The Spatiotemporal Patterns of the Upper-Tropospheric Water Vapor over the Tibetan Plateau in Summer Based on EOF Analysis

Xiran Xu aDepartment of Atmospheric and Oceanic Sciences and Institute of Atmospheric Sciences, Fudan University, Shanghai, China

Search for other papers by Xiran Xu in
Current site
Google Scholar
PubMed
Close
,
Hongying Tian bKey Laboratory for Semi-Arid Climate Change of the Ministry of Education, College of Atmospheric Sciences, Lanzhou University, Lanzhou, China

Search for other papers by Hongying Tian in
Current site
Google Scholar
PubMed
Close
,
Wenshou Tian bKey Laboratory for Semi-Arid Climate Change of the Ministry of Education, College of Atmospheric Sciences, Lanzhou University, Lanzhou, China

Search for other papers by Wenshou Tian in
Current site
Google Scholar
PubMed
Close
,
Zhe Wang bKey Laboratory for Semi-Arid Climate Change of the Ministry of Education, College of Atmospheric Sciences, Lanzhou University, Lanzhou, China

Search for other papers by Zhe Wang in
Current site
Google Scholar
PubMed
Close
,
Hongwen Liu bKey Laboratory for Semi-Arid Climate Change of the Ministry of Education, College of Atmospheric Sciences, Lanzhou University, Lanzhou, China

Search for other papers by Hongwen Liu in
Current site
Google Scholar
PubMed
Close
,
Kai Qie bKey Laboratory for Semi-Arid Climate Change of the Ministry of Education, College of Atmospheric Sciences, Lanzhou University, Lanzhou, China

Search for other papers by Kai Qie in
Current site
Google Scholar
PubMed
Close
, and
Jiali Luo bKey Laboratory for Semi-Arid Climate Change of the Ministry of Education, College of Atmospheric Sciences, Lanzhou University, Lanzhou, China

Search for other papers by Jiali Luo in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Using empirical orthogonal function (EOF) analysis, we investigate the spatial pattern and temporal variation of the upper-tropospheric water vapor (UTWV) over the Tibetan Plateau (TP) in summer based on the fifth-generation ECMWF atmospheric reanalysis (ERA5). The main factors affecting UTWV in different regions over the TP are also discussed. The results show that the spatial distribution of the UTWV over the TP mainly displays the so-called uniform, east–west dipole, and north–south dipole modes. The three modes show significant periods of 5, 8, and 4 years, respectively. The first mode exhibits a small but significant positive trend over the TP, which can be mainly attributed to the intensification of the South Asian summer monsoon and accounts for 31% of the UTWV variance, followed by the South Asian high and the Indian low with 17% and 16%, respectively. The second mode shows opposite variation of water vapor over the eastern and western TP, mainly resulting from the weakened westerly wind over the eastern TP and the enhanced westerly wind over the western TP, which accounts for 57% of the UTWV variance. The third mode exhibits a positive trend of water vapor over the northern TP, mainly attributed to the ascending motion associated with local anticyclonic circulation over the northeastern TP and the decrease of the static stability over the northern TP, which account for 45% and 11% of the UTWV variance, respectively. The tropopause folds also contribute to the positive trend of water vapor shown in the third mode.

© 2022 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Correspondence author: Hongying Tian, tianhy@lzu.edu.cn

Abstract

Using empirical orthogonal function (EOF) analysis, we investigate the spatial pattern and temporal variation of the upper-tropospheric water vapor (UTWV) over the Tibetan Plateau (TP) in summer based on the fifth-generation ECMWF atmospheric reanalysis (ERA5). The main factors affecting UTWV in different regions over the TP are also discussed. The results show that the spatial distribution of the UTWV over the TP mainly displays the so-called uniform, east–west dipole, and north–south dipole modes. The three modes show significant periods of 5, 8, and 4 years, respectively. The first mode exhibits a small but significant positive trend over the TP, which can be mainly attributed to the intensification of the South Asian summer monsoon and accounts for 31% of the UTWV variance, followed by the South Asian high and the Indian low with 17% and 16%, respectively. The second mode shows opposite variation of water vapor over the eastern and western TP, mainly resulting from the weakened westerly wind over the eastern TP and the enhanced westerly wind over the western TP, which accounts for 57% of the UTWV variance. The third mode exhibits a positive trend of water vapor over the northern TP, mainly attributed to the ascending motion associated with local anticyclonic circulation over the northeastern TP and the decrease of the static stability over the northern TP, which account for 45% and 11% of the UTWV variance, respectively. The tropopause folds also contribute to the positive trend of water vapor shown in the third mode.

