Vegetation Greening, Extended Growing Seasons, and Temperature Feedbacks in Warming Temperate Grasslands of China

Xiangjin Shen aNortheast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, China

Search for other papers by Xiangjin Shen in
Current site
Google Scholar
PubMed
Close
,
Binhui Liu bCollege of Forestry, Northeast Forestry University, Harbin, China

Search for other papers by Binhui Liu in
Current site
Google Scholar
PubMed
Close
,
Mark Henderson cPublic Policy Program and Environmental Studies Program, Mills College, Oakland, California

Search for other papers by Mark Henderson in
Current site
Google Scholar
PubMed
Close
,
Lei Wang aNortheast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, China

Search for other papers by Lei Wang in
Current site
Google Scholar
PubMed
Close
,
Ming Jiang aNortheast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, China

Search for other papers by Ming Jiang in
Current site
Google Scholar
PubMed
Close
, and
Xianguo Lu aNortheast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, China

Search for other papers by Xianguo Lu in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Vegetation activity and phenology are significantly affected by climate change, and changes in vegetation activity and phenology can in turn affect regional or global climate patterns. As one of the world’s great biomes, temperate grasslands have undergone remarkable changes in recent decades, but the connections between vegetation activity and phenology changes and regional climate there have remained unclear. Using the observation minus reanalysis (OMR) method, this study investigated the possible effects of vegetation activity and vegetation growing season changes on air temperatures in temperate grasslands of China. The results showed that average NDVI of the temperate grassland significantly increased by 0.011 decade−1 for the growing season during 1982–2015. The growing season started earlier and ended later, resulting in an extension. Increased vegetation activity during spring and autumn significantly warmed spring and autumn air temperatures by reducing albedo. By contrast, summer greening had no significant effect on summer temperature, due to the opposing effects of decreased albedo and enhanced evapotranspiration on temperature. The earlier start and later end of the growing season contributed to warmer spring and autumn air temperatures. As phenological changes had no significant effect on summer temperature, the extended growing season warmed air temperature. Our results suggest that the climate change–induced increasing vegetation activity and extended growing seasons can further aggravate regional warming in temperate grasslands of China, implying that the effects of vegetation activity and phenology changes on regional climate should be considered in climate models for accurately simulating climate change in temperate grasslands.

© 2022 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Publisher's Note: This article was revised on 6 July 2022 to remove the Open Access designation that was mistakenly applied when originally published.

Corresponding author: Xiangjin Shen, shenxiangjin@iga.ac.cn

Abstract

Vegetation activity and phenology are significantly affected by climate change, and changes in vegetation activity and phenology can in turn affect regional or global climate patterns. As one of the world’s great biomes, temperate grasslands have undergone remarkable changes in recent decades, but the connections between vegetation activity and phenology changes and regional climate there have remained unclear. Using the observation minus reanalysis (OMR) method, this study investigated the possible effects of vegetation activity and vegetation growing season changes on air temperatures in temperate grasslands of China. The results showed that average NDVI of the temperate grassland significantly increased by 0.011 decade−1 for the growing season during 1982–2015. The growing season started earlier and ended later, resulting in an extension. Increased vegetation activity during spring and autumn significantly warmed spring and autumn air temperatures by reducing albedo. By contrast, summer greening had no significant effect on summer temperature, due to the opposing effects of decreased albedo and enhanced evapotranspiration on temperature. The earlier start and later end of the growing season contributed to warmer spring and autumn air temperatures. As phenological changes had no significant effect on summer temperature, the extended growing season warmed air temperature. Our results suggest that the climate change–induced increasing vegetation activity and extended growing seasons can further aggravate regional warming in temperate grasslands of China, implying that the effects of vegetation activity and phenology changes on regional climate should be considered in climate models for accurately simulating climate change in temperate grasslands.

© 2022 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Publisher's Note: This article was revised on 6 July 2022 to remove the Open Access designation that was mistakenly applied when originally published.

