Changes in the Relationship between ENSO and the Winter Arctic Stratospheric Polar Vortex in Recent Decades

Ruhua Zhang aDepartment of Atmospheric and Oceanic Sciences and Institute of Atmospheric Sciences, Fudan University, Shanghai, China
bSchool of Energy and Environment, Guy Carpenter Asia-Pacific Climate Impact Center, Center for Ocean Research in Hong Kong and Macau (CORE), City University of Hong Kong, Hong Kong, China

Search for other papers by Ruhua Zhang in
Current site
Google Scholar
PubMed
Close
,
Wen Zhou aDepartment of Atmospheric and Oceanic Sciences and Institute of Atmospheric Sciences, Fudan University, Shanghai, China
bSchool of Energy and Environment, Guy Carpenter Asia-Pacific Climate Impact Center, Center for Ocean Research in Hong Kong and Macau (CORE), City University of Hong Kong, Hong Kong, China

Search for other papers by Wen Zhou in
Current site
Google Scholar
PubMed
Close
,
Wenshou Tian cKey Laboratory for Semi-Arid Climate Change of the Ministry of Education, College of Atmospheric Sciences, Lanzhou University, Lanzhou, China

Search for other papers by Wenshou Tian in
Current site
Google Scholar
PubMed
Close
,
Yue Zhang aDepartment of Atmospheric and Oceanic Sciences and Institute of Atmospheric Sciences, Fudan University, Shanghai, China
bSchool of Energy and Environment, Guy Carpenter Asia-Pacific Climate Impact Center, Center for Ocean Research in Hong Kong and Macau (CORE), City University of Hong Kong, Hong Kong, China

Search for other papers by Yue Zhang in
Current site
Google Scholar
PubMed
Close
,
Zhenchen Liu aDepartment of Atmospheric and Oceanic Sciences and Institute of Atmospheric Sciences, Fudan University, Shanghai, China
bSchool of Energy and Environment, Guy Carpenter Asia-Pacific Climate Impact Center, Center for Ocean Research in Hong Kong and Macau (CORE), City University of Hong Kong, Hong Kong, China

Search for other papers by Zhenchen Liu in
Current site
Google Scholar
PubMed
Close
, and
Paxson K. Y. Cheung bSchool of Energy and Environment, Guy Carpenter Asia-Pacific Climate Impact Center, Center for Ocean Research in Hong Kong and Macau (CORE), City University of Hong Kong, Hong Kong, China

Search for other papers by Paxson K. Y. Cheung in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The impact of El Niño–Southern Oscillation (ENSO) on the winter stratospheric polar vortex intensity (PVI) is re-examined, using JRA-55 datasets and the CESM2 model. Our results show that the negative correlation between ENSO and PVI has weakened in recent decades and is no longer statistically significant after the mid-1990s. This weakening ENSO–PVI relationship after the mid-1990s is associated with wave-1 fluxes entering the stratosphere; that is, the ENSO-induced increasing wave-1 fluxes are weaker after the mid-1990s than before the mid-1990s. Except for the Pacific–North America (PNA)-like wave train, the stratospheric wave flux changes are related to ENSO-induced geopotential height changes over East Asia. The ENSO-induced tropical zonal circulation anomalies are enhanced from the central Pacific to East Asia, leading to more substantial wave flux anomalies propagating westward from the central Pacific to East Asia and a more significant high center over Northeast Asia after the mid-1990s than before the mid-1990s. This ENSO-induced high center after the mid-1990s is out of phase with the climatological center of wave 1, leading to a relatively weaker increase in wave 1. Model results show that changes in the ENSO–PVI relationship and ENSO–Asia circulation are associated with changes in ENSO-related SST combined with global mean SST.

Significance Statement

In this study, changes in the ENSO–polar vortex relationship and the relevant mechanisms are analyzed from the perspective of the ENSO-induced East Asia circulation. The results can help us better understand and predict variations in the stratospheric polar vortex.

