Precipitation Characteristics of Cyclonic Disturbances over the South Asia Region as Revealed by TRMM and GPM

Partha Roy aNational Atmospheric Research Laboratory, Gadanki, India

Search for other papers by Partha Roy in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0002-2980-2934
and
T. Narayana Rao aNational Atmospheric Research Laboratory, Gadanki, India

Search for other papers by T. Narayana Rao in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The relative contributions of cyclonic disturbances (CDs; i.e., low pressure systems, depressions, and cyclonic storms) and non-CDs to annual and seasonal rainfall are studied using 22 years of TRMM and GPM measurements during the passage of 866 CDs in the South Asia region (SAR). The changes in stratiform and convective precipitation within the cyclonic storm and in different CDs are also examined. The rainfall in the wettest regions of the SAR, the west coasts of India and Myanmar, and the slopes of the Himalayas is of non-CD origin, while CD rainfall peaks in the eastern parts of the monsoon trough and the northern Bay of Bengal (BOB). The CD rain fraction (RF) of annual and seasonal rainfall exhibits large spatial variation in the range of 4%–55%. The land–ocean dichotomy exhibited by CD RF is not uniform across India. Large CD RF is confined to the coast in some regions due to topographical barriers, but extends to 800–1000 km inland from the coast in the monsoon trough region. Low pressure systems contribute more to annual rain than depressions and cyclonic storms in the monsoon trough and the northern BOB (∼40%), particularly during the monsoon, mainly due to their frequent occurrence. The stratiform RF and occurrence are higher in CDs than in non-CDs, with the greatest contribution in central India (>80%), whereas the non-CDs are characterized by having higher convective RFs. The stratiform rain occurrence increases with intensification of CDs over both land and ocean, indicating its importance in the intensification of CDs and organizing large-scale systems.

© 2022 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Rao’s ORCID: 0000-0002-2980-2934.

Corresponding author: T. Narayana Rao, tnrao@narl.gov.in; drtnrao2001@gmail.com

Abstract

The relative contributions of cyclonic disturbances (CDs; i.e., low pressure systems, depressions, and cyclonic storms) and non-CDs to annual and seasonal rainfall are studied using 22 years of TRMM and GPM measurements during the passage of 866 CDs in the South Asia region (SAR). The changes in stratiform and convective precipitation within the cyclonic storm and in different CDs are also examined. The rainfall in the wettest regions of the SAR, the west coasts of India and Myanmar, and the slopes of the Himalayas is of non-CD origin, while CD rainfall peaks in the eastern parts of the monsoon trough and the northern Bay of Bengal (BOB). The CD rain fraction (RF) of annual and seasonal rainfall exhibits large spatial variation in the range of 4%–55%. The land–ocean dichotomy exhibited by CD RF is not uniform across India. Large CD RF is confined to the coast in some regions due to topographical barriers, but extends to 800–1000 km inland from the coast in the monsoon trough region. Low pressure systems contribute more to annual rain than depressions and cyclonic storms in the monsoon trough and the northern BOB (∼40%), particularly during the monsoon, mainly due to their frequent occurrence. The stratiform RF and occurrence are higher in CDs than in non-CDs, with the greatest contribution in central India (>80%), whereas the non-CDs are characterized by having higher convective RFs. The stratiform rain occurrence increases with intensification of CDs over both land and ocean, indicating its importance in the intensification of CDs and organizing large-scale systems.

© 2022 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Rao’s ORCID: 0000-0002-2980-2934.

Corresponding author: T. Narayana Rao, tnrao@narl.gov.in; drtnrao2001@gmail.com

Supplementary Materials

    • Supplemental Materials (PDF 331 KB)
Save
  • Alvey, G. R., III, J. Zawislak, and E. Zipser, 2015: Precipitation properties observed during tropical cyclone intensity change. Mon. Wea. Rev., 143, 44764492, https://doi.org/10.1175/MWR-D-15-0065.1.