© 2022 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Correspondence author: Hongying Tian, tianhy@lzu.edu.cn
Save
  • Anderson, J. G., D. M. Wilmouth, J. B. Smith, and D. S. Sayres, 2012: UV dosage levels in summer: Increased risk of ozone loss from convectively injected water vapor. Science, 337, 835839, https://doi.org/10.1126/science.1222978.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bannister, R. N., A. O’Neill, A. R. Gregory, and K. M. Nissen, 2004: The role of the south-east Asian monsoon and other seasonal features in creating the ‘tape-recorder’ signal in the Unified Model. Quart. J. Roy. Meteor. Soc., 130, 15311554, https://doi.org/10.1256/qj.03.106.

    • Search Google Scholar
    • Export Citation
  • Bian, J., L. L. Pan, L. Paulik, H. Vmel, H. B. Chen, and D. Lu, 2012: In situ water vapor and ozone measurements in Lhasa and Kunming during the Asian summer monsoon. Geophys. Res. Lett., 39, 19808, https://doi.org/10.1029/2012GL052996.

    • Search Google Scholar
    • Export Citation
  • Bothe, O., K. Fraedrich, and X. Zhu, 2010: The large-scale circulations and summer drought and wetness on the Tibetan Plateau. Int. J. Climatol., 30, 844855, https://doi.org/10.1002/joc.1946.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bothe, O., K. Fraedrich, and X. Zhu, 2011: Large-scale circulations and Tibetan Plateau summer drought and wetness in a high-resolution climate model. Int. J. Climatol., 31, 832846, https://doi.org/10.1002/joc.2124.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chang, M., C. H. Ho, M. S. Park, J. Kim, and M. H. Ahn, 2017: Multiday evolution of convective bursts during western North Pacific tropical cyclone development and nondevelopment using geostationary satellite measurements. J. Geophys. Res. Atmos., 122, 16351649, https://doi.org/10.1002/2016JD025535.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, B., X. D. Xu, S. Yang, and Z. Wei, 2012: On the origin and destination of atmospheric moisture and air mass over the Tibetan Plateau. Theor. Appl. Climatol., 110, 423435, https://doi.org/10.1007/s00704-012-0641-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, F., J. Chen, and W. Huang, 2009: A discussion on the westerly-dominated climate model in mid-latitude Asia during the modern interglacial period. Front. Earth Sci., 16, 2332, https://doi.org/10.1016/j.quaint.2012.07.381.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, Y., Y. Li, and T. Zhao, 2015: Cause analysis on eastward movement of Southwest China vortex and its induced heavy rainfall in South China. Adv. Meteor., 2015, 122, https://doi.org/10.1155/2015/481735.

    • Search Google Scholar
    • Export Citation
  • Chung, E. S., B. Soden, B. J. Sohn, and L. Shi, 2014: Upper-tropospheric moistening in response to anthropogenic warming. Proc. Natl. Acad. Sci. USA, 111, 11 636–11 641, https://doi.org/10.1073/pnas.1409659111.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cooper, O. R., and Coauthors, 2005: Direct transport of midlatitude stratospheric ozone into the lower troposphere and marine boundary layer of the tropical Pacific Ocean. J. Geophys. Res., 110, D23310, https://doi.org/10.1029/2005JD005783.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Das, S. S., and K. V. Suneeth, 2020: Seasonal and interannual variations of water vapor in the upper troposphere and lower stratosphere over the Asian summer monsoon region in perspective of the tropopause and ocean–atmosphere interactions. J. Atmos. Sol. Terr. Phys., 201, 105244, https://doi.org/10.1016/j.jastp.2020.105244.

