• Abatzoglou, J. T., D. E. Rupp, L. W. O’Neill, and M. Sadegh, 2021: Compound extremes drive the western Oregon wildfires of September 2020. Geophys. Res. Lett., 48, e2021GL092520, https://doi.org/10.1029/2021GL092520.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Allen, J. S., S.-Y. S. Wang, M. D. LaPlante, and J.-H. Yoon, 2021: Three western Pacific typhoons strengthened fire weather in the recent northwest U.S. conflagration. Geophys. Res. Lett., 48, e2020GL091430, https://doi.org/10.1029/2020GL091430.

    • Crossref
    • Export Citation
  • Archambault, H. M., L. F. Bosart, D. Keyser, and J. Cordeira, 2013: A climatological analysis of the extratropical flow response to recurving western North Pacific tropical cyclones. Mon. Wea. Rev., 141, 23252346, https://doi.org/10.1175/MWR-D-12-00257.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bosart, L. F., B. J. Moore, J. M. Cordiera, and H. M. Archambault, 2017: Interactions of North Pacific tropical, midlatitude, and polar disturbances resulting in linked extreme weather events over North America in October 2007. Mon. Wea. Rev., 145, 12451273, https://doi.org/10.1175/MWR-D-16-0230.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brewer, M. C., and C. F. Mass, 2016a: Projected changes in heat extremes and associated synoptic- and mesoscale conditions over the northwest United States. J. Climate, 29, 63836400, https://doi.org/10.1175/JCLI-D-15-0641.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brewer, M. C., and C. F. Mass, 2016b: Projected changes in western U.S. large-scale summer synoptic circulations and variability in CMIP5 models. J. Climate, 29, 59655978, https://doi.org/10.1175/JCLI-D-15-0598.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brewer, M. C., C. F. Mass, and B. E. Potter, 2013: The west coast thermal trough: Climatology and synoptic evolution. Mon. Wea. Rev., 140, 38203843, https://doi.org/10.1175/MWR-D-12-00078.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bumbaco, K. A., K. D. Dello, and N. A. Bond, 2013: History of Pacific Northwest heat waves: Synoptic pattern and trends. J. Appl. Meteor. Climatol., 52, 16181631, https://doi.org/10.1175/JAMC-D-12-094.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Catalano, A. J., P. C. Loikith, and J. D. Neelin, 2021: Diagnosing non-Gaussian temperature distribution tails using back-trajectory analysis. J. Geophys. Res. Atmos., 126, https://doi.org/10.1029/2020JD033726.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cohen, J., and Coauthors, 2020: Divergent consensuses on Arctic amplification influence on midlatitude severe winter weather. Nat. Climate Change, 10, 2029, https://doi.org/10.1038/s41558-019-0662-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cohen, J., L. Agel, M. Barlow, C. I. Garfinkel, and I. White, 2021: Linking Arctic variability and change with extreme winter weather in the United States. Science, 373, 1116–1121, https://doi.org/10.1126/science.abi9167.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Coumou, D., G. Di Capua, S. Vavrus, L. Wang, and S. Wang, 2018: The influence of Arctic amplification on mid-latitude summer circulation. Nat. Commun., 9, 2959, https://doi.org/10.1038/s41467-018-05256-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cvijanovic, I., B. D. Santer, C. Bonfils, D. D. Lucas, J. C. H. Chiang, and S. Zimmerman, 2017: Future loss of Arctic sea-ice cover could drive a substantial decrease in California’s rainfall. Nat. Commun., 8, 1947, https://doi.org/10.1038/s41467-017-01907-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dierauer, J. R., D. M. Allen, and P. H. Whitfield, 2019: Snow drought risk and susceptibility in the western United States and southwest Canada. Water Resour. Res., 55, 30763091, https://doi.org/10.1029/2018WR023229.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Eyring, V., S. Bony, G. A. Meehl, C. A. Senior, B. Stevens, R. J. Stouffer, and K. E. Taylor, 2016: Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization. Geosci. Model Dev., 9, 19371958, https://doi.org/10.5194/gmd-9-1937-2016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Francis, J. A., N. Skific, and S. J. Vavrus, 2018: North American weather regimes are becoming more persistent: Is Arctic amplification a factor? Geophys. Res. Lett., 45, https://doi.org/10.1029/2018GL080252.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gelaro, R., and Coauthors, 2017: The Modern-Era Retrospective Analysis for Research and Applications, version 2 (MERRA-2). J. Climate, 30, 54195454, https://doi.org/10.1175/JCLI-D-16-0758.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gibson, P. B., D. E. Waliser, B. Guan, M. J. DeFlorio, F. M. Ralph, and D. Swain, 2020: Ridging associated with drought across the western and southwestern United States: Characteristics, trends, and predictability sources. J. Climate, 33, 24852508, https://doi.org/10.1175/JCLI-D-19-0439.