© 2022 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Wen Zhou, wen_zhou@fudan.edu.cn

Abstract

The impact of El Niño–Southern Oscillation (ENSO) on the winter stratospheric polar vortex intensity (PVI) is re-examined, using JRA-55 datasets and the CESM2 model. Our results show that the negative correlation between ENSO and PVI has weakened in recent decades and is no longer statistically significant after the mid-1990s. This weakening ENSO–PVI relationship after the mid-1990s is associated with wave-1 fluxes entering the stratosphere; that is, the ENSO-induced increasing wave-1 fluxes are weaker after the mid-1990s than before the mid-1990s. Except for the Pacific–North America (PNA)-like wave train, the stratospheric wave flux changes are related to ENSO-induced geopotential height changes over East Asia. The ENSO-induced tropical zonal circulation anomalies are enhanced from the central Pacific to East Asia, leading to more substantial wave flux anomalies propagating westward from the central Pacific to East Asia and a more significant high center over Northeast Asia after the mid-1990s than before the mid-1990s. This ENSO-induced high center after the mid-1990s is out of phase with the climatological center of wave 1, leading to a relatively weaker increase in wave 1. Model results show that changes in the ENSO–PVI relationship and ENSO–Asia circulation are associated with changes in ENSO-related SST combined with global mean SST.

Significance Statement

In this study, changes in the ENSO–polar vortex relationship and the relevant mechanisms are analyzed from the perspective of the ENSO-induced East Asia circulation. The results can help us better understand and predict variations in the stratospheric polar vortex.

© 2022 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Wen Zhou, wen_zhou@fudan.edu.cn
Save
  • Andrews, D. G., C. B. Leovy, and J. R. Holton, 1987: Middle Atmosphere Dynamics. Academic Press, 485 pp.

  • Ashok, K., and T. Yamagata, 2009: The El Niño with a difference. Nature, 461, 481484, https://doi.org/10.1038/461481a.

  • Baldwin, M. P., and T. J. Dunkerton, 1999: Propagation of the Arctic Oscillation from the stratosphere to the troposphere. J. Geophys. Res., 104, 30 93730 946, https://doi.org/10.1029/1999JD900445.

    • Search Google Scholar
    • Export Citation
  • Baldwin, M. P., and T. J. Dunkerton, 2001: Stratospheric harbingers of anomalous weather regimes. Science, 294, 581584, https://doi.org/10.1126/science.1063315.

    • Search Google Scholar
    • Export Citation
  • Baldwin, M. P., D. B. Stephenson, D. W. J. Thompson, T. J. Dunkerton, A. J. Charlton, and A. O’Neill, 2003: Stratospheric memory and skill of extended-range weather forecasts. Science, 301, 636640, https://doi.org/10.1126/science.1087143.

    • Search Google Scholar
    • Export Citation
  • Baldwin, M. P., and Coauthors, 2021: Sudden stratospheric warmings. Rev. Geophys., 59, e2020RG000708, https://doi.org/10.1029/2020RG000708.

    • Search Google Scholar
    • Export Citation
  • Bell, C. J., L. J. Gray, A. J. Charlton-Perez, M. M. Joshi, and A. A. Scaife, 2009: Stratospheric communication of El Niño teleconnections to European winter. J. Climate, 22, 40834096, https://doi.org/10.1175/2009JCLI2717.1.

    • Search Google Scholar
    • Export Citation
  • Beobide-Arsuaga, G., T. Bayr, A. Reintges, and M. Latif, 2021: Uncertainty of ENSO-amplitude projections in CMIP5 and CMIP6 models. Climate Dyn., 56, 38753888, https://doi.org/10.1007/s00382-021-05673-4.

    • Search Google Scholar
    • Export Citation
  • Bretherton, C. S., M. Widmann, V. P. Dymnikov, J. M. Wallace, and I. Bladé, 1999: The effective number of spatial degrees of freedom of a time-varying field. J. Climate, 12, 19902009, https://doi.org/10.1175/1520-0442(1999)012<1990:TENOSD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Butler, A. H., and L. M. Polvani, 2011: El Niño, La Niña, and stratospheric sudden warmings: A reevaluation in light of the observational record. Geophys. Res. Lett., 38, L13807, https://doi.org/10.1029/2011GL048084.

    • Search Google Scholar
    • Export Citation
  • Butler, A. H., D. J. Seidel, S. C. Hardiman, N. Butchart, T. Birner, and A. Match, 2015: Defining sudden stratospheric warmings. Bull. Amer. Meteor. Soc., 96, 19131928, https://doi.org/10.1175/BAMS-D-13-00173.1.

    • Search Google Scholar
    • Export Citation
  • Cai, M., and R. C. Ren, 2007: Meridional and downward propagation of atmospheric circulation anomalies. Part I: Northern Hemisphere cold season variability. J. Atmos. Sci., 64, 18801901, https://doi.org/10.1175/JAS3922.1.