    • Search Google Scholar
    • Export Citation
  • Domeisen, D. I., C. I. Garfinkel, and A. H. Butler, 2019: The teleconnection of El Niño Southern Oscillation to the stratosphere. Rev. Geophys., 57, 547, https://doi.org/10.1029/2018RG000596.

    • Search Google Scholar
    • Export Citation
  • Duan, X., Z. Gu, and Y. Li, 2016: The spatiotemporal patterns of rainfall erosivity in Yunnan Province, southwest China: An analysis of empirical orthogonal functions. Global Planet. Change, 144, 8293, https://doi.org/10.1016/j.gloplacha.2016.07.011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fetzer, E. J., and Coauthors, 2008: Comparison of upper tropospheric water vapor observations from the Microwave Limb Sounder and Atmospheric Infrared Sounder. J. Geophys. Res., 113, 19711976, https://doi.org/10.1029/2008JD010000.

    • Search Google Scholar
    • Export Citation
  • Flohn, H., 1957: Large-scale aspects of the summer monsoon in South and East Asia. J. Meteor. Soc. Japan, 35, 180186, https://doi.org/10.2151/jmsj1923.35A.0_180.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Forster, P. M., and K. P. Shine, 2002: Assessing the climate impact of trends in stratospheric water vapor. Geophys. Res. Lett., 29, 1086, https://doi.org/10.1029/2001GL013909.

  • Fu, R., Y. Hu, J. S. Wright, J. H. Jiang, and L. W. Dong, 2006: Short circuit of water vapor and polluted air to the global stratosphere by convective transport over the Tibetan Plateau. Proc. Natl. Acad. Sci. USA, 103, 56645669, https://doi.org/10.1073/pnas.0601584103.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gao, D., H. Zou, and W. Wang, 1985: Influence of water vapor channels in Brahmaputra on precipitation (in Chinese). Mt. Res., 3, 239249.

    • Search Google Scholar
    • Export Citation
  • Gettelman, A., D. E. Kinnison, T. J. Dunkerton, and G. P. Brasseur, 2004: Impact of monsoon circulations on the upper troposphere and lower stratosphere. J. Geophys. Res., 109, D22101, https://doi.org/10.1029/2004JD004878.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Held, I. M., and B. J. Soden, 2000: Water vapor feedback and global warming. Annu. Rev. Energy Environ., 25, 441475, https://doi.org/10.1146/annurev.energy.25.1.441.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hersbach, H., and D. Dee, 2016: ERA5 reanalysis is in production. ECMWF Newsletter, No. 147, ECMWF, Reading, United Kingdom, 7, http://www.ecmwf.int/sites/default/files/elibrary/2016/16299-newsletter-no147-spring-2016.pdf.

  • Hoffmann, L., G. Günther, D. Li, O. Stein, and J. S. Wright, 2019: From ERA-interim to ERA5: The considerable impact of ECMWF’s next-generation reanalysis on Lagrangian transport simulations. Atmos. Chem. Phys., 19, 30973124, https://doi.org/10.5194/acp-19-3097-2019.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hong, F. L., L. P. Li, P. X. Wang, and X. Luo, 2012: Circulation indices of South Asia high and Indian low in summer and their relation with atmospheric heat source. Plateau Meteor., 31, 12341242, http://www.gyqx.ac.cn/CN/Y2012/V31/I5/1234.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hren, M. T., B. Bookhagen, P. M. Blisniuk, A. L. Booth, and C. P. Chamberlain, 2009: δ18O and δD of streamwaters across the Himalaya and Tibetan Plateau: Implications for moisture sources and paleoelevation reconstructions. Earth Planet. Sci. Lett., 288, 2032, https://doi.org/10.1016/j.epsl.2009.08.041.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • IPCC, 2007: Climate Change 2007: The Physical Science Basis, S. Solomon et al., Eds., Cambridge University Press, 996 pp.

    • Crossref
    • Export Citation
  • Jain, S., and S. C. Kar, 2017: Transport of water vapour over the Tibetan Plateau as inferred from the model simulations. J. Atmos. Sol. Terr. Phys., 161, 6475, https://doi.org/10.1016/j.jastp.2017.06.016.

