Reduced ENSO Variability due to a Collapsed Atlantic Meridional Overturning Circulation

Bryam Orihuela-Pinto aClimate Change Research Centre, University of New South Wales, Sydney, New South Wales, Australia
bAustralian Research Council Centre of Excellence for Climate Extremes, University of New South Wales, Sydney, New South Wales, Australia

Search for other papers by Bryam Orihuela-Pinto in
Current site
Google Scholar
PubMed
Close
,
Agus Santoso aClimate Change Research Centre, University of New South Wales, Sydney, New South Wales, Australia
bAustralian Research Council Centre of Excellence for Climate Extremes, University of New South Wales, Sydney, New South Wales, Australia
cCentre for Southern Hemisphere Oceans Research, CSIRO Oceans and Atmosphere, Hobart, Tasmania, Australia

Search for other papers by Agus Santoso in
Current site
Google Scholar
PubMed
Close
,
Matthew H. England aClimate Change Research Centre, University of New South Wales, Sydney, New South Wales, Australia
dAustralian Centre for Excellence in Antarctic Science, University of New South Wales, Sydney, New South Wales, Australia

Search for other papers by Matthew H. England in
Current site
Google Scholar
PubMed
Close
, and
Andréa S. Taschetto aClimate Change Research Centre, University of New South Wales, Sydney, New South Wales, Australia
bAustralian Research Council Centre of Excellence for Climate Extremes, University of New South Wales, Sydney, New South Wales, Australia

Search for other papers by Andréa S. Taschetto in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Atlantic meridional overturning circulation (AMOC) collapses have punctuated Earth’s climate in the past, and future projections suggest a weakening and potential collapse in response to global warming and high-latitude ocean freshening. Among its most important teleconnections, the AMOC has been shown to influence El Niño–Southern Oscillation (ENSO), although there is no clear consensus on the tendency of this influence or the mechanisms at play. In this study, we investigate the effect of an AMOC collapse on ENSO by adding freshwater in the North Atlantic in a global climate model. The tropical Pacific mean-state changes caused by the AMOC collapse are found to alter the governing ENSO feedbacks, damping the growth rate of ENSO. As a result, ENSO variability is found to decrease by ∼30% due to weaker air–sea coupling associated with a cooler tropical Pacific and an intensified Walker circulation. The decreased ENSO variability manifests in ∼95% less frequent extreme El Niño events and a shift toward more prevalent central Pacific El Niño than eastern Pacific El Niño events, marked by a reduced ENSO nonlinearity and asymmetry. These results provide mechanistic insights into the possible behavior of past and future ENSO in a scenario of a much weakened or collapsed AMOC.

Significance Statement

The Atlantic meridional overturning circulation (AMOC) has collapsed in the past and a future collapse due to greenhouse warming is a plausible scenario. An AMOC shutdown would have major ramifications for global climate, with extensive impacts on climate phenomena such as El Niño–Southern Oscillation (ENSO), which is the strongest source of year-to-year climate variability on the planet. Using numerical simulations, we show that an AMOC shutdown leads to weaker ENSO variability, manifesting in 95% reduction in extreme El Niño events, and a shift of the ENSO pattern toward the central Pacific. This study sheds light on the mechanisms behind these changes, with implications for interpreting past and future ENSO variability.

© 2022 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Bryam Orihuela-Pinto, bryamorihuela@gmail.com

Abstract

Atlantic meridional overturning circulation (AMOC) collapses have punctuated Earth’s climate in the past, and future projections suggest a weakening and potential collapse in response to global warming and high-latitude ocean freshening. Among its most important teleconnections, the AMOC has been shown to influence El Niño–Southern Oscillation (ENSO), although there is no clear consensus on the tendency of this influence or the mechanisms at play. In this study, we investigate the effect of an AMOC collapse on ENSO by adding freshwater in the North Atlantic in a global climate model. The tropical Pacific mean-state changes caused by the AMOC collapse are found to alter the governing ENSO feedbacks, damping the growth rate of ENSO. As a result, ENSO variability is found to decrease by ∼30% due to weaker air–sea coupling associated with a cooler tropical Pacific and an intensified Walker circulation. The decreased ENSO variability manifests in ∼95% less frequent extreme El Niño events and a shift toward more prevalent central Pacific El Niño than eastern Pacific El Niño events, marked by a reduced ENSO nonlinearity and asymmetry. These results provide mechanistic insights into the possible behavior of past and future ENSO in a scenario of a much weakened or collapsed AMOC.