    • Search Google Scholar
    • Export Citation
  • Camp, C. D., and K. K. Tung, 2007: Stratospheric polar warming by ENSO in winter: A statistical study. Geophys. Res. Lett., 34, L04809, https://doi.org/10.1029/2006GL028521.

    • Search Google Scholar
    • Export Citation
  • Charlton, A. J., and L. M. Polvani, 2007: A new look at stratospheric sudden warmings. Part I: Climatology and modeling benchmarks. J. Climate, 20, 449469, https://doi.org/10.1175/JCLI3996.1.

    • Search Google Scholar
    • Export Citation
  • Chen, J. P., Z. P. Wen, R. G. Wu, Z. S. Chen, and P. Zhao, 2014: Interdecadal changes in the relationship between southern China winter–spring precipitation and ENSO. Climate Dyn., 43, 13271338, https://doi.org/10.1007/s00382-013-1947-x.

    • Search Google Scholar
    • Export Citation
  • Domeisen, D. I. V., C. I. Garfinkel, and A. H. Butler, 2019: The teleconnection of El Niño southern oscillation to the stratosphere. Rev. Geophys., 57, 547, https://doi.org/10.1029/2018RG000596.

    • Search Google Scholar
    • Export Citation
  • Ebisuzaki, W., 1997: A method to estimate the statistical significance of a correlation when the data are serially correlated. J. Climate, 10, 21472153, https://doi.org/10.1175/1520-0442(1997)010<2147:AMTETS>2.0.CO;2

    • Search Google Scholar
    • Export Citation
  • Feng, Y., X. Chen, and K. K. Tung, 2020: ENSO diversity and the recent appearance of central Pacific ENSO. Climate Dyn., 54, 413433,. https://doi.org/10.1007/s00382-019-05005-7.

    • Search Google Scholar
    • Export Citation
  • Garfinkel, C. I., and D. L. Hartmann, 2007: Effects of the El Niño–Southern Oscillation and the Quasi-Biennial Oscillation on polar temperatures in the stratosphere. J. Geophys. Res., 112, D19112, https://doi.org/10.1029/2007JD008481.

    • Search Google Scholar
    • Export Citation
  • Garfinkel, C. I., and D. L. Hartmann, 2008: Different ENSO teleconnections and their effects on the stratospheric polar vortex. J. Geophys. Res., 113, D18114, https://doi.org/10.1029/2008JD009920.

    • Search Google Scholar
    • Export Citation
  • Garfinkel, C. I., D. L. Hartmann, and F. Sassi, 2010: Tropospheric precursors of anomalous Northern Hemisphere stratospheric polar vortices. J. Climate, 23, 32823299, https://doi.org/10.1175/2010JCLI3010.1.

    • Search Google Scholar
    • Export Citation
  • Garfinkel, C. I., A. H. Butler, D. W. Waugh, M. M. Hurwitz, and L. M. Polvani, 2012: Why might stratospheric sudden warmings occur with similar frequency in El Niño and La Niña winters? J. Geophys. Res., 117, D19106, https://doi.org/10.1029/2012JD017777.

    • Search Google Scholar
    • Export Citation
  • Garfinkel, C. I., C. Schwartz, A. H. Butler, D. I. V. Domeisen, S. W. Son, and I. P. White, 2019: Weakening of the teleconnection from El Niño–Southern Oscillation to the Arctic stratosphere over the past few decades: What can be learned from subseasonal forecast models? J. Geophys. Res. Atmos., 124, 76837696, https://doi.org/10.1029/2018JD029961.

    • Search Google Scholar
    • Export Citation
  • Geng, X., W. J. Zhang, F. F. Jin, M. F. Stuecker, and A. F. Z. Levine, 2020: Modulation of the relationship between ENSO and its combination mode by the Atlantic multidecadal oscillation. J. Climate, 33, 46794695, https://doi.org/10.1175/JCLI-D-19-0740.1.

    • Search Google Scholar
    • Export Citation
  • Gong, H. N., W. Zhou, W. Chen, L. Wang, M. Y. T. Leung, P. K. Y. Cheung, and Y. Zhang, 2019: Modulation of the southern Indian Ocean dipole on the impact of El Niño–Southern Oscillation on Australian summer rainfall. Int. J. Climatol., 39, 24842490, https://doi.org/10.1002/joc.5941.