    • Search Google Scholar
    • Export Citation
  • Awaka, J., T. Iguchi, and K. Okamoto, 2009: TRMM PR standard algorithm 2A23 and its performance on bright band detection. J. Meteor. Soc. Japan, 87A, 3152, https://doi.org/10.2151/jmsj.87A.31.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Balachandran, S., B. Geetha, K. Ramesh, and N. Selvam, 2014: TCRAIN—A database for tropical cyclone rainfall products for North Indian Ocean. Trop. Cyclone Res. Rev., 3, 122129.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bhatia, K. T., G. A. Vecchi, T. R. Knutson, H. Murakami, J. Kossin, K. W. Dixon, and C. E. Whitlock, 2019. Recent increases in tropical cyclone intensification rates. Nat. Commun., 10, 635, https://doi.org/10.1038/s41467-019-08471-z.

    • Crossref
    • Export Citation
  • Cecil, D. J., E. J. Zipser, and S. W. Nesbitt, 2002: Reflectivity, ice scattering, and lightning characteristics of hurricane eyewalls and rainbands. Part I: Quantitative description. Mon. Wea. Rev., 130, 769784, https://doi.org/10.1175/1520-0493(2002)130<0769:RISALC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chattopadhyay, R., B. N. Goswami, A. K. Sahai, and K. Fraedrich, 2009: Role of stratiform rainfall in modifying the northward propagation of monsoon intraseasonal oscillation. J. Geophys. Res., 114, D19114, https://doi.org/10.1029/2009JD011869.

    • Search Google Scholar
    • Export Citation
  • Chavas, D. R., and K. A. Emanuel, 2010: A QuikSCAT climatology of tropical cyclone size. Geophys. Res. Lett., 37, L18816, https://doi.org/10.1029/2010GL044558.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, F. J., and Y. F. Fu, 2015: Contribution of tropical cyclone rainfall at categories to total precipitation over the western North Pacific from 1998 to 2007. Sci. China Earth Sci., 58, 20152025, https://doi.org/10.1007/s11430-015-5103-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cry, G. W., 1967: Effects of Tropical Cyclone Rainfall on the Distribution of Precipitation over the Eastern and Southern United States. Vol. 1. U.S. Department of Environmental Science Services Administration, 67 pp.

  • Dare, R. A., N. E. Davidson, and J. L. Mcbride, 2012: Tropical cyclone contribution to rainfall over Australia. Mon. Wea. Rev., 140, 36063619, https://doi.org/10.1175/MWR-D-11-00340.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Deshpande, M., V. K. Singh, M. K. Ganadhi, M. K. Roxy, R. Emmanuel, and U. Kumar, 2021: Changing status of tropical cyclones over the north Indian Ocean. Climate Dyn., 57, 35453567, https://doi.org/10.1007/s00382-021-05880-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dhar, O. N., and B. K. Bhattacharya, 1973: Contribution of tropical disturbances to the water resources of Ganga basin. Vayu Mandal, 3, 7679.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dhar, O. N., P. R. Rakhecha, and B. N. Mandal, 1981: Influence of tropical disturbances on monthly monsoon rainfall of India. Mon. Wea. Rev., 109, 188190, https://doi.org/10.1175/1520-0493(1981)109<0188:IOTDOM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Englehart, P. J., and A. V. Douglas, 2001: The role of eastern North Pacific tropical storms in the rainfall climatology of western Mexico. Int. J. Climatol., 21, 13571370, https://doi.org/10.1002/joc.637.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Frank, N. L., and S. A. Husain, 1971: Deadliest tropical cyclone in history. Bull. Amer. Meteor. Soc., 52, 438444, https://doi.org/10.1175/1520-0477(1971)052<0438:TDTCIH>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fritz, C., Z. Wang, S. W. Nesbitt, and T. J. Dunkerton, 2016: Vertical structure and contribution of different types of precipitation during Atlantic tropical cyclone formation as revealed by TRMM PR. Geophys. Res. Lett., 43, 894901, https://doi.org/10.1002/2015GL067122.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Funk, A., C. Schumacher, and J. Awaka, 2013: Analysis of rain classifications over the tropics by version 7 of the TRMM PR 2A23 algorithm. J. Meteor. Soc. Japan, 91, 257272, https://doi.org/10.2151/jmsj.2013-302.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Guimond, S. R., G. M. Heymsfield, and F. J. Turk, 2010: Multiscale observations of Hurricane Dennis (2005): The effects of hot towers on rapid intensification. J. Atmos. Sci., 67, 633654, https://doi.org/10.1175/2009JAS3119.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hence, D. A., and R. A. Houze, 2011: Vertical structure of hurricane eyewalls as seen by the TRMM Precipitation Radar. J. Atmos. Sci., 68, 16371652, https://doi.org/10.1175/2011JAS3578.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hence, D. A., and R. A. Houze, 2012: Vertical structure of tropical cyclone rainbands as seen by the TRMM Precipitation Radar. J. Atmos. Sci., 69, 26442661, https://doi.org/10.1175/JAS-D-11-0323.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hendricks, E. A., M. T. Montgomery, and C. A. Davis, 2004: The role of “vortical” hot towers in the formation of Tropical Cyclone Diana (1984). J. Atmos. Sci., 61, 12091232, https://doi.org/10.1175/1520-0469(2004)061<1209:TROVHT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hersbach, H., and Coauthors, 2020: The ERA5 global reanalysis. Quart. J. Roy. Meteor. Soc., 146, 1999–2049, https://doi.org/10.1002/qj.3803.

