Hotspots of Monthly Land Precipitation Variations Affected by SST Anomalies

Xiaofan Li aKey Laboratory of Geoscience Big Data and Deep Resource of Zhejiang Province, School of Earth Sciences, Zhejiang University, Hangzhou, Zhejiang, China
bSouthern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China

Search for other papers by Xiaofan Li in
Current site
Google Scholar
PubMed
Close
,
Zeng-Zhen Hu cClimate Prediction Center, NCEP/NWS/NOAA, College Park, Maryland

Search for other papers by Zeng-Zhen Hu in
Current site
Google Scholar
PubMed
Close
,
Zhiqiang Gong dCollege of Physics and Electronic Engineering, Changshu Institute of Technology, Changshu, China
eLaboratory for Climate Studies, National Climate Research Center, China Meteorological Administration, Beijing, China

Search for other papers by Zhiqiang Gong in
Current site
Google Scholar
PubMed
Close
, and
Bhaskar Jha cClimate Prediction Center, NCEP/NWS/NOAA, College Park, Maryland
fERT, Laurel, Maryland

Search for other papers by Bhaskar Jha in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Climate predictability at seasonal to interannual time scales is mainly associated with sea surface temperature anomalies (SSTAs). How to quantitatively assess the impact of SSTAs on climate variability and predictability is an unresolved topic. Using a novel metric [bulk connectivity (BC)], the integrated influences of global SSTAs on precipitation anomalies over land are examined in observations and compared with Atmospheric Model Intercomparison Project (AMIP) simulations in 1957–2018. The hotspots of the land precipitation variation affected by global SSTA are identified, and the seasonality is evaluated. Such hotspots indicate the regions of land precipitation predictability caused by SSTAs. The hotspots are observed in the Sahel region in September–March, in the Indochina Peninsula in April and May, and in southwestern United States in December–March, which are mostly linked to the influence of El Niño–Southern Oscillation (ENSO). The overall impact of SSTAs on land precipitation is larger in the Southern Hemisphere than in the Northern Hemisphere. The spatial variations of BC and hotspots in the observations are partially reproduced in the AMIP simulations. However, an individual run in the AMIP simulations underestimates the integrated influence of global SSTA on land precipitation anomalies, while the ensemble mean amplifies the integrated influence, and both show a challenge in capturing the seasonality of the SST influence, particularly the time of the strongest impact. The results of the BC metric can serve as a benchmark to evaluate climate models and to identify the predictability sources.

© 2022 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: X. Li, xiaofanli@zju.edu

Abstract

Climate predictability at seasonal to interannual time scales is mainly associated with sea surface temperature anomalies (SSTAs). How to quantitatively assess the impact of SSTAs on climate variability and predictability is an unresolved topic. Using a novel metric [bulk connectivity (BC)], the integrated influences of global SSTAs on precipitation anomalies over land are examined in observations and compared with Atmospheric Model Intercomparison Project (AMIP) simulations in 1957–2018. The hotspots of the land precipitation variation affected by global SSTA are identified, and the seasonality is evaluated. Such hotspots indicate the regions of land precipitation predictability caused by SSTAs. The hotspots are observed in the Sahel region in September–March, in the Indochina Peninsula in April and May, and in southwestern United States in December–March, which are mostly linked to the influence of El Niño–Southern Oscillation (ENSO). The overall impact of SSTAs on land precipitation is larger in the Southern Hemisphere than in the Northern Hemisphere. The spatial variations of BC and hotspots in the observations are partially reproduced in the AMIP simulations. However, an individual run in the AMIP simulations underestimates the integrated influence of global SSTA on land precipitation anomalies, while the ensemble mean amplifies the integrated influence, and both show a challenge in capturing the seasonality of the SST influence, particularly the time of the strongest impact. The results of the BC metric can serve as a benchmark to evaluate climate models and to identify the predictability sources.