Corresponding author: Xiangjin Shen, shenxiangjin@iga.ac.cn

Supplementary Materials

    • Supplemental Materials (PDF 2.61 MB)
Save
  • Alkama, R., and A. Cescatti, 2016: Biophysical climate impacts of recent changes in global forest cover. Science, 351, 600604, https://doi.org/10.1126/science.aac8083.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bounoua, L., and Coauthors, 2000: Sensitivity of climate to changes in NDVI. J. Climate, 13, 22772292, https://doi.org/10.1175/1520-0442(2000)013<2277:SOCTCI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cao, Q., J. Wu, D. Yu, and W. Wang, 2019: The biophysical effects of the vegetation restoration program on regional climate metrics in the Loess Plateau, China. Agric. For. Meteor., 268, 169180, https://doi.org/10.1016/j.agrformet.2019.01.022.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Carbutt, C., W. D. Henwood, and L. A. Gilfedder, 2017: Global plight of native temperate grasslands: Going, going, gone? Biodivers. Conserv., 26, 29112932, https://doi.org/10.1007/s10531-017-1398-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chapin, F. S., and Coauthors, 2005: Role of land-surface changes in Arctic summer warming. Science, 310, 657660, https://doi.org/10.1126/science.1117368.

    • Search Google Scholar
    • Export Citation
  • Chen, R., Z. Hu, S. Li, and Q. Guo, 2020: Assessment of normalized difference vegetation index from different data sources in grassland of northern China. J. Geoinfo. Sci., 22, 19101919, https://doi.org/10.12082/dqxxkx.2020.190237.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, T., A. Bao, G. Jiapaer, H. Guo, G. Zheng, L. Jiang, C. Chang, and L. Tuerhanjiang, 2019: Disentangling the relative impacts of climate change and human activities on arid and semiarid grasslands in Central Asia during 1982–2015. Sci. Total Environ., 653, 13111325, https://doi.org/10.1016/j.scitotenv.2018.11.058.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chmielewski, F. M., and T. Rötzer, 2001: Response of tree phenology to climate change across Europe. Agric. For. Meteor., 108, 101112, https://doi.org/10.1016/S0168-1923(01)00233-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chuai, X., X. Huang, W. Wang, and G. Bao, 2013: NDVI, temperature and precipitation changes and their relationships with different vegetation types during 1998–2007 in Inner Mongolia, China. Int. J. Climatol., 33 16961706, https://doi.org/10.1002/joc.3543.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cong, N., and Coauthors, 2012: Spring vegetation green-up in China inferred from SPOT NDVI data: A multiple model analysis. Agric. For. Meteor., 165, 104113, https://doi.org/10.1016/j.agrformet.2012.06.009.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cong, N., T. Wang, H. Nan, Y. Ma, X. Wang, R. B. Myneni, and S. Piao, 2013: Changes in satellite-derived spring vegetation green-up date and its linkage to climate in China from 1982 to 2010: A multimethod analysis. Global Change Biol., 19, 881891, https://doi.org/10.1111/gcb.12077.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fall, S., D. Niyogi, A. Gluhovsky, R. Pielke, E. Kalnaye, and G. Rochonf, 2010: Impacts of land use land cover on temperature trends over the continental United States: Assessment using the North American Regional Reanalysis. Int. J. Climatol., 30, 19801993, https://doi.org/10.1002/joc.1996.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fensholt, R., K. Rasmussen, T. T. Nielsen, and C. Mbow, 2009: Evaluation of Earth observation based long term vegetation trends—Intercomparing NDVI time series trend analysis consistency of Sahel from AVHRR GIMMS, Terra MODIS and SPOT VGT data. Remote Sens. Environ., 113, 18861898, https://doi.org/10.1016/j.rse.2009.04.004.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Forzieri, G., R. Alkama, D. G. Miralles, and A. Cescatti, 2017: Satellites reveal contrasting responses of regional climate to the widespread greening of Earth. Science, 356, 11801184, https://doi.org/10.1126/science.aal1727.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fu, Y. H., S. Piao, M. Op de Beeck, N. Cong, H. Zhao, Y. Zhang, A. Menzel, and I. A. Janssens, 2014: Recent spring phenology shifts in western Central Europe based on multiscale observations. Global Ecol. Biogeogr., 23, 12551263, https://doi.org/10.1111/geb.12210.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fu, Y. H., and Coauthors, 2015: Declining global warming effects on the phenology of spring leaf unfolding. Nature, 526, 104107, https://doi.org/10.1038/nature15402.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Holben, B. N., 1986: Characteristics of maximum-value composite images from temporal AVHRR data. Int. J. Remote Sens., 7, 14171434, https://doi.org/10.1080/01431168608948945.

