated summer atmospheric circulation. Geophys. Res. Lett., 34, L12705, https://doi.org/10.1029/2007GL029897.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ogi, M., I. G. Rigor, M. G. McPhee, and J. M. Wallace, 2008: Summer retreat of Arctic sea ice: Role of summer winds. Geophys. Res. Lett., 35, L24701, https://doi.org/10.1029/2008GL035672.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ogi, M., K. Yamazaki, and J. M. Wallace, 2010: Influence of winter and summer surface wind anomalies on summer Arctic sea ice extent. Geophys. Res. Lett., 37, L07701, https://doi.org/10.1029/2009GL042356.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Overland, J. E., and M. Wang, 2010: Large-scale atmospheric circulation changes are associated with the recent loss of Arctic sea ice. Tellus, 62A (1), 19, https://doi.org/10.1111/j.1600-0870.2009.00421.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Overland, J. E., J. A. Francis, H. Edward, and M. Wang, 2012: The recent shift in early summer Arctic atmospheric circulation. Geophys. Res. Lett., 39, L19804, https://doi.org/10.1029/2012GL053268.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rampal, P., J. Weiss, C. Dubois, and J.-M. Campin, 2011: IPCC climate models do not capture Arctic sea ice drift acceleration: Consequences in terms of projected sea ice thinning and decline. J. Geophys. Res., 116, C00D07, https://doi.org/10.1029/2011JC007110.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rodionov, S. N., 2004: A sequential algorithm for testing climate regime shifts. Geophys. Res. Lett., 31, L09204, https://doi.org/10.1029/2004GL019448.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rodionov, S. N., 2006: Use of prewhitening in climate regime shift detection. Geophys. Res. Lett., 33, L12707, https://doi.org/10.1029/2006GL025904.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rossow, W., and R. Schiffer, 1999: Advances in understanding clouds from ISCCP. Bull. Amer. Meteor. Soc., 80, 22612288, https://doi.org/10.1175/1520-0477(1999)080<2261:AIUCFI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Screen, J. A., and I. Simmonds, 2010: The central role of diminishing sea ice in recent Arctic temperature amplification. Nature, 464, 13341337, https://doi.org/10.1038/nature09051.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Screen, J. A., and J. A. Francis, 2016: Contribution of sea ice loss to Arctic amplification is regulated by Pacific Ocean decadal variability. Nat. Climate Change, 6, 856860, https://doi.org/10.1038/nclimate3011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Screen, J. A., and C. Deser, 2019: Pacific Ocean variability influences the time of emergence of a seasonally ice-free Arctic Ocean. Geophys. Res. Lett., 46, 22222231, https://doi.org/10.1029/2018GL081393.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Screen, J. A., I. Simmonds, C. Deser, and R. Tomas, 2013: The atmospheric response to three decades of observed Arctic sea ice loss. J. Climate, 26, 12301248, https://doi.org/10.1175/JCLI-D-12-00063.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Screen, J. A., and Coauthors, 2018: Consistency and discrepancy in the atmospheric response to Arctic sea-ice loss across climate models. Nat. Geosci., 11, 155163, https://doi.org/10.1038/s41561-018-0059-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sedlar, J., 2018: Spring Arctic atmospheric preconditioning: Do not rule out shortwave radiation just yet. J. Climate, 31, 42254240, https://doi.org/10.1175/JCLI-D-17-0710.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Serreze, M. C., and J. A. Francis, 2006: The Arctic amplification debate. Climatic Change, 76, 241264, https://doi.org/10.1007/s10584-005-9017-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Serreze, M. C., J. Stroeve, A. P. Barrett, and L. N. Boisvert, 2016: Summer atmospheric circulation anomalies over the Arctic Ocean and their influences on September sea ice extent: A cautionary tale. J. Geophys. Res. Atmos., 121, 11 46311 485, https://doi.org/10.1002/2016JD025161.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shimada, K., T. Kamoshida, M. Itoh, S. Nishino, E. Carmack, F. McLaughlin, S. Zimmermann, and A. Proshutinsky, 2006: Pacific Ocean inflow: Influence on catastrophic reduction of sea ice cover in the Arctic Ocean. Geophys. Res. Lett., 33, L08605, https://doi.org/10.1029/2005GL025624.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Spielhagen, R. F., and Coauthors, 2011: Enhanced modern heat transfer to the Arctic by warm Atlantic water. Science, 331, 450453, https://doi.org/10.1126/science.1197397.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Svendsen, L., N. Keenlyside, I. Bethke, Y. Gao, and N.-E. Omrani, 2018: Pacific contribution to the early twentieth-century warming in the Arctic. Nat. Climate Change, 8, 793797, https://doi.org/10.1038/s41558-018-0247-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Swart, N. C., J. C. Fyfe, E. Hawkins, J. E. Kay, and A. Jahn, 2015: Influence of internal variability on Arctic sea-ice trends. Nat. Climate Change, 5, 8689, https://doi.org/10.1038/nclimate2483.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Takara, E. E., and R. G. Ellingson, 2000: Broken cloud field longwave-scattering effects. J. Atmos. Sci., 57, 12981310, https://doi.org/10.1175/1520-0469(2000)057<1298:BCFLSE>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tokinaga, H., S. P. Xie, and H. Mukougawa, 2017: Early 20th century Arctic warming intensified by Pacific and Atlantic multidecadal variability. Proc. Natl. Acad. Sci. USA, 114, 62276232, https://doi.org/10.1073/pnas.1615880114.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Topál, D., Q. Ding, J. Mitchell, I. Baxter, M. Herein, T. Haszpra, R. Luo, and Q. Li, 2020: An internal atmospheric process determining summertime Arctic sea ice melting in the next three decades: Lessons learned from five large ensembles and multiple CMIP5 climate simulations. J. Climate, 33, 74317454, https://doi.org/10.1175/JCLI-D-19-0803.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tschudi, M. A., W. N. Meier, and J. S. Stewart, 2020: An enhancement to sea ice motion and age products at the National Snow and Ice Data Center (NSIDC). Cryosphere, 14, 15191536, https://doi.org/10.5194/tc-14-1519-2020.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, J., J. Zhang, E. Watanabe, M. Ikeda, K. Mizobata, J. E. Walsh, X. Bai, and B. Wu, 2009: Is the dipole anomaly a major driver to record lows in Arctic summer sea ice extent? Geophys. Res. Lett., 36, L05706, https://doi.org/10.1029/2008GL036706.