    • Search Google Scholar
    • Export Citation
  • Gray, L. J., J. A. Anstey, Y. Kawatani, H. Lu, S. Osprey, and V. Schenzinger, 2018: Surface impacts of the Quasi Biennial Oscillation. Atmos. Chem. Phys., 18, 82278247, https://doi.org/10.5194/acp-18-8227-2018

    • Search Google Scholar
    • Export Citation
  • Gray, L. J., M. J. Brown, J. Knight, M. Andrews, H. Lu, C. O’Reilly, and J. Anstey, 2020: Forecasting extreme stratospheric polar vortex events. Nat. Commun., 11, 4630, https://doi.org/10.1038/s41467-020-18299-7.

    • Search Google Scholar
    • Export Citation
  • Guo, Y. P., and Z. M. Tan, 2018: The Hadley circulation regime change: Combined effect of the western Pacific warming and increased ENSO amplitude. J. Climate, 31, 97399751, https://doi.org/10.1175/JCLI-D-18-0306.1.

    • Search Google Scholar
    • Export Citation
  • Hall, R. J., D. M. Mitchell, W. J. M. Seviour, and C. J. Wright, 2021: Persistent model biases in the CMIP6 representation of stratospheric polar vortex variability. J. Geophys. Res. Atmos., 126, e2021JD034759, https://doi.org/10.1029/2021JD034759.

  • Harada, Y. H., and Coauthors, 2016: The JRA-55 reanalysis: Representation of atmospheric circulation and climate variability. J. Meteor. Soc. Japan, 94, 269302, https://doi.org/10.2151/jmsj.2016-015.

    • Search Google Scholar
    • Export Citation
  • Hu, D. Z., and Z. Y. Guan, 2018: Decadal relationship between the stratospheric Arctic vortex and Pacific decadal oscillation. J. Climate, 31, 33713386, https://doi.org/10.1175/JCLI-D-17-0266.1.

    • Search Google Scholar
    • Export Citation
  • Hu, D. Z., W. S. Tian, F. Xie, J. C. Shu, and S. Dhomse, 2014: Effects of meridional sea surface temperature changes on stratospheric temperature and circulation. Adv. Atmos. Sci., 31, 888900, https://doi.org/10.1007/s00376-013-3152-6.

    • Search Google Scholar
    • Export Citation
  • Hu, D. Z., Z. Y. Guan, W. S. Tian, and R. C. Ren, 2018: Recent strengthening of the stratospheric Arctic vortex response to warming in the central North Pacific. Nat. Commun., 9, 1697, https://doi.org/10.1038/s41467-018-04138-3.

    • Search Google Scholar
    • Export Citation
  • Hu, D. Z., Z. Y. Guan, M. Liu, and W. Wang, 2021: Is the relationship between stratospheric Arctic vortex and Arctic oscillation steady? J. Geophys. Res. Atmos., 126, e2021JD035759, https://doi.org/10.1029/2021JD035759.

  • Hu, J. G., T. Li, H. M. Xu, and S. Y. Yang, 2017: Lessened response of boreal winter stratospheric polar vortex to El Niño in recent decades. Climate Dyn., 49, 263278, https://doi.org/10.1007/s00382-016-3340-z.

    • Search Google Scholar
    • Export Citation
  • Huang, J. L., and W. S. Tian, 2019: Eurasian cold air outbreaks under different Arctic stratospheric polar vortex strengths. J. Atmos. Sci., 76, 12451264, https://doi.org/10.1175/JAS-D-18-0285.1.

    • Search Google Scholar
    • Export Citation
  • Huang, J. L., P. Hitchcock, A. C. Maycock, C. M. McKenna, and W. S. Tian, 2021: Northern Hemisphere cold air outbreaks are more likely to be severe during weak polar vortex conditions. Commun. Earth Environ., 2, 147, https://doi.org/10.1038/s43247-021-00215-6.

  • Iza, M., N. Calvo, and E. Manzini, 2016: The stratospheric pathway of La Niña. J. Climate, 29, 88998914, https://doi.org/10.1175/JCLI-D-16-0230.1.

    • Search Google Scholar
    • Export Citation
  • Jia, X. J., H. Lin, and J. W. Ge, 2015: The interdecadal change of ENSO impact on wintertime East Asian climate. J. Geophys. Res. Atmos., 120, 11 918–11 935, https://doi.org/10.1002/2015JD023583.