    • Search Google Scholar
    • Export Citation
  • Jiang, J. H., and Coauthors, 2010: Five year (2004–2009) observations of upper tropospheric water vapor and cloud ice from MLS and comparisons with GEOS-5 analyses. J. Geophys. Res., 115, D15103, https://doi.org/10.1029/2009JD013256.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jiang, J. H., and Coauthors, 2012: Evaluation of cloud and water vapor simulations in CMIP5 climate models using NASA “A-Train” satellite observations. J. Geophys. Res., 117, D14105, https://doi.org/10.1029/2011JD017237.

    • Search Google Scholar
    • Export Citation
  • Jiang, J. H., H. Su, C. X. Zhai, L. T. Wu, K. Minschwaner, A. M. Molod, and A. M. Tompkins, 2015: An assessment of upper troposphere and lower stratosphere water vapor in MERRA, MERRA2, and ECMWF reanalyses using Aura MLS observations. J. Geophys. Res. Atmos., 120, 11 468–11 485, https://doi.org/10.1002/2015JD023752.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Langford, A. O., 1999: Stratosphere–troposphere exchange at the subtropical jet: Contribution to the tropospheric ozone budget at midlatitudes. Geophys. Res. Lett., 26, 24492452, https://doi.org/10.1029/1999GL900556.

    • Search Google Scholar
    • Export Citation
  • Li, Q., and Coauthors, 2005: Convective outflow of South Asian pollution: A global CTM simulation compared with EOS MLS observations. Geophys. Res. Lett., 32, L14826, https://doi.org/10.1029/2005GL022762.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lin, H., Q. You, Y. Zhang, Y. Jiao, and K. Fraedrich, 2016: Impact of large-scale circulation on the water vapour balance of the Tibetan Plateau in summer. Int. J. Climatol., 36, 42134221, https://doi.org/10.1002/joc.4626.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lin, M., and Coauthors, 2012: Transport of Asian ozone pollution into surface air over the western United States in spring. J. Geophys. Res., 117, D00V07, https://doi.org/10.1029/2011JD016961.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Livesey, N. J. , and Coauthors, 2020: Earth Observing System (EOS) Aura Microwave Limb Sounder (MLS) Version 5.0x Level 2 and 3 data quality and description document. JPL D-105336 Rev. A, Jet Propulsion Laboratory, California Institute of Technology, https://acdisc.gesdisc.eosdis.nasa.gov/data/Aura_MLS_Level2/ML2H2O.005/doc/Aura-MLS_DataQuality_v5-0x-revA.pdf.

    • Crossref
    • Export Citation
  • Lu, J., and Coauthors, 2019: Interannual variations in lower stratospheric ozone during the period 1984–2016. J. Geophys. Res. Atmos., 124, 82258241, https://doi.org/10.1029/2019JD030396.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lu, J., F. Xie, C. Sun, J. Luo, Q. Cai, J. Zhang, J. Li, and H. Tian, 2020: Analysis of factors influencing tropical lower stratospheric water vapor during 1980–2017. npj Climate Atmos. Sci., 3, 35, https://doi.org/10.1038/s41612-020-00138-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Luo, J., and Coauthors, 2018: Space-time variability in UTLS chemical distribution in the Asian summer monsoon viewed by limb and nadir satellite sensors. Atmos. Chem. Phys., 18, 12 511–12 530, https://doi.org/10.5194/acp-18-12511-2018.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Luo, J., W. Liang, P. Xu, H. Xue, and H. Tian, 2019: Seasonal features and a case study of tropopause folds over the Tibetan Plateau. Adv. Meteor., 2019, 4375123, https://doi.org/10.1155/2019/4375123.

    • Search Google Scholar
    • Export Citation
  • Manabe, S., and R. Weatherald, 1967: Thermal equilibrium of the atmosphere with a given distribution of atmospheric humidity. J. Atmos. Sci., 24, 241259, https://doi.org/10.1175/1520-0469(1967)024<0241:TEOTAW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mason, R. B., and C. E. Anderson, 1963: The development and decay of the 100 mb summertime anticyclone over southern Asia. Mon. Wea. Rev., 91, 312, https://doi.org/10.1175/1520-0493(1963)091<0003:TDADOT>2.3.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mohanakumar, K., 2008: Stratosphere Troposphere Interactions: An Introduction. Springer, 424 pp., https://doi.org/10.1007/978-1-4020-8217-7.