    • Search Google Scholar
    • Export Citation
  • Hu, Y., W. Dong, and Y. He, 2010: Impact of land surface forcings on mean and extreme temperature in eastern China. J. Geophys. Res., 115, D19117, https://doi.org/10.1029/2009JD013368.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jeong, J. H., and Coauthors, 2012: Greening in the circumpolar high-latitude may amplify warming in the growing season. Climate Dyn., 38, 14211431, https://doi.org/10.1007/s00382-011-1142-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jeong, S. J., C. H. Ho, K. Y. Kim, and J. H. Jeong, 2009: Reduction of spring warming over East Asia associated with vegetation feedback. Geophys. Res. Lett., 36, L18705, https://doi.org/10.1029/2009GL039114.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jin, K., F. Wang, Q. Zong, P. Qin, and C. Liu, 2020: Impact of variations in vegetation on surface air temperature change over the Chinese Loess Plateau. Sci. Total Environ., 716, 136967, https://doi.org/10.1016/j.scitotenv.2020.136967.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kalnay, E., and M. Cai, 2003: Impact of urbanization and land-use change on climate. Nature, 423, 528531, https://doi.org/10.1038/nature01675.

    • Search Google Scholar
    • Export Citation
  • Kalnay, E., M. Cai, H. Li, and J. Tobin, 2006: Estimation of the impact of land-surface forcings on temperature trends in eastern United States. J. Geophys. Res., 111, D06106, https://doi.org/10.1029/2005JD006555.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kanamitsu, M., W. Ebisuzaki, J. Woollen, S. K. Yang, J. J. Hnilo, M. Fiorino, and G. L. Potter, 2002: NCEP–DOE AMIP-II reanalysis (R-2). Bull. Amer. Meteor. Soc., 83, 16311644, https://doi.org/10.1175/BAMS-83-11-1631.

    • Search Google Scholar
    • Export Citation
  • Kendall, M. G., 1975: Rank Correlation Measures. Charles Griffin, 202 pp.

    • Crossref
    • Export Citation
  • Lee, X., and Coauthors, 2011: Observed increase in local cooling effect of deforestation at higher latitudes. Nature, 479, 384387, https://doi.org/10.1038/nature10588.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, Y., and Coauthors, 2013: Urbanization impact on temperature change in China with emphasis on land cover change and human activity. J. Climate, 26, 87658780, https://doi.org/10.1175/JCLI-D-12-00698.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, Y., and Coauthors, 2016: Potential and actual impacts of deforestation and afforestation on land surface temperature. J. Geophys. Res. Atmos., 121, 14 372–14 386, https://doi.org/10.1002/2016JD024969.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, Y., and Coauthors, 2020: Local and teleconnected temperature effects of afforestation and vegetation greening in China. Natl. Sci. Rev., 7, 897912, https://doi.org/10.1093/nsr/nwz132.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liang, S., and Coauthors, 2021: The Global Land Surface Satellite (GLASS) product suite. Bull. Amer. Meteor. Soc., 102, 323337, https://doi.org/10.1175/BAMS-D-18-0341.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liang, X. Z., and Coauthors, 2005: Development of land surface albedo parameterization based on Moderate Resolution Imaging Spectroradiometer (MODIS) data. J. Geophys. Res., 110, D11107, https://doi.org/10.1029/2004JD005579.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lim, Y.-K., M. Cai, E. Kalnay, and L. Zhou, 2005: Observational evidence of sensitivity of surface climate changes to land types and urbanization. Geophys. Res. Lett., 32, L22712, https://doi.org/10.1029/2005GL024267.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lim, Y.-K., and Coauthors, 2008: Impact of vegetation types on surface temperature change. J. Appl. Meteor. Climatol., 47, 411424, https://doi.org/10.1175/2007JAMC1494.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, Q., Y. Fu, Z. Zeng, M. Huang, X. Li, and S. Piao, 2016: Temperature, precipitation, and insolation effects on autumn vegetation phenology in temperate China. Global Change Biol., 22, 644655, https://doi.org/10.1111/gcb.13081.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, T., L. Yu, and S. Zhang, 2019: Impacts of wetland reclamation and paddy field expansion on observed local temperature trends in the Sanjiang Plain of China. J. Geophys. Res. Earth Surface, 124, 414426, https://doi.org/10.1029/2018JF004846.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, X., Z. Tian, A. Zhang, A. Zhao, and H. Liu, 2019: Impacts of climate on spatiotemporal variations in vegetation NDVI from 1982–2015 in Inner Mongolia, China. Sustainability, 11, 768, https://doi.org/10.3390/su11030768.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mann, H. B., 1945: Nonparametric tests against trend. Econometrica, 13, 245259, https://doi.org/10.2307/1907187.