    • Search Google Scholar
    • Export Citation
  • Jian, Y., M. Y. T. Leung, W. Zhou, M. Jian, S. Yang, and X. Lin, 2021: Interdecadal shift of the relationship between ENSO and winter synoptic temperature variability over the Asian–Pacific–American region in the 1980s. J. Climate, 34, 53215335, https://doi.org/10.1175/JCLI-D-20-0931.1.

    • Search Google Scholar
    • Export Citation
  • Karpechko, A. Y., P. Hitchcock, D. H. W. Peters, and A. Schneidereit, 2017: Predictability of downward propagation of major sudden stratospheric warmings. Quart. J. Roy. Meteor. Soc., 143, 14591470, https://doi.org/10.1002/qj.3017

    • Search Google Scholar
    • Export Citation
  • Kidston, J., A. A. Scaife, S. C. Hardiman, D. M. Mitchell, N. Butchart, M. P. Baldwin, and L. J. Gray, 2015: Stratospheric influence on tropospheric jet streams, storm tracks and surface weather. Nat. Geosci., 8, 433440, https://doi.org/10.1038/ngeo2424.

    • Search Google Scholar
    • Export Citation
  • Kim, B.-M., S.-W. Son, S.-K. Min, J.-H. Jeong, S.-J. Kim, X. Zhang, T. Shim, and J.-H. Yoon, 2014: Weakening of the stratospheric polar vortex by Arctic sea-ice loss. Nat. Commun., 5, 4646, https://doi.org/10.1038/ncomms5646.

    • Search Google Scholar
    • Export Citation
  • Kim, J.-W., S.-I. An, S.-Y. Jun, H.-J. Park, and S.-W. Yeh, 2017: ENSO and East Asian winter monsoon relationship modulation associated with the anomalous northwest Pacific anticyclone. Climate Dyn., 49, 11571179, https://doi.org/10.1007/s00382-016-3371-5.

    • Search Google Scholar
    • Export Citation
  • Kobayashi, S., and Coauthors, 2015: The JRA-55 reanalysis: General specifications and basic characteristics. J. Meteor. Soc. Japan, 93, 548, https://doi.org/10.2151/jmsj.2015-001.

    • Search Google Scholar
    • Export Citation
  • Leung, M. Y. T., and W. Zhou, 2016: Direct and indirect ENSO modulation of winter temperature over the Asian-Pacific-American region. Sci. Rep., 6, 36356, https://doi.org/10.1038/srep36356.

    • Search Google Scholar
    • Export Citation
  • Li, X. Z., and W. Zhou, 2012: Quasi-4-yr coupling between El Niño–Southern Oscillation and water vapor transport over East Asia-WNP. J. Climate, 25, 58795891, https://doi.org/10.1175/JCLI-D-11-00433.1.

    • Search Google Scholar
    • Export Citation
  • Li, Y., and W. Tian, 2017: Different impact of central Pacific and eastern Pacific El Niño on the duration of sudden stratospheric warming. Adv. Atmos. Sci., 34, 771782, https://doi.org/10.1007/s00376-017-6286-0.

    • Search Google Scholar
    • Export Citation
  • Limpasuvan, V., D. L. Hartmann, D. W. J. Thompson, K. Jeev, and Y. L. Yung, 2005: Stratosphere–troposphere evolution during polar vortex intensification. J. Geophys. Res., 110, D24101, https://doi.org/10.1029/2005JD006302.

    • Search Google Scholar
    • Export Citation
  • Lu, H., T. J. Bracegirdle, T. Phillips, A. Bushell, and L. Gray, 2014: Mechanisms for the Holton-Tan relationship and its decadal variation. J. Geophys. Res. Atmos., 119, 28112830, https://doi.org/10.1002/2013JD021352.

    • Search Google Scholar
    • Export Citation
  • Lu, Y. J., W. S. Tian, J. K. Zhang, J. L. Huang, R. H. Zhang, T. Wang, and M. Xu, 2021: The impact of the stratospheric polar vortex shift on the Arctic Oscillation. J. Climate, 34, 41294143, https://doi.org/10.1175/JCLI-D-20-0536.1.

    • Search Google Scholar
    • Export Citation
  • Ma, J., W. Chen, D. Nath, and X. Q. Lan, 2020: Modulation by ENSO of the relationship between stratospheric sudden warming and the Madden–Julian oscillation. Geophys. Res. Lett., 47, e2020GL088894, https://doi.org/10.1029/2020GL088894.