    • Crossref
    • Export Citation
  • Möller, F., 1963: On the influence of changes in the CO2 concentration in air on the climate. J. Geophys. Res., 68, 38773886, https://doi.org/10.1029/JZ068i013p03877.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nomokonova, T., K. Ebell, U. Löhnert, M. Maturilli, and C. Ritter, 2020: The influence of water vapor anomalies on clouds and their radiative effect at Ny-Ålesund. Atmos. Chem. Phys., 20, 51575173, https://doi.org/10.5194/acp-20-5157-2020.

    • Search Google Scholar
    • Export Citation
  • North, G. R., T. L. Bell, R. F. Cahalan, and F. J. Moeng, 1982: Sampling errors in the estimation of empirical orthogonal functions. Mon. Wea. Rev., 110, 699706, https://doi.org/10.1175/1520-0493(1982)110<0699:SEITEO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Obled, C., and J. D. Creutin, 1987: Some developments in the use of empirical orthogonal functions for mapping meteorological fields. J. Climate Appl. Meteor., 25, 11891204, https://doi.org/10.1175/1520-0450(1986)025<1189:SDITUO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Park, M., W. J. Randel, A. Gettelman, S. T. Massie, and J. H. Jiang, 2007: Transport above the Asian summer monsoon anticyclone inferred from Aura Microwave Limb Sounder tracers. J. Geophys. Res., 112, D16309, https://doi.org/10.1029/2006JD008294.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Park, M., W. J. Randel, L. K. Emmons, and N. J. Livesey, 2009: Transport pathways of carbon monoxide in the Asian summer monsoon diagnosed from Model of Ozone and Related Tracers (MOZART). J. Geophys. Res., 114, D08303, https://doi.org/10.1029/2008JD010621.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Qie, K., X. Qie, and W. Tian, 2020: Increasing trend of lightning activity in the South Asia region. Sci. Bull., 66, 7884, https://doi.org/10.1016/j.scib.2020.08.033.

    • Search Google Scholar
    • Export Citation
  • Ramanathan, V., and W. Collins, 1991: Thermodynamic regulation of ocean warming by cirrus clouds deduced from observations of the 1987 El Niño. Nature, 351, 2732, https://doi.org/10.1038/351027a0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Randel, W. J., and M. Park, 2006: Deep convective influence on the Asian summer monsoon anticyclone and associated tracer variability observed with Atmospheric Infrared Sounder (AIRS). J. Geophys. Res., 111, D12314, https://doi.org/10.1029/2005JD006490.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Randel, W. J., W. Fei, J. M. Russell III, A. Roche, and J. W. Waters, 1998: Seasonal cycles and QBO variations in stratospheric CH4 and H2O observed in UARS HALOE data. J. Atmos. Sci., 55, 163185, https://doi.org/10.1175/1520-0469(1998)055<0163:SCAQVI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Randel, W. J., W. Fei, A. Gettelman, J. M. Russell, J. M. Zawodny, and S. J. Oltmans, 2001: Seasonal variation of water vapor in the lower stratosphere observed in Halogen Occultation Experiment data. J. Geophys. Res., 106, 14 313–14 325, https://doi.org/10.1029/2001JD900048.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rosenfield, J. E., D. B. Considine, M. R. Schoeberl, and E. D. Browell, 1998: The impact of subvisible cirrus clouds near the tropical tropopause on stratospheric water vapor. Geophys. Res. Lett., 25, 18831886, https://doi.org/10.1029/98GL01294.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rosenlof, K. H., 2003: How water enters the stratosphere. Science, 302, 16911692, https://doi.org/10.1126/science.1092703.

  • Sauquet, E., I. Krasovskaia, and E. Leblois, 2000: Mapping mean monthly runoff patterns using EOF analysis. Hydrol. Earth Syst. Sci., 4, 7993, https://doi.org/10.5194/hess-4-79-2000.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schneider, T., P. A. O’Gorman, and X. J. Levine, 2010: Water vapor and the dynamics of climate change. Rev. Geophys., 48, RG3001, https://doi.org/10.1029/2009RG000302.