Significance Statement

The Atlantic meridional overturning circulation (AMOC) has collapsed in the past and a future collapse due to greenhouse warming is a plausible scenario. An AMOC shutdown would have major ramifications for global climate, with extensive impacts on climate phenomena such as El Niño–Southern Oscillation (ENSO), which is the strongest source of year-to-year climate variability on the planet. Using numerical simulations, we show that an AMOC shutdown leads to weaker ENSO variability, manifesting in 95% reduction in extreme El Niño events, and a shift of the ENSO pattern toward the central Pacific. This study sheds light on the mechanisms behind these changes, with implications for interpreting past and future ENSO variability.

© 2022 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Bryam Orihuela-Pinto, bryamorihuela@gmail.com

Supplementary Materials

    • Supplemental Materials (PDF 449 KB)
Save
  • Bakker, P., and Coauthors, 2016: Fate of the Atlantic meridional overturning circulation: Strong decline under continued warming and Greenland melting. Geophys. Res. Lett., 43, 12 25212 260, https://doi.org/10.1002/2016GL070457.

    • Search Google Scholar
    • Export Citation
  • Bryden, H. L., H. R. Longworth, and S. A. Cunningham, 2005: Slowing of the Atlantic meridional overturning circulation at 25°N. Nature, 438, 655657, https://doi.org/10.1038/nature04385.

    • Search Google Scholar
    • Export Citation
  • Caesar, L., S. Rahmstorf, A. Robinson, G. Feulner, and V. Saba, 2018: Observed fingerprint of a weakening Atlantic Ocean overturning circulation. Nature, 556, 191196, https://doi.org/10.1038/s41586-018-0006-5.

    • Search Google Scholar
    • Export Citation
  • Caesar, L., G. D. McCarthy, D. J. R. Thornalley, N. Cahill, and S. Rahmstorf, 2021: Current Atlantic meridional overturning circulation weakest in last millennium. Nat. Geosci., 14, 118120, https://doi.org/10.1038/s41561-021-00699-z.

    • Search Google Scholar
    • Export Citation
  • Cai, W., and Coauthors, 2014: Increasing frequency of extreme El Niño events due to greenhouse warming. Nat. Climate Change, 4, 111116, https://doi.org/10.1038/nclimate2100.

    • Search Google Scholar
    • Export Citation
  • Cai, W., G. Wang, A. Santoso, X. Lin, and L. Wu, 2017: Definition of extreme El Niño and its impact on projected increase in extreme El Niño frequency. Geophys. Res. Lett., 44, 11 18411 190, https://doi.org/10.1002/2017GL075635.

    • Search Google Scholar
    • Export Citation
  • Cai, W., and Coauthors, 2018: Increased variability of eastern Pacific El Niño under greenhouse warming. Nature, 564, 201206, https://doi.org/10.1038/s41586-018-0776-9.

    • Search Google Scholar
    • Export Citation
  • Cai, W., and Coauthors, 2019: Pantropical climate interactions. Science, 363, eaav4236, https://doi.org/10.1126/science.aav4236.

  • Cai, W., A. Santoso, G. Wang, L. Wu, M. Collins, M. Lengaigne, S. Power, and A. Timmermann, 2020: ENSO response to greenhouse forcing. El Niño Southern Oscillation in a Changing Climate, Geophys. Monogr., Vol. 253, Amer. Geophys. Union, 289–307.

  • Cai, W., and Coauthors, 2021: Changing El Niño–Southern Oscillation in a warming climate. Nat. Rev. Earth Environ., 2, 628–644, https://doi.org/10.1038/s43017-021-00199-z.