    • Search Google Scholar
    • Export Citation
  • McPhaden, M. J., 2012: A 21st century shift in the relationship between ENSO SST and warm water volume anomalies. Geophys. Res. Lett., 39, L09706, https://doi.org/10.1029/2012GL051826

    • Search Google Scholar
    • Export Citation
  • Naujokat, B., 1986: An update of the observed quasi-biennial oscillation of the stratospheric winds over the tropics. J. Atmos. Sci., 43, 18731877, https://doi.org/10.1175/1520-0469(1986)043<1873:AUOTOQ>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Oehrlein, J., G. Chiodo, and L. M. Polvani, 2019: Separating and quantifying the distinct impacts of El Niño and sudden stratospheric warmings on North Atlantic and Eurasian wintertime climate. Atmos. Sci. Lett., 20, e923, https://doi.org/10.1002/asl.923.

    • Search Google Scholar
    • Export Citation
  • Omrani, N. E., and Coauthors, 2014: Stratosphere key for wintertime atmospheric response to warm Atlantic decadal conditions. Climate Dyn., 42, 649663, https://doi.org/10.1007/s00382-013-1860-3

    • Search Google Scholar
    • Export Citation
  • Plumb, R. A., 1985: On the three-dimensional propagation of stationary waves. J. Atmos. Sci., 42, 217229, https://doi.org/10.1175/1520-0469(1985)042<0217:OTTDPO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Polvani, L. M., and D. W. Waugh, 2004: Upward wave activity flux as a precursor to extreme stratospheric events and subsequent anomalous surface weather regimes. J. Climate, 17, 35483554, https://doi.org/10.1175/1520-0442(2004)017<3548:UWAFAA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Polvani, L. M., L. Sun, A. H. Butler, J. H. Richter, and C. Deser, 2017: Distinguishing stratospheric sudden warmings from ENSO as key drivers of wintertime climate variability over the North Atlantic and Eurasia. J. Climate, 30, 19591969, https://doi.org/10.1175/JCLI-D-16-0277.1.

    • Search Google Scholar
    • Export Citation
  • Rao, J., and R. C. Ren, 2016: Asymmetry and nonlinearity of the influence of ENSO on the northern winter stratosphere: 1. Observations. J. Geophys. Res. Atmos., 121, 90009016, https://doi.org/10.1002/2015JD024520.

    • Search Google Scholar
    • Export Citation
  • Rao, J., R. C. Ren, H. S. Chen, X. W. Liu, Y. Y. Yu, and Y. Yang, 2019a: Sub-seasonal to seasonal hindcasts of stratospheric sudden warming by BCC_CSM1.1(m): A comparison with ECMWF. Adv. Atmos. Sci., 36, 479494, https://doi.org/10.1007/s00376-018-8165-8.

    • Search Google Scholar
    • Export Citation
  • Rao, J., C. I. Garfinkel, and R. C. Ren, 2019b: Modulation of the northern winter stratospheric El Niño–Southern Oscillation teleconnection by the PDO. J. Climate, 32, 57615783, https://doi.org/10.1175/JCLI-D-19-0087.1.

    • Search Google Scholar
    • Export Citation
  • Rao, J., R. C. Ren, X. Xia, C. H. Shi, and D. Guo, 2019c: Combined impact of El Niño–Southern Oscillation and Pacific decadal oscillation on the northern winter stratosphere. Atmosphere, 10 211, https://doi.org/10.3390/atmos10040211.

    • Search Google Scholar
    • Export Citation
  • Rao, J., C. I. Garfinkel, and I. P. White, 2020: Impact of the quasi-biennial oscillation on the northern winter stratospheric polar vortex in CMIP5/6 models. J. Climate, 33, 47874813, https://doi.org/10.1175/JCLI-D-19-0663.1.

    • Search Google Scholar
    • Export Citation
  • Rao, J., S. M. Liu, and Y. H. Chen, 2021: Northern Hemisphere sudden stratospheric warming and its downward impact in four Chinese CMIP6 models. Adv. Atmos. Sci., 38, 187202, https://doi.org/10.1007/s00376-020-0250-0.

    • Search Google Scholar
    • Export Citation
  • Rayner, N. A., D. E. Parker, E. B. Horton, C. K. Folland, L. V. Alexander, D. P. Rowell, E. C. Kent, and A. Kaplan, 2003: Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J. Geophys. Res., 108, 4407, https://doi.org/10.1029/2002JD002670.

  • Ren, R. C., M. Cai, C. Y. Xiang, and G. X. Wu, 2012: Observational evidence of the delayed response of stratospheric polar vortex variability to ENSO SST anomalies. Climate Dyn., 38, 13451358, https://doi.org/10.1007/s00382-011-1137-7.