    • Crossref
    • Export Citation
  • Hou, A. Y., and Coauthors, 2014: The Global Precipitation Measurement Mission. Bull. Amer. Meteor. Soc., 95, 701722, https://doi.org/10.1175/BAMS-D-13-00164.1.

    • Search Google Scholar
    • Export Citation
  • Houze, R. A., Jr., 2004: Mesoscale convective systems. Rev. Geophys., 42, RG4003, https://doi.org/10.1029/2004RG000150.

  • Houze, R. A., Jr, D. C. Wilton, and B. F. Smull, 2007: Monsoon convection in the Himalayan region as seen by the TRMM Precipitation Radar. Quart. J. Roy. Meteor. Soc., 133, 13891411, https://doi.org/10.1002/qj.106.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huffman, G. J., and Coauthors, 2007: The TRMM Multisatellite Precipitation Analysis (TMPA): Quasi-global, multiyear, combined-sensor precipitation estimates at fine scales. J. Hydrometeor., 8, 3855, https://doi.org/10.1175/JHM560.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huffman, G. J., and Coauthors, 2018: NASA Global Precipitation Measurement (GPM) Integrated Multi-satellitE Retrievals for GPM (IMERG). Algorithm Theoretical Basis Doc., 34 pp., https://gpm.nasa.gov/sites/default/files/document_files/IMERG_ATBD_V06.pdf.