    • Search Google Scholar
    • Export Citation
  • Wang, L., L. Zhang, and W. Yang, 2020: The impact of concurrent variation of atmospheric meridional heat transport in western Baffin Bay and eastern Greenland on summer Arctic sea ice. Acta Oceanol. Sin., 39, 1423, https://doi.org/10.1007/s13131-020-1614-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, S.-Y., and J. Liu, 2016: Delving into the relationship between autumn Arctic sea ice and central–eastern Eurasian winter climate. Atmos. Oceanic Sci. Lett., 9, 366374, https://doi.org/10.1080/16742834.2016.1207482.

    • Search Google Scholar
    • Export Citation
  • Wernli, H., and L. Papritz, 2018: Role of polar anticyclones and mid-latitude cyclones for Arctic summertime sea-ice melting. Nat. Geosci., 11, 108113, https://doi.org/10.1038/s41561-017-0041-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wettstein, J. J., and C. Deser, 2014: Internal variability in projections of twenty-first-century Arctic sea ice loss: Role of the large-scale atmospheric circulation. J. Climate, 27, 527550, https://doi.org/10.1175/JCLI-D-12-00839.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, B., and Z. Li, 2021: Possible impacts of anomalous Arctic sea ice melting on summer atmosphere. Int. J. Climatol., 42, 18181827, https://doi.org/10.1002/joc.7337.

    • Search Google Scholar
    • Export Citation
  • Wu, B., J. Wang, and J. E. Walsh, 2006: Dipole anomaly in the winter Arctic atmosphere and its association with sea ice motion. J. Climate, 19, 210225, https://doi.org/10.1175/JCLI3619.1.

    • Search Google Scholar
    • Export Citation
  • Yu, L., S. Zhong, T. Vihma, and B. Sun, 2021: Attribution of late summer early autumn Arctic sea ice decline in recent decades. npj Climate Atmos. Sci., 4, 3, https://doi.org/10.1038/s41612-020-00157-4.

    • Search Google Scholar
    • Export Citation
  • Zhang, J., 2021: Recent slowdown in the decline of Arctic sea ice volume under increasingly warm atmospheric and oceanic conditions. Geophys. Res. Lett., 48, e2021GL094780, https://doi.org/10.1029/2021GL094780.

