• Abernathey, R., and D. Ferreira, 2015: Southern Ocean isopycnal mixing and ventilation changes driven by winds. Geophys. Res. Lett., 42, 10 35710 365, https://doi.org/10.1002/2015GL066238.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Abernathey, R., I. Cerovecki, P. R. Holland, E. Newsom, M. Mazloff, and L. D. Talley, 2016: Water-mass transformation by sea ice in the upper branch of the Southern Ocean overturning. Nat. Geosci., 9, 596601, https://doi.org/10.1038/ngeo2749.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Adkins, J. F., 2013: The role of deep ocean circulation in setting glacial climates. Paleoceanogr. Paleoclimatol., 28, 539561, https://doi.org/10.1002/palo.20046.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Amrhein, D. E., C. Wunsch, O. Marchal, and G. Forget, 2018: A global glacial ocean state estimate constrained by upper-ocean temperature proxies. J. Climate, 31, 80598079, https://doi.org/10.1175/JCLI-D-17-0769.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Arbic, B. K., D. R. MacAyeal, J. X. Mitrovica, and G. A. Milne, 2004: Ocean tides and Heinrich events. Nature, 432, 460, https://doi.org/10.1038/432460a.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Baker, J. A., A. J. Watson, and G. K. Vallis, 2020: Meridional overturning circulation in a multibasin model. Part I: Dependence on Southern Ocean buoyancy forcing. J. Phys. Oceanogr., 50, 11591178, https://doi.org/10.1175/JPO-D-19-0135.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Baker, J. A., A. J. Watson, and G. K. Vallis, 2021: Meridional overturning circulation in a multibasin model. Part II: Sensitivity to diffusivity and wind in warm and cool climates. J. Phys. Oceanogr., 51, 18131828, https://doi.org/10.1175/JPO-D-20-0121.1.

    • Search Google Scholar
    • Export Citation
  • Bardin, A., F. Primeau, and K. Lindsay, 2014: An offline implicit solver for simulating prebomb radiocarbon. Ocean Modell., 73, 4558, https://doi.org/10.1016/j.ocemod.2013.09.008.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Blaser, P., and Coauthors, 2019: The resilience and sensitivity of northeast Atlantic deep water εNd to overprinting by detrital fluxes over the past 30,000 years. Geochim. Cosmochim. Acta, 245, 7997, https://doi.org/10.1016/j.gca.2018.10.018.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bouttes, N., D. Paillard, D. M. Roche, V. Brovkin, and L. Bopp, 2011: Last Glacial Maximum CO2 and δ13C successfully reconciled. Geophys. Res. Lett., 38, L02705, https://doi.org/10.1029/2010GL044499.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bower, A., and Coauthors, 2019: Lagrangian views of the pathways of the Atlantic meridional overturning circulation. J. Geophys. Res. Oceans, 124, 53135335, https://doi.org/10.1029/2019JC015014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Boyle, E. A., 1988: Cadmium: Chemical tracer of deepwater paleoceanography. Paleoceanogr. Paleoclimatol., 3, 471489, https://doi.org/10.1029/PA003i004p00471.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brady, E. C., B. L. Otto-Bliesner, J. E. Kay, and N. Rosenbloom, 2013: Sensitivity to glacial forcing in the CCSM4. J. Climate, 26, 19011925, https://doi.org/10.1175/JCLI-D-11-00416.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Broecker, W. S., and Coauthors, 1998: How much deep water is formed in the Southern Ocean? J. Geophys. Res., 103, 15 83315 843, https://doi.org/10.1029/98JC00248.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brovkin, V., A. Ganopolski, D. Archer, and S. Rahmstorf, 2007: Lowering of glacial atmospheric CO2 in response to changes in oceanic circulation and marine biogeochemistry. Paleoceanogr. Paleoclimatol., 22, PA4202, https://doi.org/10.1029/2006PA001380.