    • Crossref
    • Export Citation
  • Hunt, K. M. R., and J. K. Fletcher, 2019: The relationship between Indian monsoon rainfall and low-pressure systems. Climate Dyn., 53, 18591871, https://doi.org/10.1007/s00382-019-04744-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hunt, K. M. R., A. G. Turner, and D. E. Parker, 2016: The spatiotemporal structure of precipitation in Indian monsoon depressions. Quart. J. Roy. Meteor. Soc., 142, 31953210, https://doi.org/10.1002/qj.2901.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hurley, J. V., and W. R. Boos, 2015: A global climatology of monsoon low pressure systems. Quart. J. Roy. Meteor. Soc., 141, 10491064, https://doi.org/10.1002/qj.2447.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Iguchi, T., T. Kozu, R. Meneghini, J. Awaka, and K. Okamoto, 2000: Rain-profiling algorithm for the TRMM Precipitation Radar. J. Appl. Meteor., 39, 20382052, https://doi.org/10.1175/1520-0450(2001)040<2038:RPAFTT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Iguchi, T., T. Kozu, J. Kwiatkowski, R. Meneghini, J. Awaka, and K. Okamoto, 2009: Uncertainties in the rain profiling algorithm for the TRMM Precipitation Radar. J. Meteor. Soc. Japan, 87A, 130, https://doi.org/10.2151/jmsj.87A.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jiang, H., 2012: The relationship between tropical cyclone intensity change and the strength of inner core convection. Mon. Wea. Rev., 140, 11641176, https://doi.org/10.1175/MWR-D-11-00134.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jiang, H., and E. J. Zipser, 2010: Contribution of tropical cyclones to the global precipitation from eight seasons of TRMM data: Regional, seasonal, and interannual variations. J. Climate, 23, 15261543, https://doi.org/10.1175/2009JCLI3303.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jiang, H., E. M. Ramirez, and D. J. Cecil, 2013: Convective and rainfall properties of tropical cyclone inner cores and rainbands from 11 years of TRMM data. Mon. Wea. Rev., 141, 431450, https://doi.org/10.1175/MWR-D-11-00360.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kelley, O. A., J. Stout, and J. B. Halverson, 2004: Tall precipitation cells in tropical cyclone eyewalls are associated with tropical cyclone intensification. Geophys. Res. Lett., 31, L24112, https://doi.org/10.1029/2004GL021616.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Khouakhi, A., G. Villarani, and G. Vecchi, 2017: Contribution of tropical cyclones to rainfall at the global scale. J. Climate, 30, 359372, https://doi.org/10.1175/JCLI-D-16-0298.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Krishnamurthy, V., and R. S. Ajayamohan, 2010: Composite structure of monsoon low pressure systems and its relation to Indian rainfall. J. Climate, 23, 42854305, https://doi.org/10.1175/2010JCLI2953.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kummerow, C., W. Barnes, T. Kozu, J. Shiue, and J. Simpson, 1998: The Tropical Rainfall Measuring Mission (TRMM) sensor package. J. Atmos. Oceanic Technol., 15, 809817, https://doi.org/10.1175/1520-0426(1998)015<0809:TTRMMT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lee, M. H., C. H. Ho, and J. H. Kim, 2010: Influence of tropical cyclone landfalls on spatiotemporal variations in typhoon season rainfall over South China. Adv. Atmos. Sci., 27, 443454, https://doi.org/10.1007/s00376-009-9106-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Montgomery, M. T., M. E. Nicholls, T. A. Cram, and A. B. Saunders, 2006: A vortical hot tower route to tropical cyclogenesis. J. Atmos. Sci., 63, 355386, https://doi.org/10.1175/JAS3604.1.

    • Search Google Scholar
    • Export Citation
  • Mooley, D. A., 1973: Some aspects of Indian monsoon depressions and the associated rainfall. Mon. Wea. Rev., 101, 271280, https://doi.org/10.1175/1520-0493(1973)101<0271:SAOIMD>2.3.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mooley, D. A., and J. Shukla, 1989: Main features of the westward-moving low pressure systems which form over the Indian region during the summer monsoon season and their relation to the monsoon rainfall. Mausam, 40, 137152.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Needham, H. F., B. D. Keim, and D. Sathiaraj, 2015: A review of tropical cyclone-generated storm surges: Global data sources, observations, and impacts. Rev. Geophys., 53, 545591.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Neumann, C. J., 1993: Global overview. Global Guide to Tropical Cyclone Forecasting, WMO, 142.