  • Martens, B., and Coauthors, 2017: GLEAM v3: Satellite-based land evaporation and root-zone soil moisture. Geosci. Model. Dev., 10, 1903–1925, https://doi.org/10.5194/gmd-10-1903-2017.

    • Crossref
    • Export Citation
  • Myneni, R. B., C. D. Keeling, C. J. Tucker, G. Asrar, and R. R. Nemani, 1997: Increased plant growth in the northern high latitudes from 1981 to 1991. Nature, 386, 698702, https://doi.org/10.1038/386698a0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nayak, S., and M. Mandal, 2019: Impact of land use and land cover changes on temperature trends over India. Land Use Policy, 89, 104238, https://doi.org/10.1016/j.landusepol.2019.104238.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nemani, R. R., C. D. Keeling, H. Hashimoto, W. M. Jolly, S. C. Piper, C. J. Tucker, R. B. Myneni, and S. W. Running, 2003: Climate-driven increases in global terrestrial net primary production from 1982 to 1999. Science, 300, 15601563, https://doi.org/10.1126/science.1082750.

    • Search Google Scholar
    • Export Citation
  • Pearson, R. G., S. J. Phillips, M. M. Loranty, P. S. A. Beck, T. Damoulas, S. J. Knight, and S. J. Goetz, 2013: Shifts in Arctic vegetation and associated feedbacks under climate change. Nat. Climate Change, 3, 673677, https://doi.org/10.1038/nclimate1858.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Peng, S., and Coauthors, 2014: Afforestation in China cools local land surface temperature. Proc. Natl. Acad. Sci. USA, 111, 29152919, https://doi.org/10.1073/pnas.1315126111.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Peñuelas, J., T. Rutishauser, and I. Filella, 2009: Phenology feedbacks on climate change. Science, 324, 887888, https://doi.org/10.1126/science.1173004.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pettorelli, N., J. O. Vik, A. Mysterud, J.-M. Gaillard, and C. J. Tucker, 2005: Using the satellite-derived NDVI to assess ecological responses to environmental change. Trends Ecol. Evol., 20, 503510, https://doi.org/10.1016/j.tree.2005.05.011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Piao, S., J. Fang, L. Zhou, P. Ciais, and B. Zhu, 2006: Variations in satellite-derived phenology in China’s temperate vegetation. Global Change Biol., 12, 672685, https://doi.org/10.1111/j.1365-2486.2006.01123.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Piao, S., and Coauthors, 2019a: Plant phenology and global climate change: Current progresses and challenges. Global Change Biol., 25, 19221940, https://doi.org/10.1111/gcb.14619.

    • Search Google Scholar
    • Export Citation
  • Piao, S., and Coauthors, 2019b: Characteristics, drivers and feedbacks of global greening. Nat. Rev. Earth Environ., 1, 1427, https://doi.org/10.1038/s43017-019-0001-x.