    • Search Google Scholar
    • Export Citation
  • Burke, A., A. L. Stewart, J. F. Adkins, R. Ferrari, M. F. Jansen, and A. F. Thompson, 2015: The glacial mid-depth radiocarbon bulge and its implications for the overturning circulation. Paleoceanogr. Paleoclimatol., 30, 10211039, https://doi.org/10.1002/2015PA002778.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Callies, J., and R. Ferrari, 2018: Dynamics of an abyssal circulation driven by bottom-intensified mixing on slopes. J. Phys. Oceanogr., 48, 12571282, https://doi.org/10.1175/JPO-D-17-0125.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chamberlain, M. A., R. J. Matear, M. Holzer, D. Bi, and S. J. Marsland, 2019: Transport matrices from standard ocean-model output and quantifying circulation response to climate change. Ocean Modell., 135, 113, https://doi.org/10.1016/j.ocemod.2019.01.005.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Charles, C. D., J. D. Wright, and R. G. Fairbanks, 1993: Thermodynamic influences on the marine carbon isotope record. Paleoceanogr. Paleoclimatol., 8, 691697, https://doi.org/10.1029/93PA01803.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chassignet, E. P., and Coauthors, 2020: Impact of horizontal resolution on global ocean–sea ice model simulations based on the experimental protocols of the Ocean Model Intercomparison Project phase 2 (OMIP-2). Geosci. Model Dev., 13, 45954637, https://doi.org/10.5194/gmd-13-4595-2020.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Curry, W. B., and D. W. Oppo, 2005: Glacial water mass geometry and the distribution of δ13C of ΣCO2 in the western Atlantic Ocean. Paleoceanogr. Paleoclimatol., 20, PA1017, https://doi.org/10.1029/2004PA001021.

    • Search Google Scholar
    • Export Citation
  • DeVries, T., and F. Primeau, 2011: Dynamically and observationally constrained estimates of water-mass distributions and ages in the global ocean. J. Phys. Oceanogr., 41, 23812401, https://doi.org/10.1175/JPO-D-10-05011.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Du, J., B. A. Haley, and A. C. Mix, 2020: Evolution of the global overturning circulation since the Last Glacial Maximum based on marine authigenic neodymium isotopes. Quat. Sci. Rev., 241, 106396, https://doi.org/10.1016/j.quascirev.2020.106396.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Duplessy, J.-C., N. J. Shackleton, R. G. Fairbanks, L. Labeyrie, D. Oppo, and N. Kallel, 1988: Deep water source variations during the last climatic cycle and their impact on the global deep water circulation. Paleoceanogr. Paleoclimatol., 3, 343360, https://doi.org/10.1029/PA003i003p00343.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Egbert, G. D., R. D. Ray, and B. G. Bills, 2004: Numerical modeling of the global semidiurnal tide in the present day and in the last glacial maximum. J. Geophys. Res., 109, C03003, https://doi.org/10.1029/2003JC001973.