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hoerling, M., J. Eischeid, A. Kumar, R. Leung, A. Mariotti, K. Mo, S. Schubert, and R. Seager, 2014: Causes and predictability of the 2012 Great Plains drought. Bull. Amer. Meteor. Soc., 95, 269282, https://doi.org/10.1175/BAMS-D-13-00055.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Horton, D. E., N. C. Johnson, D. Singh, D. L. Swain, B. Rajaratnam, and N. Diffenbaugh, 2015: Contribution of changes in atmospheric circulation patterns to extreme temperature trends. Nature, 522, 465–469, https://doi.org/10.1038/nature14550.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Horton, R. M., J. S. Mankin, C. Lesk, E. Coffel, and C. Raymond, 2016: A review of recent advances in research on extreme heat events. Curr. Climate Change Rep., 2, 242259, https://doi.org/10.1007/s40641-016-0042-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hughes, M., and A. Hall, 2010: Local and synoptic mechanisms causing Southern California’s Santa Ana winds. Climate Dyn., 34, 847857, https://doi.org/10.1007/s00382-009-0650-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kalashnikov, D. A., P. C. Loikith, A. Catalano, D. E. Waliser, H. Lee, and J. T. Abatzoglou, 2020: A 30-year climatology of meteorological conditions associated with lightning days in the interior western United States. J. Climate, 33, 37713785, https://doi.org/10.1175/JCLI-D-19-0564.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kornhuber, K., S. Osprey, D. Coumou, S. Petri, V. Petoukhov, S. Rahmstorf, and L. Gray, 2019: Extreme weather events in early summer 2018 connected by a recurrent hemispheric wave-7 pattern. Environ. Res. Lett., 14, 054002, https://doi.org/10.1088/1748-9326/ab13bf.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kretschmer, M., D. Coumou, L. Agel, M. Barlow, E. Tziperman, and J. Cohen, 2018: More-persistent weak stratospheric polar vortex states linked to cold extremes. Bull. Amer. Meteor. Soc., 99, 4960, https://doi.org/10.1175/BAMS-D-16-0259.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kug, J.-S., J. H. Jeong, Y. S. Jang, B. M. Kim, C. K. Folland, S. K. Min, and S. W. Son, 2015: Two distinct influences of Arctic warming on cold winters over North America and East Asia. Nat. Geosci., 8, 759762, https://doi.org/10.1038/ngeo2517.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lau, N.-C., and M. J. Nath, 2012: A model study of heat waves over North America: Meteorological aspects and projections for the twenty-first century. J. Climate, 25, 47614784, https://doi.org/10.1175/JCLI-D-11-00575.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lau, N.-C., and M. J. Nath, 2014: Model simulation and projection of European heat waves in present-day and future climates. J. Climate, 27, 37133730, https://doi.org/10.1175/JCLI-D-13-00284.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, Y., R. Ren, M. Cai, and Y. Yu, 2019: Climatological features of blocking highs from the perspective of air mass and transport. Int. J. Climatol., 40, 782–794, https://doi.org/10.1002/joc.6238.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, P., and Coauthors, 2018: Climatology of tracked persistent maxima of 500-hPa geopotential height. Climate Dyn., 51, 701717, https://doi.org/10.1007/s00382-017-3950-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Loikith, P. C., and A. J. Broccoli, 2012: Characteristics of observed atmospheric circulation patterns associated with temperature extremes over North America. J. Climate, 25, 72667281, https://doi.org/10.1175/JCLI-D-11-00709.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Loikith, P. C., B. Lintner, and A. Sweeney, 2017: Characterizing large-scale meteorological patterns and associated temperature and precipitation extremes over the northwestern United States using self-organizing maps. J. Climate, 30, 28292847, https://doi.org/10.1175/JCLI-D-16-0670.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mann, M., S. Rahmstorf, K. Kornhuber, S. K. Steinman, S. Miller, S. Petri, and D. Coumou, 2018: Projected changes in persistent extreme summer weather events: The role of quasi-resonant amplification. Sci. Adv., 4, eaat3272, https://doi.org/10.1126/sciadv.aat3272.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mote, P. W., and Coauthors, 2016: Perspectives on the causes of exceptionally low 2015 snowpack in the western United States. Geophys. Res. Lett., 43, 10 98010 988, https://doi.org/10.1002/2016GL069965.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mundhenk, B. D., E. A. Barnes, E. D. Maloney, and K. M. Nardi, 2016: Modulation of atmospheric rivers near Alaska and the U.S. West Coast by northeast Pacific height anomalies. J. Geophys. Res. Atmos., 121, 12 75112 765, https://doi.org/10.1002/2016JD025350.