  • Capotondi, A., 2013: ENSO diversity in the NCAR CCSM4 climate model. J. Geophys. Res. Oceans, 118, 47554770, https://doi.org/10.1002/jgrc.20335.

    • Search Google Scholar
    • Export Citation
  • Capotondi, A., and Coauthors, 2015: Understanding ENSO diversity. Bull. Amer. Meteor. Soc., 96, 921938, https://doi.org/10.1175/BAMS-D-13-00117.1.

    • Search Google Scholar
    • Export Citation
  • Cessi, P., K. Bryan, and R. Zhang, 2004: Global seiching of thermocline waters between the Atlantic and the Indian-Pacific Ocean basins. Geophys. Res. Lett., 31, L04302, https://doi.org/10.1029/2003GL019091.

    • Search Google Scholar
    • Export Citation
  • Chang, P., B. Wang, T. Li, and L. Ji, 1994: Interactions between the seasonal cycle and the Southern Oscillation—Frequency entrainment and chaos in a coupled ocean-atmosphere model. Geophys. Res. Lett., 21, 28172820, https://doi.org/10.1029/94GL02759.

    • Search Google Scholar
    • Export Citation
  • Chang, P., L. Zhang, R. Saravanan, D. J. Vimont, J. C. H. Chiang, L. Ji, H. Seidel, and M. K. Tippett, 2007: Pacific meridional mode and El Niño–Southern Oscillation. Geophys. Res. Lett., 34, L16608, https://doi.org/10.1029/2007GL030302.

    • Search Google Scholar
    • Export Citation
  • Cheng, W., C. M. Bitz, and J. C. H. Chiang, 2007: Adjustment of the global climate to an abrupt slowdown of the Atlantic meridional overturning circulation. Ocean Circulation: Mechanisms and Impacts—Past and Future Changes of Meridional Overturning, Wiley, 295–313.

  • Clark, P. U., N. G. Pisias, T. F. Stocker, and A. J. Weaver, 2002: The role of the thermohaline circulation in abrupt climate change. Nature, 415, 863869, https://doi.org/10.1038/415863a.

    • Search Google Scholar
    • Export Citation
  • Clement, A. C., and L. C. Peterson, 2008: Mechanisms of abrupt climate change of the last glacial period. Rev. Geophys., 46, RG4002, https://doi.org/10.1029/2006RG000204.

    • Search Google Scholar
    • Export Citation
  • Collins, M., and Coauthors, 2013: Long-term climate change: Projections, commitments and irreversibility. Climate Change 2013: The Physical Science Basis, T. F. Stocker et al., Eds., Cambridge University Press, 1029–1136.

  • Danabasoglu, G., S. G. Yeager, Y. O. Kwon, J. J. Tribbia, A. S. Phillips, and J. W. Hurrell, 2012: Variability of the Atlantic meridional overturning circulation in CCSM4. J. Climate, 25, 51535172, https://doi.org/10.1175/JCLI-D-11-00463.1.

    • Search Google Scholar
    • Export Citation
  • Deser, C., M. A. Alexander, S.-P. Xie, and A. S. Phillips, 2010: Sea surface temperature variability: Patterns and mechanisms. Annu. Rev. Mar. Sci., 2, 115143, https://doi.org/10.1146/annurev-marine-120408-151453.

    • Search Google Scholar
    • Export Citation
  • Deser, C., and Coauthors, 2012: ENSO and Pacific decadal variability in the Community Climate System Model version 4. J. Climate, 25, 26222651, https://doi.org/10.1175/JCLI-D-11-00301.1.

    • Search Google Scholar
    • Export Citation
  • Dong, B., and R. T. Sutton, 2007: Enhancement of ENSO variability by a weakened Atlantic thermohaline circulation in a coupled GCM. J. Climate, 20, 49204939, https://doi.org/10.1175/JCLI4284.1.

    • Search Google Scholar
    • Export Citation
  • Emile-Geay, J., and Coauthors, 2016: Links between tropical Pacific seasonal, interannual and orbital variability during the Holocene. Nat. Geosci., 9, 168173, https://doi.org/10.1038/ngeo2608.