    • Search Google Scholar
    • Export Citation
  • Eide, M., A. Olsen, U. S. Ninnemann, and T. Johannessen, 2017: A global ocean climatology of preindustrial and modern ocean δ13C. Global Biogeochem. Cycles, 31, 515534, https://doi.org/10.1002/2016GB005473.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Elderfield, H., and R. E. M. Rickaby, 2000: Oceanic Cd/P ratio and nutrient utilization in the glacial Southern Ocean. Nature, 405, 305310, https://doi.org/10.1038/35012507.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ferrari, R., M. F. Jansen, J. F. Adkins, A. Burke, A. L. Stewart, and A. F. Thompson, 2014: Antarctic sea ice control on ocean circulation in present and glacial climates. Proc. Natl. Acad. Sci. USA, 111, 87538758, https://doi.org/10.1073/pnas.1323922111.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ferrari, R., A. Mashayek, T. J. McDougall, M. Nikurashin, and J.-M. Campin, 2016: Turning ocean mixing upside down. J. Phys. Oceanogr., 46, 22392261, https://doi.org/10.1175/JPO-D-15-0244.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ferrari, R., L.-P. Nadeau, D. P. Marshall, L. C. Allison, and H. L. Johnson, 2017: A model of the ocean overturning circulation with two closed basins and a reentrant channel. J. Phys. Oceanogr., 47, 28872906, https://doi.org/10.1175/JPO-D-16-0223.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Galbraith, E., and C. de Lavergne, 2018: Response of a comprehensive climate model to a broad range of external forcings: Relevance for deep ocean ventilation and the development of late Cenozoic ice ages. Climate Dyn., 52, 653679, https://doi.org/10.1007/s00382-018-4157-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gebbie, G., 2014: How much did glacial North Atlantic Water shoal? Paleoceanogr. Paleoclimatol., 29, 190209, https://doi.org/10.1002/2013PA002557.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gent, P. R., 2016: Effects of Southern Hemisphere wind changes on the meridional overturning circulation in ocean models. Ann. Rev. Mar. Sci., 8, 7994, https://doi.org/10.1146/annurev-marine-122414-033929.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gent, P. R., and Coauthors, 2011: The Community Climate System Model version 4. J. Climate, 24, 49734991, https://doi.org/10.1175/2011JCLI4083.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gersonde, R., X. Crosta, A. Abelmann, and L. K. Armand, 2005: Sea-surface temperature and sea ice distribution of the Southern Ocean at the EPILOG Last Glacial Maximum—A circum-Antarctic view based on siliceous microfossil records. Quat. Sci. Rev., 24, 869896, https://doi.org/10.1016/j.quascirev.2004.07.015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gherardi, J., L. Labeyrie, S. Nave, R. Francois, J. F. McManus, and E. Cortijo, 2009: Glacial-interglacial circulation changes inferred from 231Pa/230Th sedimentary record in the North Atlantic region. Paleoceanogr. Paleoclimatol., 24, PA2204, https://doi.org/10.1029/2008PA001696.

    • Search Google Scholar
    • Export Citation
  • Goldstein, S., and S. R. Hemming, 2003: Long-lived isotopic tracers in oceanography, paleoceanography, and ice-sheet dynamics. Treatise on Geochemistry, H. Elderfield and K. K. Turekian, Elsevier, 453489, https://doi.org/10.1016/B0-08-043751-6/06179-X

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gottschalk, J., N. V. Riveiros, C. Waelbroeck, L. C. Skinner, E. Michel, J.-C. Duplessy, D. Hodell, and A. Mackensen, 2016: Carbon isotope offsets between benthic foraminifer species of the genus Cibicides (Cibicidoides) in the glacial sub-Antarctic Atlantic. Paleoceanogr. Paleoclimatol., 31, 15831602, https://doi.org/10.1002/2016PA003029.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gottschalk, J., and Coauthors, 2019: Mechanisms of millennial-scale atmospheric CO2 change in numerical model simulations. Quat. Sci. Rev., 220, 3074, https://doi.org/10.1016/j.quascirev.2019.05.013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Green, J. A. M., 2010: Ocean tides and resonance. Ocean Dyn., 60, 12431253, https://doi.org/10.1007/s10236-010-0331-1.