    • Crossref
    • Export Citation
  • Prat, O. P., and B. R. Nelson, 2013: Mapping the world’s tropical cyclone rainfall contribution over land using the TRMM Multi-Satellite Precipitation Analysis. Water Resour. Res., 49, 72367254, https://doi.org/10.1002/wrcr.20527.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Praveen, V., S. Sandeep, and R. S. Ajayamohan, 2015: On the relationship between mean monsoon precipitation and low pressure systems in climate model simulations. J. Climate, 28, 53055324, https://doi.org/10.1175/JCLI-D-14-00415.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Raghavan, S., and S. Rajesh, 2003: Trends in tropical cyclone impact: A study in Andhra Pradesh, India. Bull. Amer. Meteor. Soc., 84, 635644, https://doi.org/10.1175/BAMS-84-5-635.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rajeevan, M., S. Gadgil, and J. Bhate, 2010: Active and break spells of the Indian summer monsoon. J. Earth Syst. Sci., 119, 229247, https://doi.org/10.1007/s12040-010-0019-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rao, B. R. S., D. V. B. Rao, and V. B. Rao, 2004: Decreasing trend in the strength of tropical easterly jet during the Asian summer monsoon season and the number of tropical cyclonic systems over Bay of Bengal. Geophys. Res. Lett., 31, L14103, https://doi.org/10.1029/2004GL019817.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rao, T. N., K. Saikranthi, B. Radhakrishna, and S. V. B. Rao, 2016: Differences in the climatological characteristics of precipitation between active and break spells of the Indian summer monsoon. J. Climate, 29, 77977814, https://doi.org/10.1175/JCLI-D-16-0028.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rappaport, E. N., 2000: Loss of life in the United States associated with recent Atlantic tropical cyclones. Bull. Amer. Meteor. Soc., 81, 20652073, https://doi.org/10.1175/1520-0477(2000)081<2065:LOLITU>2.3.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ren, F., G. Wu, W. Dong, X. Wang, Y. Wang, W. Ai, and W. Li, 2006: Changes in tropical cyclone precipitation over China. Geophys. Res. Lett., 33, L20702, https://doi.org/10.1029/2006GL027951.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rodgers, E. B., R. F. Adler, and H. F. Pierce, 2000: Contribution of tropical cyclones to the North Pacific climatological rainfall as observed from satellites. J. Appl. Meteor., 39, 16581678, https://doi.org/10.1175/1520-0450(2000)039<1658:COTCTT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rogers, R. F., J. A. Zhang, J. Zawislak, H. Jiang, G. R. Alvey, E. J. Zipser, and S. N. Stevenson, 2016: Observations of the structure and evolution of Hurricane Edouard (2014) during intensity change. Part II: Kinematic structure and the distribution of deep convection. Mon. Wea. Rev., 144, 33553376, https://doi.org/10.1175/MWR-D-16-0017.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Saikranthi, K., T. N. Rao, B. Radhakrishna, and S. V. B. Rao, 2014: Morphology of the vertical structure of precipitation over India and adjoining oceans based on long-term measurements of TRMM PR. J. Geophys. Res. Atmos., 119, 84338449, https://doi.org/10.1002/2014JD021774.

    • Search Google Scholar
    • Export Citation
  • Schumacher, C., and R. A. Houze, Jr., 2003: Stratiform rain in the tropics as seen by the TRMM Precipitation Radar. J. Climate, 16, 17391756, https://doi.org/10.1175/1520-0442(2003)016<1739:SRITTA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Schumacher, C., R. A. Houze, Jr, and I. Kraucunas, 2004: The tropical dynamical response to latent heating estimates derived from the TRMM Precipitation Radar. J. Atmos. Sci., 61, 13411358, https://doi.org/10.1175/1520-0469(2004)061<1341:TTDRTL>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Shapiro, L. J., and H. E. Willoughby, 1982: The response of balanced hurricanes to local sources of heat and momentum. J. Atmos. Sci., 39, 378394, https://doi.org/10.1175/1520-0469(1982)039<0378:TROBHT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sheppard, J. M., A. Grundstein, and T. L. Mote, 2007: Quantifying the contribution of tropical cyclones to extreme rainfall along the coastal southeastern United States. Geophys. Res. Lett., 34, L23810, https://doi.org/10.1029/2007GL031694.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sikka, D. R., 2006: A study on the monsoon low pressure systems over the Indian region and their relationship with drought and excess monsoon seasonal rainfall. Center for Ocean–Land–Atmosphere Studies, COLA Tech. Rep. 217, 61 pp.