    • Search Google Scholar
    • Export Citation
  • Ren, R. C., J. Rao, G. Wu, and M. Cai, 2017: Tracking the delayed response of the northern winter stratosphere to ENSO using multi reanalyses and model simulations. Climate Dyn., 48, 28592879, https://doi.org/10.1007/s00382-016-3238-9.

    • Search Google Scholar
    • Export Citation
  • Sassi, F., D. Kinnison, B. A. Boville, R. R. Garcia, and R. Roble, 2004: Effect of El Niño–Southern Oscillation on the dynamical, thermal, and chemical structure of the middle atmosphere. J. Geophys. Res., 109, D17108, https://doi.org/10.1029/2003JD004434.

    • Search Google Scholar
    • Export Citation
  • Seo, K. H., and S. W. Son, 2012: The global atmospheric circulation response to tropical diabatic heating associated with the Madden–Julian oscillation during northern winter. J. Atmos. Sci., 69, 7996, https://doi.org/10.1175/2011JAS3686.1.

    • Search Google Scholar
    • Export Citation
  • Sigmond, M., J. F. Scinocca, V. V. Kharin, and T. G. Shepherd, 2013: Enhanced seasonal forecast skill following stratospheric sudden warmings. Nat. Geosci., 6, 98102, https://doi.org/10.1038/ngeo1698.

    • Search Google Scholar
    • Export Citation
  • Song, F., and T. Zhou, 2015: The dominant role of internal variability in modulating the decadal variation of the East Asian summer monsoon–ENSO relationship during the twentieth century. J. Climate, 28, 70937107, https://doi.org/10.1175/JCLI-D-14-00783.1.

    • Search Google Scholar
    • Export Citation
  • Song, K., and S. W. Son, 2018: Revisiting the ENSO–SSW relationship. J. Climate, 31, 21332143, https://doi.org/10.1175/JCLI-D-17-0078.1.

    • Search Google Scholar
    • Export Citation
  • Thompson, D. W. J., S. Lee, and M. P. Baldwin, 2003: Atmospheric processes governing the Northern Hemisphere annular mode/North Atlantic Oscillation. Geophys. Monogr., 134, 81112, https://doi.org/10.1029/134GM05.

    • Search Google Scholar
    • Export Citation
  • Wang, C., C. Deser, J. Y. Yu, P. DiNezio, and A. Clement, 2007: El Niño and Southern Oscillation (ENSO): A review. Coral Reefs of the Eastern Tropical Pacific, Springer, 85–106.

  • Wang, F. Y., W. S. Tian, F. Xie, J. K. Zhang, and Y. Y. Han, 2018: Effect of Madden–Julian oscillation occurrence frequency on the interannual variability of northern hemisphere stratospheric wave activity in winter. J. Climate, 31, 50315049, https://doi.org/10.1175/JCLI-D-17-0476.1.

    • Search Google Scholar
    • Export Citation
  • Watson, P. A. G., and L. J. Gray, 2014: How does the quasi-biennial oscillation affect the stratospheric polar vortex? J. Atmos. Sci., 71, 391409, https://doi.org/10.1175/JAS-D-13-096.1.

    • Search Google Scholar
    • Export Citation
  • White, I., C. I. Garfinkel, E. P. Gerber, M. Jucker, V. Aquila, and L. D. Oman, 2019: The downward influence of sudden stratospheric warmings: Association with tropospheric precursors. J. Climate, 32, 85108, https://doi.org/10.1175/JCLI-D-18-0053.1.

    • Search Google Scholar
    • Export Citation
  • Woo, S. H., M.-K. Sung, S.-W. Son, and J.-S. Kug, 2015: Connection between weak stratospheric vortex events and the Pacific decadal oscillation. Climate Dyn., 45, 34813492, https://doi.org/10.1007/s00382-015-2551-z.

    • Search Google Scholar
    • Export Citation
  • Xiang, B. Q., B. Wang, and T. Li, 2013: A new paradigm for the predominance of standing central Pacific warming after the late 1990s. Climate Dyn., 41, 327340, https://doi.org/10.1007/s00382-012-1427-8.

    • Search Google Scholar
    • Export Citation
  • Xie, F., J. Li, W. Tian, J. Feng, and Y. Huo, 2012: Signals of El Niño Modoki in the tropical tropopause layer and stratosphere. Atmos. Chem. Phys., 12, 52595273, https://doi.org/10.5194/acp-12-5259-2012.