  • Griffiths, S. D., and W. R. Peltier, 2009: Modeling of polar ocean tides at the last glacial maximum: Amplification, sensitivity, and climatological implications. J. Climate, 22, 29052924, https://doi.org/10.1175/2008JCLI2540.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gu, S., Z. Liu, D. W. Oppo, J. Lynch-Stieglitz, A. Jahn, J. Zhang, and L. Wu, 2020: Assessing the potential capability of reconstructing glacial Atlantic water masses and AMOC using multiple proxies in CESM. Earth Planet. Sci. Lett., 541, 116294, https://doi.org/10.1016/j.epsl.2020.116294.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Haley, B. A., J. Du, A. N. Abbott, and J. McManus, 2017: The impact of benthic processes on rare earth element and neodymium isotope distributions in the oceans. Front. Mar. Sci., 4, 426, https://doi.org/10.3389/fmars.2017.00426.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Heuzé, C., 2017: North Atlantic deep water formation and AMOC in CMIP5 models. Ocean Sci., 13, 609622, https://doi.org/10.5194/os-13-609-2017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hines, S. K. V., A. F. Thompson, and J. F. Adkins, 2019: The role of the Southern Ocean in abrupt transitions and hysteresis in glacial ocean circulation. Paleoceanogr. Paleoclimatol., 34, 490510, https://doi.org/10.1029/2018PA003415.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ho, S. L., and Coauthors, 2012: Sea surface temperature variability in the Pacific sector of the Southern Ocean over the past 700 kyr. Paleoceanogr. Paleoclimatol., 27, PA4202, https://doi.org/10.1029/2012PA002317.

    • Search Google Scholar
    • Export Citation
  • Howe, J. N. W., A. M. Piotrowski, T. L. Noble, S. Mulitza, C. M. Chiessi, and G. Bayon, 2016: North Atlantic Deep Water production during the Last Glacial Maximum. Nat. Commun., 7, 11765, https://doi.org/10.1038/ncomms11765.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jacobsen, S. B., and G. J. Wasserburg, 1980: Sm-Nd isotopic evolution of chondrites. Earth Planet. Sci. Lett., 50, 139155, https://doi.org/10.1016/0012-821X(80)90125-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jansen, M. F., 2017: Glacial ocean circulation and stratification explained by reduced atmospheric temperature. Proc. Natl. Acad. Sci. USA, 114, 4550, https://doi.org/10.1073/pnas.1610438113.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jansen, M. F., and L.-P. Nadeau, 2016: The effect of Southern Ocean surface buoyancy loss on the deep-ocean circulation and stratification. J. Phys. Oceanogr., 46, 34553470, https://doi.org/10.1175/JPO-D-16-0084.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jeandel, C., 2016: Overview of the mechanisms that could explain the ‘boundary exchange’ at the land–ocean contact. Philos. Trans. Roy. Soc., A374, 20150287, https://doi.org/10.1098/rsta.2015.0287.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • John, S. G., and Coauthors, 2020: AWESOME OCIM: A simple, flexible, and powerful tool for modeling elemental cycling in the oceans. Chem. Geol., 533, 119403,. https://doi.org/10.1016/j.chemgeo.2019.119403.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Johnson, H. L., P. Cessi, D. P. Marshall, F. Schloesser, and M. A. Spall, 2019: Recent contributions of theory to our understanding of the Atlantic meridional overturning circulation. J. Geophys. Res. Oceans, 124, 53765399, https://doi.org/10.1029/2019JC015330.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jones, C. S., and P. Cessi, 2016: Interbasin transport of the meridional overturning circulation. J. Phys. Oceanogr., 46, 11571169, https://doi.org/10.1175/JPO-D-15-0197.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jones, C. S., and R. P. Abernathey, 2019: Isopycnal mixing controls deep ocean ventilation. Geophys. Res. Lett., 46, 13 14413 151, https://doi.org/10.1029/2019GL085208.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jones, C. S., and R. P. Abernathey, 2021: Modeling water-mass distributions in the modern and LGM ocean: Circulation change and isopycnal and diapycnal mixing. J. Phys. Oceanogr., 51, 15231538, https://doi.org/10.1175/JPO-D-20-0204.