    • Search Google Scholar
    • Export Citation
  • Enfield, D. B., A. M. Mestas-Nuñez, and P. J. Trimble, 2001: The Atlantic multidecadal oscillation and its relation to rainfall and river flows in the continental U.S. Geophys. Res. Lett., 28, 20772080, https://doi.org/10.1029/2000GL012745.

    • Search Google Scholar
    • Export Citation
  • Eyring, V., S. Bony, G. A. Meehl, C. A. Senior, B. Stevens, R. J. Stouffer, and K. E. Taylor, 2016: Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization. Geosci. Model Dev., 9, 19371958, https://doi.org/10.5194/gmd-9-1937-2016.

    • Search Google Scholar
    • Export Citation
  • Freund, M. B., B. J. Henley, D. J. Karoly, H. V. McGregor, N. J. Abram, and D. Dommenget, 2019: Higher frequency of central Pacific El Niño events in recent decades relative to past centuries. Nat. Geosci., 12, 450455, https://doi.org/10.1038/s41561-019-0353-3.

    • Search Google Scholar
    • Export Citation
  • Frierson, D. M. W., and Coauthors, 2013: Contribution of ocean overturning circulation to tropical rainfall peak in the Northern Hemisphere. Nat. Geosci., 6, 940944, https://doi.org/10.1038/ngeo1987.

    • Search Google Scholar
    • Export Citation
  • Geng, T., W. Cai, and L. Wu, 2020: Two types of ENSO varying in tandem facilitated by nonlinear atmospheric convection. Geophys. Res. Lett., 47, e2020GL088784, https://doi.org/10.1029/2020GL088784.

    • Search Google Scholar
    • Export Citation
  • Gent, P. R., and Coauthors, 2011: The Community Climate System Model Version 4. J. Climate, 24, 49734991, https://doi.org/10.1175/2011JCLI4083.1.

    • Search Google Scholar
    • Export Citation
  • Golledge, N. R., E. D. Keller, N. Gomez, K. A. Naughten, J. Bernales, L. D. Trusel, and T. L. Edwards, 2019: Global environmental consequences of twenty-first-century ice-sheet melt. Nature, 566, 6572, https://doi.org/10.1038/s41586-019-0889-9.

    • Search Google Scholar
    • Export Citation
  • Hoerling, M. P., A. Kumar, and M. Zhong, 1997: El Niño, La Niña, and the nonlinearity of their teleconnections. J. Climate, 10, 17691786, https://doi.org/10.1175/1520-0442(1997)010<1769:ENOLNA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Huang, B., and Coauthors, 2017: Extended Reconstructed Sea Surface Temperature, version 5 (ERSSTv5): Upgrades, validations, and intercomparisons. J. Climate, 30, 81798205, https://doi.org/10.1175/JCLI-D-16-0836.1.

    • Search Google Scholar
    • Export Citation
  • Jin, F. F., 1997: An equatorial ocean recharge paradigm for ENSO. Part I: Conceptual model. J. Atmos. Sci., 54, 811829, https://doi.org/10.1175/1520-0469(1997)054<0811:AEORPF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Jin, F. F., S. T. Kim, and L. Bejarano, 2006: A coupled-stability index for ENSO. Geophys. Res. Lett., 33, L23708, https://doi.org/10.1029/2006GL027221.

    • Search Google Scholar
    • Export Citation
  • Johnson, N. C., and S.-P. Xie, 2010: Changes in the sea surface temperature threshold for tropical convection. Nat. Geosci., 3, 842845, https://doi.org/10.1038/ngeo1008.

    • Search Google Scholar
    • Export Citation
  • Kajtar, J. B., A. Santoso, M. H. England, and W. Cai, 2017: Tropical climate variability: Interactions across the Pacific, Indian, and Atlantic Oceans. Climate Dyn., 48, 21732190, https://doi.org/10.1007/s00382-016-3199-z.