    • Crossref
    • Export Citation
  • Singh, D., D. E. Horton, M. Tsiang, M. Haugen, M. Ashfaq, R. Mei, and N. S. Diffenbaugh, 2014: Severe precipitation in northern India in June 2013: Causes, historical context, and changes in probability. Bull. Amer. Meteor. Soc., 95, 558561.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Singh, K., J. Panda, and S. Kant, 2020: A study on variability in rainfall over India contributed by cyclonic disturbances in warming climate scenario. Int. J. Climatol., 40, 32083221, https://doi.org/10.1002/joc.6392.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stern, D. P., and D. S. Nolan, 2012: On the height of the warm core in tropical cyclones. J. Atmos. Sci., 69, 16571680, https://doi.org/10.1175/JAS-D-11-010.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tao, C., and H. Jiang, 2013: Global distribution of hot towers in tropical cyclones based on 11-yr TRMM data. J. Climate, 26, 13711386, https://doi.org/10.1175/JCLI-D-12-00291.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tao, C., and H. Jiang, 2015: Distributions of shallow to very deep precipitation–convection in rapidly intensifying tropical cyclones. J. Climate, 28, 87918824, https://doi.org/10.1175/JCLI-D-14-00448.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tao, C., H. Jiang, and J. Zawislak, 2017: The relative importance of stratiform and convective rainfall in rapidly intensifying tropical cyclones. Mon. Wea. Rev., 145, 795809, https://doi.org/10.1175/MWR-D-16-0316.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Uddin, M. J., Y. Li, K. K. Cheung, Z. M. Nasrin, H. Wang, L. Wang, and Z. Gao, 2019: Rainfall contribution of tropical cyclones in the Bay of Bengal between 1998 and 2016 using TRMM satellite data. Atmosphere, 10, 699, https://doi.org/10.3390/atmos10110699.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Villarini, G., J. A. Smith, M. L. Baeck, T. Marchok, and G. A. Vecchi, 2011: Characterization of rainfall distribution and flooding associated with U.S. landfalling tropical cyclones: Analyses of Hurricanes Frances, Ivan, and Jeanne (2004). J. Geophys. Res. Atmos., 116, D23116, https://doi.org/10.1029/2011JD016175.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Villarini, G., D. A. Lavers, E. Scoccimarro, M. Zhao, M. F. Wehner, G. A. Vecchi, T. R. Knutson, and K. A. Reed, 2014: Sensitivity of tropical cyclone rainfall to idealized global-scale forcings. J. Climate, 27, 46224641, https://doi.org/10.1175/JCLI-D-13-00780.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, B., S. Xu, and L. Wu, 2012: Intensified Arabian Sea tropical storms. Nature, 489, E1E2, https://doi.org/10.1038/nature11470.

  • Yang, Z., T. Yuan, H. Jiang, L. Zhang, and C. Zhang, 2018: Stratiform and convective precipitation properties of tropical cyclones in the northwest Pacific. J. Geophys. Res. Atmos., 123, 35133529, https://doi.org/10.1002/2017JD027174.

    • Search Google Scholar
    • Export Citation
  • Yokoyama, C., and Y. N. Takayabu, 2008: A statistical study on rain characteristics of tropical cyclones using TRMM satellite data. Mon. Wea. Rev., 136, 38483862, https://doi.org/10.1175/2008MWR2408.1.

    • Search Google Scholar
    • Export Citation
  • Zipser, E. J., D. J. Cecil, C. Liu, S. W. Nesbitt, and D. P. Yorty, 2006: Where are the most intense thunderstorms on Earth? Bull. Amer. Meteor. Soc., 87, 10571072, https://doi.org/10.1175/BAMS-87-8-1057.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 472 107 0
Full Text Views 194 95 9
PDF Downloads 229 92 10