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kageyama, M., and Coauthors, 2017: The PMIP4 contribution to CMIP6—Part 4: Scientific objectives and experimental design of the PMIP4-CMIP6 Last Glacial Maximum experiments and PMIP4 sensitivity experiments. Geosci. Model Dev., 10, 40354055, https://doi.org/10.5194/gmd-10-4035-2017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Key, R., and Coauthors, 2004: A global ocean carbon climatology: Results from Global Data Analysis Project (GLODAP). Global Biogeochem. Cycles, 18 (4), 123, https://doi.org/10.1029/2004GB002247.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Khatiwala, S., F. Primeau, and M. Holzer, 2012: Ventilation of the deep ocean constrained with tracer observations and implications for radiocarbon estimates of ideal mean age. Earth Planet. Sci. Lett., 325–326, 116125, https://doi.org/10.1016/j.epsl.2012.01.038.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Khatiwala, S., A. Schmittner, and J. Muglia, 2019: Air–sea disequilibrium enhances ocean carbon storage during glacial periods. Sci. Adv., 5, eaaw4981, https://doi.org/10.1126/sciadv.aaw4981.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kim, J.-H., R. R. Schneider, S. Mulitza, and P. J. Müller, 2003: Reconstruction of SE trade-wind intensity based on sea-surface temperature gradients in the southeast Atlantic over the last 25 kyr. Geophys. Res. Lett., 30, 2144, https://doi.org/10.1029/2003GL017557.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Knox, F., and M. B. McElroy, 1984: Changes in atmospheric CO2: Influence of the marine biota at high latitude. J. Geophys. Res., 89, 4629, https://doi.org/10.1029/JD089iD03p04629.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kohfeld, K. E., R. M. Graham, A. M. de Boer, L. C. Sime, E. W. Wolff, C. Le Quéré, and L. Bopp, 2013: Southern Hemisphere westerly wind changes during the Last Glacial Maximum: Paleo-data synthesis. Quat. Sci. Rev., 68, 7695, https://doi.org/10.1016/j.quascirev.2013.01.017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kwon, E. Y., M. P. Hain, D. M. Sigman, E. D. Galbraith, J. L. Sarmiento, and J. R. Toggweiler, 2012: North Atlantic ventilation of “southern-sourced” deep water in the glacial ocean. Paleoceanogr. Paleoclimatol., 27, PA2208, https://doi.org/10.1029/2011PA002211.

    • Search Google Scholar
    • Export Citation
  • Lambelet, M., and Coauthors, 2016: Neodymium isotopic composition and concentration in the western North Atlantic Ocean: Results from the GEOTRACES GA02 section. Geochim. Cosmochim. Acta, 177, 129, https://doi.org/10.1016/j.gca.2015.12.019.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ledwell, J. R., E. T. Montgomery, K. L. Polzin, L. C. S. Laurent, R. W. Schmitt, and J. M. Toole, 2000: Evidence for enhanced mixing over rough topography in the abyssal ocean. Nature, 403, 179182, https://doi.org/10.1038/35003164.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lin, P., and Coauthors, 2020: LICOM model datasets for the CMIP6 Ocean Model Intercomparison Project. Adv. Atmos. Sci., 37, 239249, https://doi.org/10.1007/s00376-019-9208-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lippold, J., Y. Luo, R. Francois, S. E. Allen, J. Gherardi, S. Pichat, B. Hickey, and H. Schulz, 2012: Strength and geometry of the glacial Atlantic meridional overturning circulation. Nat. Geosci., 5, 813816, https://doi.org/10.1038/ngeo1608.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lozier, M. S., and Coauthors, 2017: Overturning in the subpolar North Atlantic program: A new international ocean observing system. Bull. Amer. Meteor. Soc., 98, 737752, https://doi.org/10.1175/BAMS-D-16-0057.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lund, D. C., J. F. Adkins, and R. Ferrari, 2011: Abyssal Atlantic circulation during the Last Glacial Maximum: Constraining the ratio between transport and vertical mixing. Paleoceanogr. Paleoclimatol., 26, PA1213, https://doi.org/10.1029/2010PA001938.