    • Search Google Scholar
    • Export Citation
  • Kang, I. S., and J. S. Kug, 2002: EI Niño and la Niña sea surface temperature anomalies: Asymmetry characteristics associated with their wind stress anomalies. J. Geophys. Res., 107, 4372, https://doi.org/10.1029/2001JD000393.

    • Search Google Scholar
    • Export Citation
  • Karamperidou, C., F.-F. Jin, and J. L. Conroy, 2017: The importance of ENSO nonlinearities in tropical pacific response to external forcing. Climate Dyn., 49, 26952704, https://doi.org/10.1007/s00382-016-3475-y.

    • Search Google Scholar
    • Export Citation
  • Karamperidou, C., and Coauthors, 2020: ENSO in a changing climate: Challenges, Paleo-perspectives, and outlook. El Niño Southern Oscillation in a Changing Climate, Geophys. Monogr., Vol. 253, Amer. Geophys. Union, 471–484.

  • Kim, S. T., and F. F. Jin, 2011: An ENSO stability analysis. Part I: Results from a hybrid coupled model. Climate Dyn., 36, 15931607, https://doi.org/10.1007/s00382-010-0796-0.

    • Search Google Scholar
    • Export Citation
  • Kim, S. T., W. Cai, F. F. Jin, and J. Y. Yu, 2014: ENSO stability in coupled climate models and its association with mean state. Climate Dyn., 42, 33133321, https://doi.org/10.1007/s00382-013-1833-6.

    • Search Google Scholar
    • Export Citation
  • Kug, J.-S., F.-F. Jin, and S.-I. An, 2009: Two types of El Niño events: Cold tongue El Niño and warm Pool El Niño. J. Climate, 22, 14991515, https://doi.org/10.1175/2008JCLI2624.1.

    • Search Google Scholar
    • Export Citation
  • Liao, H., C. Wang, and Z. Song, 2021: ENSO phase-locking biases from the CMIP5 to CMIP6 models and a possible explanation. Deep-Sea Res. II, 189–190, 104943, https://doi.org/10.1016/j.dsr2.2021.104943.

    • Search Google Scholar
    • Export Citation
  • Liguori, G., and E. Di Lorenzo, 2018: Meridional modes and increasing Pacific decadal variability under anthropogenic forcing. Geophys. Res. Lett., 45, 983991, https://doi.org/10.1002/2017GL076548.

    • Search Google Scholar
    • Export Citation
  • Liu, W., S.-P. Xie, Z. Liu, and J. Zhu, 2017: Overlooked possibility of a collapsed Atlantic meridional overturning circulation in warming climate. Sci. Adv., 3, e1601666, https://doi.org/10.1126/sciadv.1601666.

    • Search Google Scholar
    • Export Citation
  • Liu, Z., 2002: A simple model study of ENSO suppression by external periodic forcing. J. Climate, 15, 10881098, https://doi.org/10.1175/1520-0442(2002)015<1088:ASMSOE>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Liu, Z., Z. Lu, X. Wen, B. L. Otto-Bliesner, A. Timmermann, and K. M. Cobb, 2014: Evolution and forcing mechanisms of El Niño over the past 21 000 years. Nature, 515, 550553, https://doi.org/10.1038/nature13963.

    • Search Google Scholar
    • Export Citation
  • Lu, Z., Z. Liu, J. Zhu, and K. M. Cobb, 2018: A review of paleo El Niño–Southern Oscillation. Atmosphere, 9, 130, https://doi.org/10.3390/atmos9040130.

    • Search Google Scholar
    • Export Citation
  • Lübbecke, J. F., and M. J. McPhaden, 2013: A comparative stability analysis of Atlantic and Pacific Niño modes. J. Climate, 26, 59655980, https://doi.org/10.1175/JCLI-D-12-00758.1.

    • Search Google Scholar
    • Export Citation
  • Mahajan, S., R. Zhang, and T. L. Delworth, 2011: Impact of the Atlantic meridional overturning circulation (AMOC) on Arctic surface air temperature and sea ice variability. J. Climate, 24, 65736581, https://doi.org/10.1175/2011JCLI4002.1.