    • Search Google Scholar
    • Export Citation
  • Nigam, S., and E. DeWeaver, 2003: Stationary waves (orographic and thermally forced). Encyclopedia of Atmospheric Sciences, 1st ed., J. A. Pyle, J. R. Holton, and J. A. Curry, Eds., Elsevier, 2243–2269.

  • Petoukhov, V., S. Petri, S. Rahmstorf, D. Coumou, K. Kornhuber, and H. J. Schellnhuber, 2016: Role of quasiresonant planetary wave dynamics in recent boreal spring-to-autumn extreme events. Proc. Natl. Acad. Sci. USA, 113, 68626867, https://doi.org/10.1073/pnas.1606300113.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rogers, C. D. W., K. Kornhuber, S. E. Perkins-Kirkpatrick, P. C. Loikith, and D. Singh, 2021: Six-fold increase in historical Northern Hemisphere concurrent large heatwaves driven by warming and changing atmospheric circulation. J. Climate, 35, 10631078, https://doi.org/10.1175/JCLI-D-21-0200.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Röthlisberger, M., and O. Martius, 2019: Quantifying the local effect of Northern Hemisphere atmospheric blocks on the persistence of summer hot and dry spells. Geophys. Res. Lett., 46, 10 10110 111, https://doi.org/10.1029/2019GL083745.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rupp, D. E., S. Li, P. W. Mote, K. M. Shell, N. Massey, S. N. Sparrow, D. C. Wallom, and M. R. Allen, 2017a: Seasonal spatial patterns of projected anthropogenic warming in complex terrain: A modeling study of the western US. Climate Dyn., 48, 21912213, https://doi.org/10.1007/s00382-016-3200-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rupp, D. E., J. T. Abatzoglou, and P. W. Mote, 2017b: Projections of 21st century climate of the Columbia River Basin. Climate Dyn., 49, 17831799, https://doi.org/10.1007/s00382-016-3418-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Seager, R., and Coauthors, 2014: Dynamical and thermodynamical causes of large-scale changes in the hydrological cycle over North America in response to global warming. J. Climate, 27, 79217948, https://doi.org/10.1175/JCLI-D-14-00153.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Seager, R., M. Hoerling, S. Schubert, H. Wang, B. Lyon, A. Kumar, J. Nakamura, and N. Henderson, 2015: Causes of the 2011–2014 California drought. J. Climate, 28, 69977024, https://doi.org/10.1175/JCLI-D-14-00860.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Seager, R., N. Henderson, M. A. Cane, H. Liu, and J. Nakamura, 2017: Is there a role for human-induced climate change in the precipitation decline that drove the California drought? J. Climate, 30, 10 23710 258, https://doi.org/10.1175/JCLI-D-17-0192.1.

    • Search Google Scholar
    • Export Citation
  • Shaw, T. A., and A. Voigt, 2015: Tug of war on summertime circulation between radiative forcing and sea surface warming. Nat. Geosci., 8, 560566, https://doi.org/10.1038/ngeo2449.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sung, M.-K., B.-M. Kim, E.-H. Baek, Y.-K. Lim, and S.-J. Kim, 2016: Arctic–North Pacific coupled impacts on the late autumn cold in North America. Environ. Res. Lett., 11, 084016, https://doi.org/10.1088/1748-9326/11/8/084016.

    • Search Google Scholar
    • Export Citation
  • Swain, D. L., M. Tsiang, M. Haugen, D. Singh, A. Charland, B. Rajaratnam, and N. S. Diffenbaugh, 2014: The extraordinary California drought of 2013/2014: Character, context, and the of climate change [in “Explaining Extreme Events of 2013 from a Climate Perspective”]. Bull. Amer. Meteor. Soc., 95, S3S7, https://doi.org/10.1175/1520-0477-95.9.S1.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Swain, D. L., D. E. Horton, D. Singh, and N. S. Diffenbaugh, 2016: Trend in atmospheric patterns conducive to seasonal precipitation and temperature extremes in California. Sci. Adv., 2, e1501344. https://doi.org/10.1126/sciadv.1501344.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • USGCRP, 2017: Climate Science Special Report: Fourth National Climate Assessment. Vol. 1, D. J. Wuebbles et al., Eds., U.S. Global Change Research Program, 470 pp., https://doi.org/10.7930/J0J964J6.

    • Search Google Scholar
    • Export Citation
  • Zelinka, M. D., T. A. Myers, D. T. McCoy, S. Po-Chedly, P. M. Caldwell, P. Ceppi, S. A. Klein, and K. E. Taylor, 2020: Causes of higher climate sensitivity in CMIP6 models. Geophys. Res. Lett., 47, e2019GL085782, https://doi.org/10.1029/2019GL085782.