    • Search Google Scholar
    • Export Citation
  • Lynch-Stieglitz, J., and R. G. Fairbanks, 1994: A conservative tracer for glacial ocean circulation from carbon isotope and palaeo-nutrient measurements in benthic foraminifera. Nature, 369, 308310, https://doi.org/10.1038/369308a0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lynch-Stieglitz, J., T. F. Stocker, W. S. Broecker, and R. G. Fairbanks, 1995: The influence of air–sea exchange on the isotopic composition of oceanic carbon: Observations and modeling. Global Biogeochem. Cycles, 9, 653665, https://doi.org/10.1029/95GB02574.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mackensen, A., 2012: Strong thermodynamic imprint on recent bottom-water and epibenthic δ13C in the Weddell Sea revealed: Implications for glacial Southern Ocean ventilation. Earth Planet. Sci. Lett., 317–318, 2026, https://doi.org/10.1016/j.epsl.2011.11.030.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mackensen, A., H.-W. Hubberten, T. Bickert, G. Fischer, and D. K. Fütterer, 1993: The δ13C in benthic foraminiferal tests of Fontbotia wuellerstorfi (Schwager) relative to the δ13C of dissolved inorganic carbon in Southern Ocean deep water: Implications for glacial ocean circulation models. Paleoceanogr. Paleoclimatol., 8, 587610, https://doi.org/10.1029/93PA01291.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marchitto, T. M., and W. S. Broecker, 2006: Deep water mass geometry in the glacial Atlantic Ocean: A review of constraints from the paleonutrient proxy Cd/Ca. Geochem. Geophys. Geosyst., 7, Q12003, https://doi.org/10.1029/2006GC001323.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marshall, J., and T. Radko, 2003: Residual-mean solutions for the Antarctic Circumpolar Current and its associated overturning circulation. J. Phys. Oceanogr., 33, 23412354, https://doi.org/10.1175/1520-0485(2003)033<2341:RSFTAC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marshall, J., and K. Speer, 2012: Closure of the meridional overturning circulation through Southern Ocean upwelling. Nat. Geosci., 5, 171180, https://doi.org/10.1038/ngeo1391.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marzocchi, A., and M. F. Jansen, 2017: Connecting Antarctic sea ice to deep-ocean circulation in modern and glacial climate simulations. Geophys. Res. Lett., 44, 62866295, https://doi.org/10.1002/2017GL073936.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mashayek, A., H. Salehipour, D. Bouffard, C. Caulfield, R. Ferrari, M. Nikurashin, W. Peltier, and W. Smyth, 2017: Efficiency of turbulent mixing in the abyssal ocean circulation. Geophys. Res. Lett., 44, 62966306, https://doi.org/10.1002/2016GL072452.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mauritsen, T., and Coauthors, 2019: Developments in the MPI-M Earth system model version 1.2 (MPI-ESM1.2) and its response to increasing CO2. J. Adv. Model. Earth Syst., 11, 9981038, https://doi.org/10.1029/2018MS001400.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McManus, J. F., R. Francois, J. M. Gherardi, L. D. Keigwin, and S. Brown-Leger, 2004: Collapse and rapid resumption of Atlantic meridional circulation linked to deglacial climate changes. Nature, 428, 834837, https://doi.org/10.1038/nature02494.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Menviel, L., J. Yu, F. Joos, A. Mouchet, K. J. Meissner, and M. H. England, 2017: Poorly ventilated deep ocean at the Last Glacial Maximum inferred from carbon isotopes: A data–model comparison study. Paleoceanogr. Paleoclimatol., 32, 217, https://doi.org/10.1002/2016PA003024.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Menviel, L., P. Spence, L. C. Skinner, K. Tachikawa, T. Friedrich, L. Missiaen, and J. Yu, 2020: Enhanced mid-depth southward transport in the northeast Atlantic at the Last Glacial Maximum despite a weaker AMOC. Paleoceanogr. Paleoclimatol., 35, e2019PA003793, https://doi.org/10.1029/2019PA003793.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Middag, R., S. M. A. C. van Heuven, K. W. Bruland, and H. J. W. de Baar, 2018: The relationship between cadmium and phosphate in the Atlantic Ocean unravelled. Earth Planet. Sci. Lett., 492, 7988, https://doi.org/10.1016/j.epsl.2018.03.046.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Miller, M. D., J. F. Adkins, D. Menemenlis, and M. P. Schodlok, 2012: The role of ocean cooling in setting Glacial Southern Source Bottom Water salinity. Paleoceanogr. Paleoclimatol., 27, PA3207, https://doi.org/10.1029/2012PA002297.