    • Search Google Scholar
    • Export Citation
  • Marshall, J., A. Donohoe, D. Ferreira, and D. McGee, 2014: The ocean’s role in setting the mean position of the inter-tropical convergence zone. Climate Dyn., 42, 19671979, https://doi.org/10.1007/s00382-013-1767-z.

    • Search Google Scholar
    • Export Citation
  • Martin, E. R., C. Thorncroft, and B. B. Booth, 2014: The multidecadal Atlantic SST–Sahel rainfall teleconnection in CMIP5 simulations. J. Climate, 27, 784806, https://doi.org/10.1175/JCLI-D-13-00242.1.

    • Search Google Scholar
    • Export Citation
  • McKenna, S., A. Santoso, A. Sen Gupta, A. S. Taschetto, and W. Cai, 2020: Indian Ocean dipole in CMIP5 and CMIP6: Characteristics, biases, and links to ENSO. Sci. Rep., 10, 11 500, https://doi.org/10.1038/s41598-020-68268-9.

    • Search Google Scholar
    • Export Citation
  • McPhaden, M. J., S. E. Zebiak, and M. H. Glantz, 2006: ENSO as an integrating concept in Earth science. Science, 314, 17401745, https://doi.org/10.1126/science.1132588.

    • Search Google Scholar
    • Export Citation
  • Monteagudo, M. M., J. Lynch-Stieglitz, T. M. Marchitto, and M. W. Schmidt, 2021: Central equatorial Pacific cooling during the last glacial maximum. Geophys. Res. Lett., 48, e2020GL088592, https://doi.org/10.1029/2020gl088592.

    • Search Google Scholar
    • Export Citation
  • Orihuela-Pinto, B., M. H. England, and A. S. Taschetto, 2022: Interbasin and interhemispheric impacts of a collapsed Atlantic overturning circulation. Nat. Climate Change, 12, 558565, https://doi.org/10.1038/s41558-022-01380-y.

    • Search Google Scholar
    • Export Citation
  • Rahmstorf, S., 2002: Ocean circulation and climate during the past 120 000 years. Nature, 419, 207214, https://doi.org/10.1038/nature01090.

    • Search Google Scholar
    • Export Citation
  • Rahmstorf, S., J. E. Box, G. Feulner, M. E. Mann, A. Robinson, S. Rutherford, and E. J. Schaffernicht, 2015: Exceptional twentieth-century slowdown in Atlantic Ocean overturning circulation. Nat. Climate Change, 5, 475480, https://doi.org/10.1038/nclimate2554.

    • Search Google Scholar
    • Export Citation
  • Rainsley, E., L. Menviel, C. J. Fogwill, C. S. M. Turney, A. L. C. Hughes, and D. H. Rood, 2018: Greenland ice mass loss during the Younger Dryas driven by Atlantic meridional overturning circulation feedbacks. Sci. Rep., 8, 11 307, https://doi.org/10.1038/s41598-018-29226-8.

    • Search Google Scholar
    • Export Citation
  • Rayner, N. A., D. E. Parker, E. B. Horton, C. K. Folland, L. V. Alexander, D. P. Rowell, E. C. Kent, and A. Kaplan, 2003: Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J. Geophys. Res., 108, 4407, https://doi.org/10.1029/2002JD002670.

    • Search Google Scholar
    • Export Citation
  • Sachs, J. P., D. Sachse, R. H. Smittenberg, Z. Zhang, D. S. Battisti, and S. Golubic, 2009: Southward movement of the Pacific intertropical convergence zone AD 1400–1850. Nat. Geosci., 2, 519525, https://doi.org/10.1038/ngeo554.

    • Search Google Scholar
    • Export Citation
  • Santoso, A., M. H. England, and W. Cai, 2012: Impact of Indo-Pacific feedback interactions on ENSO dynamics diagnosed using ensemble climate simulations. J. Climate, 25, 77437763, https://doi.org/10.1175/JCLI-D-11-00287.1.