    • Search Google Scholar
    • Export Citation
  • Xie, F., J. P. Li, W. S. Tian, J. K. Zhang, and C. Sun, 2014: The relative impacts of El Niño Modoki, canonical El Niño, and QBO on tropical ozone changes since the 1980s. Environ. Res. Lett., 9, 064020, https://doi.org/10.1088/1748-9326/9/6/064020.

    • Search Google Scholar
    • Export Citation
  • Xue, X., W. Chen, S. F. Chen, and J. Feng, 2018: PDO modulation of the ENSO impact on the summer South Asian high. Climate Dyn., 50, 13931411, https://doi.org/10.1007/s00382-017-3692-z.

    • Search Google Scholar
    • Export Citation
  • Yang, S. Y., T. Li, J. G. Hu, and X. Shen, 2017: Decadal variation of the impact of La Niña on the winter Arctic stratosphere. Adv. Atmos. Sci., 34, 679684, https://doi.org/10.1007/s00376-016-6184-x.

    • Search Google Scholar
    • Export Citation
  • Yeh, S. W., and Coauthors, 2009: El Niño in a changing climate. Nature, 461, 511514, https://doi.org/10.1038/nature08316.

  • Yeh, S. W., J. S. Kug, and S. I. An, 2014: Recent progress on two types of El Niño: Observations, dynamics, and future changes. Asia-Pac. J. Atmos. Sci., 50, 6981, https://doi.org/10.1007/s13143-014-0028-3.

    • Search Google Scholar
    • Export Citation
  • Yu, Y. Y., R. C. Ren, J. G. Hu, and G. X. Wu, 2014: A mass budget analysis on the interannual variability of the polar surface pressure in the winter season. J. Atmos. Sci., 71, 35393553, https://doi.org/10.1175/JAS-D-13-0365.1.

    • Search Google Scholar
    • Export Citation
  • Yu, Y. Y., R. C. Ren, and M. Cai, 2015: Dynamic linkage between cold air outbreaks and intensity variations of the meridional mass circulation. J. Atmos. Sci., 72, 32143232, https://doi.org/10.1175/JAS-D-14-0390.1.

    • Search Google Scholar
    • Export Citation
  • Zhang, J. K., W. S. Tian, M. P. Chipperfield, F. Xie, and J. L. Huang, 2016: Persistent shift of the Arctic polar vortex towards the Eurasian continent in recent decades. Nat. Climate Change, 6, 10941099, https://doi.org/10.1038/nclimate3136.

    • Search Google Scholar
    • Export Citation
  • Zhang, R. H., W. S. Tian, J. K. Zhang, J. L. Huang, F. Xie, and M. Xu, 2019: The corresponding tropospheric environments during downward-extending and nondownward-extending events of stratospheric northern annular mode anomalies. J. Climate, 32, 18571873, https://doi.org/10.1175/JCLI-D-18-0574.1.

    • Search Google Scholar
    • Export Citation
  • Zhang, R. H., W. S. Tian, and T. Wang, 2020: Role of the quasi-biennial oscillation in the downward extension of stratospheric northern annular mode anomalies. Climate Dyn., 55, 595612, https://doi.org/10.1007/s00382-020-05285-4.

    • Search Google Scholar
    • Export Citation
  • Zhang, R. H., W. S. Tian, X. He, K. Qie, D. Liu, and H. Y. Tian, 2021: Enhanced influence of ENSO on winter precipitation over southern China in recent decades. J. Climate, 34, 79837994, https://doi.org/10.1175/JCLI-D-21-0182.1.

    • Search Google Scholar
    • Export Citation
  • Zhang, Y., W. Zhou, and M. Y. T. Leung, 2019: Phase relationship between summer and winter monsoons over the South China Sea: Indian Ocean and ENSO forcing. Climate Dyn., 52, 52295248, https://doi.org/10.1007/s00382-018-4440-8.

    • Search Google Scholar
    • Export Citation
  • Zhang, Y., W. Zhou, and T. Li, 2021: Impact of the Indian Ocean dipole on evolution of the subsequent ENSO: Relative roles of dynamic and thermodynamic processes. J. Climate, 34, 35913607, https://doi.org/10.1175/JCLI-D-20-0487.1.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 900 0 0
Full Text Views 2277 1469 44
PDF Downloads 1088 320 15