© 2022 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: X. Li, xiaofanli@zju.edu
Save
  • Alexander, L. V., P. Uotila, and N. Nicholls, 2009: Influence of sea surface temperature variability on global temperature and precipitation extremes. J. Geophys. Res., 114, D18116, https://doi.org/10.1029/2009JD012301.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Alexander, M. A., I. Blade, M. Newman, J. R. Lanzante, N.-C. Lau, and J. D. Scott, 2002: The atmospheric bridge: The influence of ENSO teleconnections on air–sea interaction over the global oceans. J. Climate, 15, 22052231, https://doi.org/10.1175/1520-0442(2002)015<2205:TABTIO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ashok, K., Z. Guan, and T. Yamagata, 2003: Influence of the Indian Ocean Dipole on Australian winter rainfall. Geophys. Res. Lett., 30, https://doi.org/10.1029/2003GL017926.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bjerknes, J., 1969: Atmospheric teleconnections from the equatorial Pacific. Mon. Wea. Rev., 97, 163172, https://doi.org/10.1175/1520-0493(1969)097<0163:ATFTEP>2.3.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cai, W., and Coauthors, 2019: Pantropical climate interactions. Science, 363, eaav4236, https://doi.org/10.1126/science.aav4236.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, M., P. Xie, J. E. Janowiak, and P. A. Arkin, 2002: Global land precipitation: A 50-yr monthly analysis based on gauge observations. J. Hydrometeor., 3, 249266, https://doi.org/10.1175/1525-7541(2002)003<0249:GLPAYM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • DelSole, T., and M. K. Tippett, 2009: Average predictability time. Part I: Theory. J. Atmos. Sci., 66, 11721187, https://doi.org/10.1175/2008JAS2868.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Harris, I., and Coauthors, 2020: Version 4 of the CRU TS monthly high-resolution gridded multivariate climate dataset. Sci. Data, 7, 109, https://doi.org/10.1038/s41597-020-0453-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • He, C., B. Wu, C. Li, A. Lin, D. Gu, B. Zheng, and T. Zhou, 2016: How much of the interannual variability of East Asian summer rainfall is forced by SST? Climate Dyn., 47, 555565, https://doi.org/10.1007/s00382-015-2855-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • He, C., Z. Cui, and C. Wang, 2022: Response of western North Pacific anomalous anticyclones in the summer of decaying El Niño to global warming: Diverse projections based on CMIP6 and CMIP5 models. J. Climate, 35, 359372, https://doi.org/10.1175/JCLI-D-21-0352.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • He, S., J.-Y. Yu, S. Yang, and S.-W. Fang, 2020: ENSO’s impacts on the tropical Indian and Atlantic Oceans via tropical atmospheric processes: Observations versus CMIP5 simulations. Climate Dyn., 54, 46274640, https://doi.org/10.1007/s00382-020-05247-w.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hu, Z.-Z., A. Kumar, B. Huang, Y. Xue, W. Wang, and B. Jha, 2011: Persistent atmospheric and oceanic anomalies in the North Atlantic from summer 2009 to summer 2010. J. Climate, 24, 58125830, https://doi.org/10.1175/2011JCLI4213.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hu, Z.-Z., A. Kumar, J. Zhu, P. Peng, and B. Huang, 2019: On the challenge for ENSO cycle prediction: An example from NCEP Climate Forecast System version 2. J. Climate, 32, 183194, https://doi.org/10.1175/JCLI-D-18-0285.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hu, Z.-Z., A. Kumar, B. Jha, and B. Huang, 2020: How much of monthly mean precipitation variability over global land is associated with SST anomalies? Climate Dyn., 54, 701712, https://doi.org/10.1007/s00382-019-05023-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jha, B., Z.-Z. Hu, and A. Kumar, 2014: SST and ENSO variability and change simulated in historical experiments of CMIP5 models. Climate Dyn., 42, 21132124, https://doi.org/10.1007/s00382-013-1803-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jia, L., and Coauthors, 2015: Improved seasonal prediction of temperature and precipitation over land in a high-resolution GFDL climate model. J. Climate, 28, 20442062, https://doi.org/10.1175/JCLI-D-14-00112.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ju, J., and J. M. Slingo, 1995: The Asian summer monsoon and ENSO. Quart. J. Roy. Meteor. Soc., 121, 11331168, https://doi.org/10.1002/qj.49712152509.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kayano, M. T., V. B. Rao, and A. D. Moura, 1988: Tropical circulations and the associated rainfall anomalies during two contrasting years. J. Climate, 8, 477488, https://doi.org/10.1002/joc.3370080504.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kug, J.-S., and I.-S. Kang, 2006: Interactive feedback between ENSO and the Indian Ocean. J. Climate, 19, 17841801, https://doi.org/10.1175/JCLI3660.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kosaka, Y., J. S. Chowdary, S.-P. Xie, Y.-M. Min, and J.-Y. Lee, 2012: Limitations of seasonal predictability for summer climate over East Asia and the northwestern Pacific. J. Climate, 25, 75747589, https://doi.org/10.1175/JCLI-D-12-00009.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kumar, A., and M. P. Hoerling, 2003: The nature and causes for the delayed atmospheric response to El Niño. J. Climate, 16, 13911403, https://doi.org/10.1175/1520-0442-16.9.1391.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kumar, A., A. G. Barnston, and M. P. Hoerling, 2001: Seasonal predictions, probabilistic verifications, and ensemble size. J. Climate, 14, 16711676, https://doi.org/10.1175/1520-0442(2001)014<1671:SPPVAE>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lau, N. C., and M. J. Nath, 2003: Atmosphere–ocean variations in the Indo-Pacific sector during ENSO episodes. J. Climate, 16, 320, https://doi.org/10.1175/1520-0442(2003)016<0003:AOVITI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Leathers, D. J., B. Yarnal, and M. A. Palecki, 1991: The Pacific/North American teleconnection pattern and United States climate. Part I: Regional temperature and precipitation associations. J. Climate, 4, 517528, https://doi.org/10.1175/1520-0442(1991)004<0517:TPATPA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, X., Z.-Z. Hu, P. Liang, and J. Zhu, 2019: Contrastive influence of ENSO and PNA on variability and predictability of North American winter precipitation. J. Climate, 32, 62716284, https://doi.org/10.1175/JCLI-D-19-0033.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, X., Z.-Z. Hu, B. Huang, and C. Stan, 2022: Bulk connectivity of global SST and land precipitation variations. Climate Dyn., 58, 195209, https://doi.org/10.1007/s00382-021-05901-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liang, P., Z.-Z. Hu, Y. Liu, X. Yuan, X. Li, and X. Jiang, 2019: Challenges in predicting and simulating summer rainfall in the eastern China. Climate Dyn., 52, 22172233, https://doi.org/10.1007/s00382-018-4256-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mason, S. J., 2001: El Niño, climate change, and southern African climate. Environmetrics, 12, 327345, https://doi.org/10.1002/env.476.