    • Search Google Scholar
    • Export Citation
  • Santoso, A., and Coauthors, 2019: Dynamics and predictability of El Niño–Southern Oscillation: An Australian perspective on progress and challenges. Bull. Amer. Meteor. Soc., 100, 403420, https://doi.org/10.1175/BAMS-D-18-0057.1.

    • Search Google Scholar
    • Export Citation
  • Song, Z., H. Liu, and X. Chen, 2020: Eastern equatorial Pacific SST seasonal cycle in global climate models: From CMIP5 to CMIP6. Acta Oceanol. Sin., 39, 5060, https://doi.org/10.1007/s13131-020-1623-z.

    • Search Google Scholar
    • Export Citation
  • Stein, K., N. Schneider, A. Timmermann, and F. F. Jin, 2010: Seasonal synchronization of ENSO events in a linear stochastic model. J. Climate, 23, 56295643, https://doi.org/10.1175/2010JCLI3292.1.

    • Search Google Scholar
    • Export Citation
  • Stouffer, R. J., and Coauthors, 2006: Investigating the causes of the response of the thermohaline circulation to past and future climate changes. J. Climate, 19, 13651387, https://doi.org/10.1175/JCLI3689.1.

    • Search Google Scholar
    • Export Citation
  • Sutton, R. T., and D. L. R. Hodson, 2005: Atlantic Ocean forcing of North American and European summer climate. Science, 309, 115118, https://doi.org/10.1126/science.1109496.

    • Search Google Scholar
    • Export Citation
  • Svendsen, L., N. G. Kvamstø, and N. Keenlyside, 2013: Weakening AMOC connects equatorial Atlantic and Pacific interannual variability. Climate Dyn., 43, 29312941, https://doi.org/10.1007/s00382-013-1904-8.

    • Search Google Scholar
    • Export Citation
  • Takahashi, K., and B. Dewitte, 2016: Strong and moderate nonlinear El Niño regimes. Climate Dyn., 46, 16271645, https://doi.org/10.1007/s00382-015-2665-3.

    • Search Google Scholar
    • Export Citation
  • Takahashi, K., A. Montecinos, K. Goubanova, and B. Dewitte, 2011: ENSO regimes: Reinterpreting the canonical and Modoki El Niño. Geophys. Res. Lett., 38, L10704, https://doi.org/10.1029/2011GL047364.

    • Search Google Scholar
    • Export Citation
  • Taschetto, A. S., A. Sen Gupta, N. C. Jourdain, A. Santoso, C. C. Ummenhofer, and M. H. England, 2014: Cold tongue and warm pool ENSO events in CMIP5: Mean state and future projections. J. Climate, 27, 28612885, https://doi.org/10.1175/JCLI-D-13-00437.1.

    • Search Google Scholar
    • Export Citation
  • Timmermann, A., S.-I. An, U. Krebs, and H. Goosse, 2005: ENSO suppression due to weakening of the North Atlantic thermohaline circulation. J. Climate, 18, 31223139, https://doi.org/10.1175/JCLI3495.1.

    • Search Google Scholar
    • Export Citation
  • Timmermann, A., and Coauthors, 2007a: The influence of a weakening of the Atlantic meridional overturning circulation on ENSO. J. Climate, 20, 48994919, https://doi.org/10.1175/JCLI4283.1.

    • Search Google Scholar
    • Export Citation
  • Timmermann, A., S. J. Lorenz, S.-I. An, A. Clement, and S.-P. Xie, 2007b: The effect of orbital forcing on the mean climate and variability of the tropical Pacific. J. Climate, 20, 41474159, https://doi.org/10.1175/JCLI4240.1.

    • Search Google Scholar
    • Export Citation
  • Timmermann, A., and Coauthors, 2018: El Niño–Southern Oscillation complexity. Nature, 559, 535545, https://doi.org/10.1038/s41586-018-0252-6.

    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., 2020: ENSO in the global climate system. El Niño Southern Oscillation in a Changing Climate, Geophys. Monogr., Vol. 253, Amer. Geophys. Union, 21–37.