  • Zhong, S., C. D. Whiteman, X. Bian, W. J. Shaw, and J. M. Hubbe, 2001: Meteorological processes affecting the evolution of a wintertime cold air pool in the Columbia Basin. Mon. Wea. Rev., 129, 26002613, https://doi.org/10.1175/1520-0493(2001)129<2600:MPATEO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Zhu, J., C. J. Poulsen, and B. L. Otto-Bliesner, 2020: High climate sensitivity in CMIP6 model not supported by paleoclimate. Nat. Climate Change, 10, 378379, https://doi.org/10.1038/s41558-020-0764-6.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 308 307 60
Full Text Views 87 86 14
PDF Downloads 97 96 26

Projected Changes in Atmospheric Ridges over the Pacific–North American Region Using CMIP6 Models

View More View Less
  • 1 aDepartment of Geography, Portland State University, Portland, Oregon
  • | 2 bSchool of the Environment, Washington State University, Vancouver, Washington
Restricted access

Abstract

Projected changes in atmospheric ridges and associated temperature and precipitation anomalies are assessed for the end of the twenty-first century in a suite of 27 models contributing to phase 6 of the Coupled Model Intercomparison Project (CMIP6) under a high-end emissions scenario over the Pacific–North American region. Ridges are defined as spatially coherent regions of positive zonal anomalies in 500-hPa geopotential height. The frequency of ridge days in the historical period varies by geography and season; however, ridge days are broadly more common over the region in winter and least common in summer. The CMIP6 models are credible in reproducing key features of reanalysis-derived ridge climatology. The CMIP6 models also reproduce historical temperature and precipitation anomalies associated with ridges. These associations include positive temperature anomalies over and to the west/northwest of the ridge peak and negative precipitation anomalies southeast of the ridge peak. Future projections show a general decrease in ridge days across most of the region in fall through spring, with considerable model agreement. Projections for summer are different, with robust projections of increases in the number of ridge days across parts of the interior western United States and Canada. The CMIP6 models project modest decreases in the probability of stronger ridges and modest increases in the probability of weaker ridges in fall and winter. Future ridges show similar temperature and precipitation anomaly associations as in the historical climate period, when future anomalies are computed relative to future climatology.

Significance Statement

Atmospheric ridges over the Pacific–North American region are a type of atmospheric circulation pattern associated with important weather and climate impacts. These impacts include heatwaves and drought. This study uses climate models to understand how ridges and their impacts may change under future climate warming. The results suggest that ridge days will be less common across parts of the domain in fall, winter, and spring. In summer, an increase in ridge days is projected in a region centered on Montana. Results suggest that temperature and precipitation patterns associated with ridges will change at a similar rate to the overall mean climate. This work provides evidence that continued climate warming will alter atmospheric circulation over the Pacific–North American region in complex ways.

© 2022 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Paul C. Loikith, ploikith@pdx.edu

Abstract

Projected changes in atmospheric ridges and associated temperature and precipitation anomalies are assessed for the end of the twenty-first century in a suite of 27 models contributing to phase 6 of the Coupled Model Intercomparison Project (CMIP6) under a high-end emissions scenario over the Pacific–North American region. Ridges are defined as spatially coherent regions of positive zonal anomalies in 500-hPa geopotential height. The frequency of ridge days in the historical period varies by geography and season; however, ridge days are broadly more common over the region in winter and least common in summer. The CMIP6 models are credible in reproducing key features of reanalysis-derived ridge climatology. The CMIP6 models also reproduce historical temperature and precipitation anomalies associated with ridges. These associations include positive temperature anomalies over and to the west/northwest of the ridge peak and negative precipitation anomalies southeast of the ridge peak. Future projections show a general decrease in ridge days across most of the region in fall through spring, with considerable model agreement. Projections for summer are different, with robust projections of increases in the number of ridge days across parts of the interior western United States and Canada. The CMIP6 models project modest decreases in the probability of stronger ridges and modest increases in the probability of weaker ridges in fall and winter. Future ridges show similar temperature and precipitation anomaly associations as in the historical climate period, when future anomalies are computed relative to future climatology.

Significance Statement

Atmospheric ridges over the Pacific–North American region are a type of atmospheric circulation pattern associated with important weather and climate impacts. These impacts include heatwaves and drought. This study uses climate models to understand how ridges and their impacts may change under future climate warming. The results suggest that ridge days will be less common across parts of the domain in fall, winter, and spring. In summer, an increase in ridge days is projected in a region centered on Montana. Results suggest that temperature and precipitation patterns associated with ridges will change at a similar rate to the overall mean climate. This work provides evidence that continued climate warming will alter atmospheric circulation over the Pacific–North American region in complex ways.

© 2022 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Paul C. Loikith, ploikith@pdx.edu

Supplementary Materials

    • Supplemental Materials (PDF 1.18 MB)
Save