  • Zhang, J., and D. A. Rothrock, 2003: Modeling global sea ice with a thickness and enthalpy distribution model in generalized curvilinear coordinates. Mon. Wea. Rev., 131, 845861, https://doi.org/10.1175/1520-0493(2003)131<0845:MGSIWA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Zhang, R., 2015: Mechanisms for low-frequency variability of summer Arctic sea ice extent. Proc. Natl. Acad. Sci. USA, 112, 45704575, https://doi.org/10.1073/pnas.1422296112.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 136 136 136
Full Text Views 50 50 50
PDF Downloads 59 59 59

Comparison between Large-Scale Circulation Anomalies Associated with Interannual Variability and Decadal Change of Summer Arctic Sea Ice

View More View Less
  • 1 aKey Laboratory of Marine Hazards Forecasting, Ministry of Natural Resources, Hohai University, Nanjing, China
  • | 2 bCollege of Oceanography, Hohai University, Nanjing, China
  • | 3 cState Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China
  • | 4 dCollege of Earth and Planetary Sciences, University of the Chinese Academy of Sciences, Beijing, China
  • | 5 eDepartment of Atmospheric and Environmental Sciences, State University of New York, Albany, New York
  • | 6 fSchool of Geospatial Engineering and Science, Sun Yat-Sen University, and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China
  • | 7 gUniversity Corporation for Polar Research, Zhuhai, China
Restricted access

Abstract

Arctic sea ice in summer shows both interannual and long-term variations, and atmospheric circulation anomalies are known to play an important role. This study compares the summertime large-scale circulation anomalies associated with Arctic sea ice on interannual and decadal time scales. The results indicate that the circulation anomalies associated with decreased sea ice on an interannual time scale are characterized by a barotropic anticyclonic anomaly in the central Arctic, and the thermodynamic process is important for the circulation–sea ice coupling. On one hand, the descending adiabatic warming in low levels associated with the central Arctic anticyclonic anomaly leads to decreased sea ice by enhancing the downwelling longwave radiation. On the other hand, the anticyclonic anomaly also induces more moisture in low levels. The enhanced moisture and temperature (coupled with each other) further favor the reduction of sea ice by emitting more downwelling longwave radiation. By contrast, associated with the decadal sea ice decline, there is an anticyclonic anomaly over Greenland and a cyclonic anomaly over northern Siberia, and the wind-driven sea ice drift dominates the sea ice decline. The transpolar circulation anomalies between the anticyclonic and cyclonic anomalies promote transport of the ice away from the coasts of Siberia toward the North Pole, and drive the ice out of the Arctic Ocean to the North Atlantic. These circulation anomalies also induce sea ice decline through thermodynamic process, but it is not as significant as that on an interannual time scale.

© 2022 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Xinyu Li, lixinyu@hhu.edu.cn

Abstract

Arctic sea ice in summer shows both interannual and long-term variations, and atmospheric circulation anomalies are known to play an important role. This study compares the summertime large-scale circulation anomalies associated with Arctic sea ice on interannual and decadal time scales. The results indicate that the circulation anomalies associated with decreased sea ice on an interannual time scale are characterized by a barotropic anticyclonic anomaly in the central Arctic, and the thermodynamic process is important for the circulation–sea ice coupling. On one hand, the descending adiabatic warming in low levels associated with the central Arctic anticyclonic anomaly leads to decreased sea ice by enhancing the downwelling longwave radiation. On the other hand, the anticyclonic anomaly also induces more moisture in low levels. The enhanced moisture and temperature (coupled with each other) further favor the reduction of sea ice by emitting more downwelling longwave radiation. By contrast, associated with the decadal sea ice decline, there is an anticyclonic anomaly over Greenland and a cyclonic anomaly over northern Siberia, and the wind-driven sea ice drift dominates the sea ice decline. The transpolar circulation anomalies between the anticyclonic and cyclonic anomalies promote transport of the ice away from the coasts of Siberia toward the North Pole, and drive the ice out of the Arctic Ocean to the North Atlantic. These circulation anomalies also induce sea ice decline through thermodynamic process, but it is not as significant as that on an interannual time scale.

© 2022 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Xinyu Li, lixinyu@hhu.edu.cn

Supplementary Materials

    • Supplemental Materials (PDF 10.6 MB)
Save