  • Vellinga, M., and R. A. Wood, 2002: Global climatic impacts of a collapse of the Atlantic thermohaline circulation. Climatic Change, 54, 251267, https://doi.org/10.1023/A:1016168827653.

    • Search Google Scholar
    • Export Citation
  • Wang, B., X. Luo, Y. M. Yang, W. Sun, M. A. Cane, W. Cai, S. W. Yeh, and J. Liu, 2019: Historical change of El Niño properties sheds light on future changes of extreme El Niño. Proc. Natl. Acad. Sci. USA, 116, 22 51222 517, https://doi.org/10.1073/pnas.1911130116.

    • Search Google Scholar
    • Export Citation
  • Williamson, M. S., M. Collins, S. S. Drijfhout, R. Kahana, J. V. Mecking, and T. M. Lenton, 2018: Effect of AMOC collapse on ENSO in a high resolution general circulation model. Climate Dyn., 50, 25372552, https://doi.org/10.1007/s00382-017-3756-0.

    • Search Google Scholar
    • Export Citation
  • Wu, L., C. Li, C. Yang, and S.-P. Xie, 2008: Global teleconnections in response to a shutdown of the Atlantic meridional overturning circulation. J. Climate, 21, 30023019, https://doi.org/10.1175/2007JCLI1858.1.

    • Search Google Scholar
    • Export Citation
  • Xie, R., and F. F. Jin, 2018: Two leading ENSO modes and El Niño types in the Zebiak–Cane model. J. Climate, 31, 19431962, https://doi.org/10.1175/JCLI-D-17-0469.1.

    • Search Google Scholar
    • Export Citation
  • Xie, S.-P., 1994: On the genesis of the equatorial annual cycle. J. Climate, 7, 20082013, https://doi.org/10.1175/1520-0442(1994)007<2008:OTGOTE>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Yan, H., W. Wei, W. Soon, Z. An, W. Zhou, Z. Liu, Y. Wang, and R. M. Carter, 2015: Dynamics of the intertropical convergence zone over the western Pacific during the Little Ice Age. Nat. Geosci., 8, 315320, https://doi.org/10.1038/ngeo2375.

    • Search Google Scholar
    • Export Citation
  • Yeh, S.-W., J.-S. Kug, B. Dewitte, M.-H. Kwon, B. P. Kirtman, and F.-F. Jin, 2009: El Niño in a changing climate. Nature, 461, 511514, https://doi.org/10.1038/nature08316.

    • Search Google Scholar
    • Export Citation
  • Yeh, S.-W., and Coauthors, 2018: ENSO atmospheric teleconnections and their response to greenhouse gas forcing. Rev. Geophys., 56, 185206, https://doi.org/10.1002/2017RG000568.

    • Search Google Scholar
    • Export Citation
  • Yu, J. Y., H. Y. Kao, and T. Lee, 2010: Subtropics-related interannual sea surface temperature variability in the central equatorial Pacific. J. Climate, 23, 28692884, https://doi.org/10.1175/2010JCLI3171.1.

    • Search Google Scholar
    • Export Citation
  • Yun, K.-S., J.-Y. Lee, A. Timmermann, K. Stein, M. F. Stuecker, J. C. Fyfe, and E.-S. Chung, 2021: Increasing ENSO–rainfall variability due to changes in future tropical temperature–rainfall relationship. Commun. Earth Environ., 2, 43, https://doi.org/10.1038/s43247-021-00108-8.

    • Search Google Scholar
    • Export Citation
  • Zhang, H., A. Clement, and P. Di Nezio, 2014: The South Pacific meridional mode: A mechanism for ENSO-like variability. J. Climate, 27, 769783, https://doi.org/10.1175/JCLI-D-13-00082.1.

    • Search Google Scholar
    • Export Citation
  • Zhang, R., and T. L. Delworth, 2005: Simulated tropical response to a substantial weakening of the Atlantic thermohaline circulation. J. Climate, 18, 18531860, https://doi.org/10.1175/JCLI3460.1.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 1560 0 0
Full Text Views 2632 1386 85
PDF Downloads 1435 351 17