    • Search Google Scholar
    • Export Citation
  • Pielke, R. A., Sr., and Coauthors, 2002: The influence of land-use change and landscape dynamics on the climate system: Relevance to climate-change policy beyond the radiative effect of greenhouse gases. Philos. Trans. Roy. Soc., 360, 17051719, https://doi.org/10.1098/rsta.2002.1027.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Prijith, S. S. , and Coauthors, 2020: Effects of land use/land cover alterations on regional meteorology over northwest India. Sci. Total Environ., 765, 142678, https://doi.org/10.1016/j.scitotenv.2020.142678.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rathcke, B., and E. P. Lacey, 1985: Phenological patterns of terrestrial plants. Annu. Rev. Ecol. Syst., 16, 179214, https://doi.org/10.1146/annurev.es.16.110185.001143.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Richardson, A. D., T. F. Keenan, M. Migliavacca, Y. Ryu, O. Sonnentag, and M. Toomey, 2013: Climate change, phenology, and phenological control of vegetation feedbacks to the climate system. Agric. For. Meteor., 169, 156173, https://doi.org/10.1016/j.agrformet.2012.09.012.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shen, M., and Coauthors, 2015: Evaporative cooling over the Tibetan Plateau induced by vegetation growth. Proc. Natl. Acad. Sci. USA, 112, 92999304, https://doi.org/10.1073/pnas.1504418112.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shen, X., B. Liu, G. Li, and D. Zhou, 2015: Impacts of grassland types and vegetation cover changes on surface air temperature in the regions of temperate grassland of China. Theor. Appl. Climatol., 126, 141150, https://doi.org/10.1007/s00704-015-1567-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shen, X., B. Liu, and D. Zhou, 2016a: Using GIMMS NDVI time series to estimate the impacts of grassland vegetation cover on surface air temperatures in the temperate grassland region of China. Remote Sens. Lett., 7, 229238, https://doi.org/10.1080/2150704X.2015.1128131.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shen, X., B. Liu, D. Zhou, and X. Lu, 2016b: Effect of grassland vegetation on diurnal temperature range in China’s temperate grassland region. Ecol. Eng., 97, 292296, https://doi.org/10.1016/j.ecoleng.2016.10.014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shen, X., B. Liu, and X. Lu, 2017: Effects of land use/land cover on diurnal temperature range in the temperate grassland region of China. Sci. Total Environ., 575, 12111218, https://doi.org/10.1016/j.scitotenv.2016.09.187.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shen, X., B. Liu, M. Henderson, L. Wang, Z. Wu, H. Wu, M. Jiang, and X. Lu, 2018: Asymmetric effects of daytime and nighttime warming on spring phenology in the temperate grasslands of China. Agric. For. Meteor., 259, 240249, https://doi.org/10.1016/j.agrformet.2018.05.006.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shen, X., B. Liu, M. Jiang, and X. Lu, 2020: Marshland loss warms local land surface temperature in China. Geophys. Res. Lett., 47, e2020GL087648, https://doi.org/10.1029/2020GL087648.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shen, X., and Coauthors, 2021: Aboveground biomass and its spatial distribution pattern of herbaceous marsh vegetation in China. Sci. China Earth Sci., 64, 11151125, https://doi.org/10.1007/s11430-020-9778-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Simmons, A. J., and Coauthors, 2004: Comparison of trends and low-frequency variability in CRU, ERA-40, and NCEP/NCAR analyses of surface air temperature. J. Geophys. Res., 109, D24115, https://doi.org/10.1029/2004JD005306.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sun, R., S. Chen, and H. Su, 2021: Climate dynamics of the spatiotemporal changes of vegetation NDVI in northern China from 1982 to 2015. Remote Sens., 13, 187, https://doi.org/10.3390/rs13020187.

    • Search Google Scholar
    • Export Citation
  • Tucker, C. J., J. E. Pinzon, M. E. Brown, and D. A. Slayback, 2005: An extended AVHRR 8-km NDVI dataset compatible with MODIS and SPOT vegetation NDVI data. Int. J. Remote Sens., 26, 44854498, https://doi.org/10.1080/01431160500168686.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, J., Z. Yan, and J. Feng, 2018: Exaggerated effect of urbanization in the diurnal temperature range via “observation minus reanalysis” and the physical causes. J. Geophys. Res. Atmos., 123, 72237237, https://doi.org/10.1029/2018JD028325.