    • Search Google Scholar
    • Export Citation
  • Muglia, J., and A. Schmittner, 2021: Carbon isotope constraints on glacial Atlantic meridional overturning: Strength vs depth. Quat. Sci. Rev., 257, 106844, https://doi.org/10.1016/j.quascirev.2021.106844.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Muglia, J., L. C. Skinner, and A. Schmittner, 2018: Weak overturning circulation and high Southern Ocean nutrient utilization maximized glacial ocean carbon. Earth Planet. Sci. Lett., 496, 4756, https://doi.org/10.1016/j.epsl.2018.05.038.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Müller, W. A., and Coauthors, 2018: A higher-resolution version of the Max Planck Institute Earth System Model (MPI-ESM1.2-hr). J. Adv. Model. Earth Syst., 10, 13831413, https://doi.org/10.1029/2017MS001217.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nadeau, L.-P., and M. F. Jansen, 2020: Overturning circulation pathways in a two-basin ocean model. J. Phys. Oceanogr., 50, 21052122, https://doi.org/10.1175/JPO-D-20-0034.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nadeau, L.-P., R. Ferrari, and M. F. Jansen, 2019: Antarctic sea ice control on the depth of North Atlantic Deep Water. J. Climate, 32, 25372551, https://doi.org/10.1175/JCLI-D-18-0519.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Oppo, D. W., G. Gebbie, K.-F. Huang, W. B. Curry, T. M. Marchitto, and K. R. Pietro, 2018: Data constraints on glacial Atlantic water mass geometry and properties. Paleoceanogr. Paleoclimatol., 33, 10131034, https://doi.org/10.1029/2018PA003408.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Otto-Bliesner, B. L., C. D. Hewitt, T. M. Marchitto, E. C. Brady, A. Abe-Ouchi, M. Crucifix, S. Murakami, and S. L. Weber, 2007: Last Glacial Maximum ocean thermohaline circulation: PMIP2 model intercomparisons and data constraints. Geophys. Res. Lett., 34, L12706, https://doi.org/10.1029/2007GL029475.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pellichero, V., J.-B. Sallée, C. C. Chapman, and S. M. Downes, 2018: The southern ocean meridional overturning in the sea-ice sector is driven by freshwater fluxes. Nat. Commun., 9, 1789, https://doi.org/10.1038/s41467-018-04101-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pena, L. D., and S. L. Goldstein, 2014: Thermohaline circulation crisis and impacts during the mid-Pleistocene transition. Science, 345, 318322, https://doi.org/10.1126/science.1249770.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Piotrowski, A. M., S. L. Goldstein, S. R. Hemming, and R. G. Fairbanks, 2004: Intensification and variability of ocean thermohaline circulation through the last deglaciation. Earth Planet. Sci. Lett., 225, 205220, https://doi.org/10.1016/j.epsl.2004.06.002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Polzin, K. L., J. M. Toole, J. R. Ledwell, and R. W. Schmitt, 1997: Spatial variability of turbulent mixing in the abyssal ocean. Science, 276, 9396, https://doi.org/10.1126/science.276.5309.93.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pöppelmeier, F., P. Blaser, M. Gutjahr, S. L. Jaccard, M. Frank, L. Max, and J. Lippold, 2020: Northern-sourced water dominated the Atlantic Ocean during the Last Glacial Maximum. Geology, 48, 826829, https://doi.org/10.1130/G47628.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rackow, T., D. V. Sein, T. Semmler, S. Danilov, N. V. Koldunov, D. Sidorenko, Q. Wang, and T. Jung, 2019: Sensitivity of deep ocean biases to horizontal resolution in prototype CMIP6 simulations with AWI-CM1.0. Geosci. Model Dev., 12, 26352656, https://doi.org/10.5194/gmd-12-2635-2019.