    • Search Google Scholar
    • Export Citation
  • Shangguan, M., K. Matthes, W. Wang, and T. K. Wee, 2016: Validation of COSMIC water vapor data in the upper troposphere and lower stratosphere using MLS, MERRA and ERA-Interim. Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2016-248.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shine, K. P., and A. Sinha, 1991: Sensitivity of the Earth’s climate to height dependent changes in the water vapor mixing ratio. Nature, 354, 382384, https://doi.org/10.1038/354382a0.

    • Search Google Scholar
    • Export Citation
  • Simmonds, I., D. Bi, and P. Hope, 1999: Atmospheric water vapor flux and its association with rainfall in China in summer. J. Climate, 12, 13531367, https://doi.org/10.1175/1520-0442(1999)012<1353:AWVFAI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Sinha, A., and J. E. Harries, 1995: Water vapor and greenhouse trapping: The role of far infrared absorption. Geophys. Res. Lett., 22, 21472150, https://doi.org/10.1029/95GL01891.

    • Search Google Scholar
    • Export Citation
  • Škerlak, B., M. Sprenger, and H. Wernli, 2014: A global climatology of stratosphere–troposphere exchange using the ERA-Interim data set from 1979 to 2011. Atmos. Chem. Phys., 14, 913937, https://doi.org/10.5194/acp-14-913-2014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Škerlak, B., M. Sprenger, S. Pfahl, E. Tyrlis, and H. Wernli, 2015: Tropopause folds in ERA-Interim: Global climatology and relation to extreme weather events. J. Geophys. Res. Atmos., 120, 48604877, https://doi.org/10.1002/2014JD022787.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Soden, B., D. L. Jackson, V. Ramaswamy, M. D. Schwarzkopf, and X. Huang, 2005: The radiative signature of upper tropospheric moistening. Science, 310, 841844, https://doi.org/10.1126/science.1115602.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Solomon, S., K. H. Rosenlof, R. W. Portmann, J. S. Daniel, S. M. Davis, T. J. Sanford, and G. K. Plattner, 2010: Contributions of stratospheric water vapor to decadal changes in the rate of global warming. Science, 327, 12191223, https://doi.org/10.1126/science.1182488.

    • Search Google Scholar
    • Export Citation
  • Song, W., G. Li, and Q. Tan, 2012: Numerical simulation of the effect of heating and water vapor on two cases of plateau vortex Chinese (in Chinese). Chin.J. Atmos. Sci., 36, 117129, https://doi.org/10.3878/j.issn.1006-9895.2012.01.10.

    • Search Google Scholar
    • Export Citation
  • Sprenger, M., Maspoli M. C., and Wernli H., 2003: Tropopause folds and cross-tropopause exchange: A global investigation based upon ECMWF analyses for the time period March 2000 to February 2001. J. Geophys. Res., 108, 8518, https://doi.org/10.1029/2002JD002587.

  • Stohl, A., and Coauthors, 2003: Stratosphere–troposphere exchange: A review, and what we have learned from STACCATO. J. Geophys. Res., 108, 469–474, https://doi.org/10.1029/2002JD002490.

    • Crossref
    • Export Citation
  • Su, H., D. E. Waliser, J. H. Jiang, J. Li, W. G. Read, J. W. Waters, and A. M. Tompkins, 2006: Relationships of upper tropospheric water vapor, clouds and SST: MLS observations, ECMWF analyses and GCM simulations. Geophys. Res. Lett., 33, L22802, https://doi.org/10.1029/2006GL027582.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sun, Y., Q. Chen, K. Gui, F. Dong, X. Feng, and Q. Long, 2017: Characteristics of water vapor in the UTLS over the Tibetan Plateau based on AURA/MLS observations. Adv. Meteor., 2017, 3504254, https://doi.org/10.1155/2017/3504254.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tan, J., H. Yang, S. Sun, and P. Wang, 2005: Characteristics of the longitudinal oscillation of South Asia high during summer (in Chinese). Trans. Atmos. Sci., 28, 452460, http://dqkxxb.cnjournals.org/dqkxxb/article/abstract/20050403.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tang, N., R. Ren, G. Wu, and Y. Yu, 2020: Interannual variations of the upper tropospheric water vapor and its transport into the stratosphere over the Tibetan (in Chinese). Chin. J. Atmos. Sci., 44, 239256, https://doi.org/10.3878/j.issn.1006-9895.1905.18267.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tian, E. W., H. Su, B. Tian, and J. H. Jiang, 2019: Interannual variations of water vapor in the tropical upper troposphere and the lower and middle stratosphere and their connections to ENSO and QBO. Atmos. Chem. Phys., 19, 99139926, https://doi.org/10.5194/acp-19-9913-2019.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tian, W., H. Tian, S. Dhomse, and W. Feng, 2011: A study of upper troposphere and lower stratosphere water vapor above the Tibetan Plateau using AIRS and MLS data. Atmos. Sci. Lett., 12, 233239, https://doi.org/10.1002/asl.319.