    • Search Google Scholar
    • Export Citation
  • National Research Council, 2010: Assessment of Intraseasonal to Interannual Climate Prediction and Predictability. The National Academies Press, 192 pp.

    • Crossref
    • Export Citation
  • Nitta, T., 1987: Convective activities in the tropical western Pacific and their impact on the Northern Hemisphere summer circulation. J. Meteor. Soc. Japan, 65, 373390, https://doi.org/10.2151/jmsj1965.65.3_373.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nitta, T., and Z.-Z. Hu, 1996: Summer climate variability in China and its association with 500 hPa height and tropical convection. J. Meteor. Soc. Japan, 74, 425445, https://doi.org/10.2151/jmsj1965.74.4_425.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • O’Lenic, E. A., D. A. Unger, M. S. Halpert, and K. S. Pelman, 2008: Developments in operational long-range climate prediction at CPC. Wea. Forecasting, 23, 496515, https://doi.org/10.1175/2007WAF2007042.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Peng, P., A. Kumar, M. S. Halpert, and A. G. Barnston, 2012: An analysis of CPC’s operational 0.5-month lead seasonal outlooks. Wea. Forecasting, 27, 898917, https://doi.org/10.1175/WAF-D-11-00143.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Peng, P., A. G. Barnston, and A. Kumar, 2013: A comparison of skill between two versions of the NCEP Climate Forecast System (CFS) and CPC’s operational short-lead seasonal outlooks. Wea. Forecasting, 28, 445462, https://doi.org/10.1175/WAF-D-12-00057.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rayner, N., P. Brohan, D. Parker, C. Folland, J. Kennedy, M. Vanicek, T. Ansell, and S. Tett, 2006: Improved analyses of changes and uncertainties in sea surface temperature measured in situ since the mid-nineteenth century: The HadSST2 data set. J. Climate, 19, 446469, https://doi.org/10.1175/JCLI3637.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reynolds, R. W., N. A. Rayner, T. M. Smith, D. C. Stokes, and W. Wang, 2002: An improved in situ and satellite SST analysis for climate. J. Climate, 15, 16091625, https://doi.org/10.1175/1520-0442(2002)015<1609:AIISAS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ropelewski, C. F., and M. S. Halpert, 1987: Global and regional scale precipitation patterns associated with the El Niño/Southern Oscillation. Mon. Wea. Rev., 115, 16061626, https://doi.org/10.1175/1520-0493(1987)115<1606:GARSPP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ropelewski, C. F., and M. S. Halpert, 1996: Quantifying Southern Oscillation–precipitation relationships. J. Climate, 9, 10431059, https://doi.org/10.1175/1520-0442(1996)009<1043:QSOPR>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Saha, S., and Coauthors, 2014: The NCEP Climate Forecast System version 2. J. Climate, 27, 21852208, https://doi.org/10.1175/JCLI-D-12-00823.1.

  • Scaife, A. A., and D. Smith, 2018: A signal-to-noise paradox in climate science. npj Climate Atmos. Sci., 1, 28, https://doi.org/10.1038/s41612-018-0038-4.