    • Search Google Scholar
    • Export Citation
  • Wang, Q., D. Riemann, S. Vogt, and R. Glaser, 2014: Impacts of land cover changes on climate trends in Jiangxi province China. Int. J. Biometeor., 58, 645660, https://doi.org/10.1007/s00484-013-0645-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, X., and Coauthors, 2019: No trends in spring and autumn phenology during the global warming hiatus. Nat. Commun., 10, 2389, https://doi.org/10.1038/s41467-019-10235-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Winckler, J., Q. Lejeune, C. H. Reick, and J. Pongratz, 2019: Nonlocal effects dominate the global mean surface temperature response to the biogeophysical effects of deforestation. Geophys. Res. Lett., 46, 745755, https://doi.org/10.1029/2018GL080211.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wolkovich, E. M., and Coauthors, 2012: Warming experiments underpredict plant phenological responses to climate change. Nature, 485, 494497, https://doi.org/10.1038/nature11014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xu, M., X. Z. Liang, A. Samel, and W. Gao, 2014: MODIS consistent vegetation parameter specifications and their impacts on regional climate simulations. J. Climate, 27, 85788596, https://doi.org/10.1175/JCLI-D-14-00082.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xu, X., W. J. Riley, C. D. Koven, G. Jia, and X. Zhang, 2020: Earlier leaf-out warms air in the north. Nat. Climate Change, 10, 370375, https://doi.org/10.1038/s41558-020-0713-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yang, X., and Coauthors, 2010: Observational evidence of the impact of vegetation cover on surface air temperature change in China. Chin. J. Geophys., 53, 261269, https://doi.org/10.1002/cjg2.1493.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yang, X., Y. Hou, and B. Chen, 2011: Observed surface warming induced by urbanization in East China. J. Geophys. Res., 116, D14113, https://doi.org/10.1029/2010JD015452.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yang, Y., H. Guan, M. Shen, W. Liang, and L. Jiang, 2015: Changes in autumn vegetation dormancy onset date and the climate controls across temperate ecosystems in China from 1982 to 2010. Global Change Biol., 21, 652665, https://doi.org/10.1111/gcb.12778.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ying, H., H. Zhang, J. Zhao, Y. Shan, Z. Zhang, X. Guo, R. Wu, and G. Deng, 2020: Effects of spring and summer extreme climate events on the autumn phenology of different vegetation types of Inner Mongolia, China, from 1982 to 2015. Ecol. Indic., 111, 105974, https://doi.org/10.1016/j.ecolind.2019.105974.

    • Search Google Scholar
    • Export Citation
  • Zeng, Z., and Coauthors, 2017: Climate mitigation from vegetation biophysical feedbacks during the past three decades. Nat. Climate Change, 7, 432436, https://doi.org/10.1038/nclimate3299.

    • Search Google Scholar
    • Export Citation
  • Zhang, C., Y. Zhang, Z. Wang, J. Li, and I. Odeh, 2020: Monitoring phenology in the temperate grasslands of China from 1982 to 2015 and its relation to net primary productivity. Sustainability, 12, 12, https://doi.org/10.3390/su12010012.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, M., Y. Liu, J. Zhang, and Q. Wen, 2021: AMOC and climate responses to dust reduction and greening of the Sahara during the mid-Holocene. J. Climate, 34, 48934912, https://doi.org/10.1175/JCLI-D-20-0628.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhou, D., D. Li, G. Sun, L. Zhang, Y. Liu, and L. Hao, 2016: Contrasting effects of urbanization and agriculture on surface temperature in eastern China. J. Geophys. Res. Atmos., 121, 95979606, https://doi.org/10.1002/2016JD025359.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhou, L., and Coauthors, 2004: Evidence for a significant urbanization effect on climate in China. Proc. Natl. Acad. Sci. USA, 101, 95409544, https://doi.org/10.1073/pnas.0400357101.

    • Search Google Scholar
    • Export Citation
  • Zhou, X., X. Geng, G. Yin, H. Hänninen, F. Hao, X. Zhang, and Y. H. Fu, 2020: Legacy effect of spring phenology on vegetation growth in temperate China. Agric. For. Meteor., 281, 107845, https://doi.org/10.1016/j.agrformet.2019.107845.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 1769 838 0
Full Text Views 893 649 109
PDF Downloads 871 611 74