    • Search Google Scholar
    • Export Citation
  • Trenberth, K., E., 2007: Warmer oceans, stronger hurricanes. Sci. Amer.297, 44–51, https://doi.org/10.1038/scientificamerican0707-44.

  • Tyrlis, E., B. Škerlak, M. Sprenger, H. Wernli, G. Zittis, and J. Lelieveld, 2014: On the linkage between the Asian summer monsoon and tropopause fold activity over the eastern Mediterranean and the Middle East. J. Geophys. Res. Atmos., 119, 32023221, https://doi.org/10.1002/2013JD021113.

    • Search Google Scholar
    • Export Citation
  • Wang, K., H. Jiang, and H. Y. Zhao, 2005: Atmospheric water vapor transport from westerly and monsoon over the Northwest China (in Chinese). Adv. Water Resour., 16, 432438, http://skxjz.nhri.cn/article/id/975.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, P. X., C. Lu, Z. Y. Guan, S. F. Li, J. X. Yao, and L. Yan, 2007: Definition and calculation of three circulation indices for closed pressure systems. J. Nanjing Inst. Meteor., 30, 730735, http://dqkxxb.cnjournals.org/dqkxxb/article/abstract/20070602?st=search.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, X., Y. Gong, and S. Cen, 2009: Characteristics of the moist pool and its moisture transports over Qinghai-Xizang Plateau in summer half year (in Chinese). Acta Geogr. Sin., 64, 601608, https://doi.org/10.11821/xb200905009.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Webster, P. J., and S. Yang, 1992: Monsoon and ENSO: Selectively interactive systems. Quart. J. Roy. Meteor. Soc., 118, 877926, https://doi.org/10.1002/qj.49711850705.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wei, W., R. Zhang, M. Wen, X. Rong, and T. Li, 2014: Impact of Indian summer monsoon on the South Asian high and its influence on summer rainfall over China. Climate Dyn., 43, 12571269, https://doi.org/10.1007/s00382-013-1938-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, G., and Y. Zhang, 1998: Tibetan Plateau forcing and the timing of the monsoon onset over South Asia and South China Sea. Mon. Wea. Rev., 126, 913927, https://doi.org/10.1175/1520-0493(1998)126<0913:TPFATT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, G., and Coauthors, 2007: The influence of mechanical and thermal forcing by the Tibetan Plateau on Asian climate. J. Hydrometeor., 8, 205208, https://doi.org/10.1175/JHM609.1.

    • Search Google Scholar
    • Export Citation
  • Wu, G., Y. Liu, B. Dong, X. Liang, A. Duan, Q. Bao, and J. Yu, 2012: Revisiting Asian monsoon formation and change associated with Tibetan Plateau forcing: I. Formation. Climate Dyn., 39, 11831195, https://doi.org/10.1007/s00382-012-1334-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, Y., G. Chen, L. Taylor, and P. Zhang, 2017: On the linkage between the Asian summer monsoon and tropopause folds. J. Geophys. Res. Atmos., 123, 20372049, https://doi.org/10.1002/2017JD027870.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xu, X., and Q. Miao, 1998: Characteristics of the Yangtze River flood and strong signal source waveform. East Asian Monsoon and Chinese Rainstorm, China Meteorological Press, 524 pp.