    • Crossref
    • Export Citation
  • Stan, C., D. M. Straus, J. S. Frederiksen, H. Lin, E. D. Maloney, and C. Schumacher, 2017: Review of tropical–extratropical teleconnections on intraseasonal time scales. Rev. Geophys., 55, 902937, https://doi.org/10.1002/2016RG000538.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ting, M., and P. D. Sardeshmukh, 1993: Factors determining the extratropical response to equatorial diabatic heating anomalies. J. Atmos. Sci., 50, 907918, https://doi.org/10.1175/1520-0469(1993)050<0907:FDTERT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wallace, J. M., and D. S. Gutzler, 1981: Teleconnections in the geopotential height field during the Northern Hemisphere winter. Mon. Wea. Rev., 109, 784812, https://doi.org/10.1175/1520-0493(1981)109<0784:TITGHF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, B., R. Wu, and X. Fu, 2000: Pacific–East Asian teleconnection: How does ENSO affect East Asian climate? J. Climate, 13, 15171536, https://doi.org/10.1175/1520-0442(2000)013<1517:PEATHD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, B., Q. Ding, X. Fu, I.-S. Kang, K. Jin, J. Shukla, and F. Doblas-Reyes, 2005: Fundamental challenges in simulation and prediction of summer monsoon rainfall. Geophys. Res. Lett., 32, L15711, https://doi.org/10.1029/2005GL022734.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, C., 2019: Three-ocean interactions and climate variability: A review and perspective. Climate Dyn., 53, 51195136, https://doi.org/10.1007/s00382-019-04930-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, H., and R. Fu, 2000: Winter monthly mean atmospheric anomalies over the North Pacific and North America associated with El Niño SSTs. J. Climate, 13, 34353447, https://doi.org/10.1175/1520-0442(2000)013<3435:WMMAAO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, H., A. Kumar, and W. Wang, 2013: Characteristics of subsurface ocean response to ENSO assessed from simulations with the NCEP Climate Forecast System. J. Climate, 26, 80658083, https://doi.org/10.1175/JCLI-D-12-00795.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, Y., C. He, and T. Li, 2019: Decadal change in the relationship between East Asian spring circulation and ENSO: Is it modulated by Pacific Decadal Oscillation? Int. J. Climatol., 39, 172187, https://doi.org/10.1002/joc.5793.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, R., and B. P. Kirtman, 2005: Roles of Indian and Pacific Ocean air–sea coupling in tropical atmospheric variability. Climate Dyn., 25, 155170, https://doi.org/10.1007/s00382-005-0003-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, R., Z.-Z. Hu, and B. P. Kirtman, 2003: Evolution of ENSO-related rainfall anomalies in East Asia. J. Climate, 16, 37423758, https://doi.org/10.1175/1520-0442(2003)016<3742:EOERAI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xie, S.-P., K. M. Hu, J. Hafner, H. Tokinaga, Y. Du, G. Huang, and T. Sampe, 2009: Indian Ocean capacitor effect on Indo-western Pacific climate during the summer following El Niño. J. Climate, 22, 730747, https://doi.org/10.1175/2008JCLI2544.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xie, S.-P., Y. Kosaka, Y. Du, K. Hu, J. S. Chowdary, and G. Huang, 2016: Indo-western Pacific Ocean capacitor and coherent climate anomalies in post-ENSO summer: A review. Adv. Atmos. Sci., 33, 411432, https://doi.org/10.1007/s00376-015-5192-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yeh, S.-W., and Coauthors, 2018: ENSO atmospheric teleconnections and their response to greenhouse gas forcing. Rev. Geophys., 56, 185206, https://doi.org/10.1002/2017RG000568.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yuan, J., W. Li, R. E. Kopp, and Y. Deng, 2018: Response of subtropical stationary waves and hydrological extremes to climate warming in boreal summer. J. Climate, 31, 10 16510 180, https://doi.org/10.1175/JCLI-D-17-0401.1.

    • Search Google Scholar
    • Export Citation
  • Yulaeva, E., and J. M. Wallace, 1994: The signature of ENSO in global temperature and precipitation fields derived from the Microwave Sounding Unit. J. Climate, 7, 17191736, https://doi.org/10.1175/1520-0442(1994)007<1719:TSOEIG>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, L., W. Han, and Z.-Z. Hu, 2021: Inter-basin and multi-time scale interactions in generating the 2019 extreme Indian Ocean dipole. J. Climate, 139, https://doi.org/10.1175/JCLI-D-20-0760.1.

    • Search Google Scholar
    • Export Citation
  • Zhu, J., and J. Shukla, 2013: The role of air–sea coupling in seasonal prediction of Asia–Pacific summer monsoon rainfall. J. Climate, 26, 56895697, https://doi.org/10.1175/JCLI-D-13-00190.1.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 367 68 0
Full Text Views 182 65 8
PDF Downloads 229 64 5