    • Crossref
    • Export Citation
  • Xu, X., and L. Chen, 2006: Advances of the study on Tibetan Plateau experiment of atmospheric sciences (in Chinese). J. Appl. Meteor. Sci., 17, 756772, https://doi.org/CNKI:SUN:YYQX.0.2006-06-012.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xu, X., S. Tao, and J. Wang, 2002: Qinghai Tibet Plateau monsoon moisture transport “big triangle fan” influence domain characteristics and Chinese regional drought flood anomalies relationship (in Chinese). Acta Meteor. Sin., 60, 258264.

    • Search Google Scholar
    • Export Citation
  • Xu, X., X. Shi, Y. Wang, S. Q. Peng, and X. Shi, 2008a: Data analysis and numerical simulation of moisture source and transport associated with summer precipitation in the Yangtze River Valley over China. Meteor. Atmos. Phys., 100, 217231, https://doi.org/10.1007/s00703-008-0305-8.

    • Search Google Scholar
    • Export Citation
  • Xu, X., C. Lu, X. Shi, and S. Gao, 2008b: World water tower: An atmospheric perspective. Geophys. Res. Lett., 35, L20815, https://doi.org/10.1029/2008GL035867.

    • Search Google Scholar
    • Export Citation
  • Xu, X., H. Tian, K. Qie, X. He, and R. Zhang, 2021: A study on the trend of the upper tropospheric water vapor over the Tibetan Plateau in summer. Asia-Pac. J. Atmos. Sci., 57, 277288, https://doi.org/10.1007/s13143-020-00191-5.

    • Search Google Scholar
    • Export Citation
  • Yan, R. C., J. C. Bian, and Q. J. Fan, 2011: The impact of the South Asia high bimodality on the chemical composition of the upper troposphere and lower stratosphere. Atmos. Ocean. Sci. Lett., 4, 229234, https://doi.org/10.1080/16742834.2011.11446934.

    • Search Google Scholar
    • Export Citation
  • Yao, T., and Coauthors, 2013: A review of climatic controls on δ18O in precipitation over the Tibetan Plateau: Observations and simulations. Rev. Geophys., 51, 525548, https://doi.org/10.1002/rog.20023.

    • Search Google Scholar
    • Export Citation
  • Ye, D., and G. Wu, 1998: The role of the heat source of the Tibetan Plateau in the general circulation. Meteor. Atmos. Phys., 67, 181198, https://doi.org/10.1007/BF01277509.

    • Search Google Scholar
    • Export Citation
  • Zhan, R., and J. Li, 2008: Validation and characteristics of upper tropospheric water vapor over the Tibetan Plateau from AIRS satellite retrieval (in Chinese). Chin. J. Atmos. Sci., 32, 242260, https://doi.org/10.3878/j.issn.1006-9895.2008.02.05.

    • Search Google Scholar
    • Export Citation
  • Zhang, H., W. Li, W. Li, and W. Li, 2019: Influence of late springtime surface sensible heat flux anomalies over the Tibetan and Iranian Plateaus on the location of the South Asian high in early summer. Adv. Atmos. Sci., 36, 93103, https://doi.org/10.1007/s00376-018-7296-2.

    • Search Google Scholar
    • Export Citation
  • Zhang, J., and Coauthors, 2018: Stratospheric ozone loss over the Eurasian continent induced by the polar vortex shift. Nat. Commun., 9, 206, https://doi.org/10.1038/s41467-017-02565-2.

    • Search Google Scholar
    • Export Citation
  • Zhang, M., W. S. Tian, L. Chen, and D. R. L¨u, 2010: Cross-tropopause mass exchange associated with a tropopause fold event over the northeastern Tibetan Plateau. Adv. Atmos. Sci., 27, 13441360, https://doi.org/10.1007/s00376-010-9129-9.

    • Search Google Scholar
    • Export Citation
  • Zhao, Y., X. Xu, B. Chen, and Y. Wang, 2016: The upstream “strong signals” of the water vapor transport over the Tibetan Plateau during a heavy rainfall event in the Yangtze River Basin. Adv. Atmos. Sci., 33, 13431350, https://doi.org/10.1007/s00376-016-6118-7.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 502 146 0
Full Text Views 281 143 12
PDF Downloads 335 157 6