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Roberts, N. L., A. M. Piotrowski, J. F. McManus, and L. D. Keigwin, 2010: Synchronous deglacial overturning and water mass source changes. Science, 327, 7578, https://doi.org/10.1126/science.1178068.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Saenko, O. A., A. J. Weaver, and J. M. Gregory, 2003: On the link between the two modes of the ocean thermohaline circulation and the formation of global-scale water masses. J. Climate, 16, 27972801, https://doi.org/10.1175/1520-0442(2003)016<2797:OTLBTT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sarmiento, J. L., and J. R. Toggweiler, 1984: A new model for the role of the oceans in determining atmospheric pCO2. Nature, 308, 621624, https://doi.org/10.1038/308621a0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schmidt, G. A., and Coauthors, 2014: Configuration and assessment of the GISS ModelE2 contributions to the CMIP5 archive. J. Adv. Model. Earth Syst., 6, 141184, https://doi.org/10.1002/2013MS000265.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schmittner, A., J. Green, and S.-B. Wilmes, 2015: Glacial ocean overturning intensified by tidal mixing in a global circulation model. Geophys. Res. Lett., 42, 40144022, https://doi.org/10.1002/2015GL063561.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schmittner, A., and Coauthors, 2017: Calibration of the carbon isotope composition (δ13C) of benthic foraminifera. Paleoceanogr. Paleoclimatol., 32, 512530, https://doi.org/10.1002/2016PA003072.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sherriff-Tadano, S., A. Abe-Ouchi, M. Yoshimori, A. Oka, and W.-L. Chan, 2018: Influence of glacial ice sheets on the Atlantic meridional overturning circulation through surface wind change. Climate Dyn., 50, 28812903, https://doi.org/10.1007/s00382-017-3780-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Siddall, M., S. Khatiwala, T. van de Flierdt, K. Jones, S. L. Goldstein, S. R. Hemming, and R. F. Anderson, 2008: Towards explaining the Nd paradox using reversible scavenging in an ocean general circulation model. Earth Planet. Sci. Lett., 274, 448461, https://doi.org/10.1016/j.epsl.2008.07.044.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Siegenthaler, U., and T. Wenk, 1984: Rapid atmospheric CO2 variations and ocean circulation. Nature, 308, 624626, https://doi.org/10.1038/308624a0.

  • Sigman, D. M., and E. A. Boyle, 2000: Glacial/interglacial variations in atmospheric carbon dioxide. Nature, 407, 859869, https://doi.org/10.1038/35038000.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sigman, D. M., M. P. Hain, and G. H. Haug, 2010: The polar ocean and glacial cycles in atmospheric CO2 concentration. Nature, 466, 4755, https://doi.org/10.1038/nature09149.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sigman, D. M., and Coauthors, 2020: The Southern Ocean during the ice ages: A review of the Antarctic surface isolation hypothesis, with comparison to the North Pacific. Quat. Sci. Rev., 354, 106732, https://doi.org/10.1016/j.quascirev.2020.106732.

    • Search Google Scholar
    • Export Citation
  • Skinner, L. C., S. Fallon, C. Waelbroeck, E. Michel, and S. Barker, 2010: Ventilation of the deep Southern Ocean and deglacial CO2 rise. Science, 328, 11471151, https://doi.org/10.1126/science.1183627.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Skinner, L. C., and Coauthors, 2017: Radiocarbon constraints on the glacial ocean circulation and its impact on atmospheric CO2. Nat. Commun., 8, 16010, https://doi.org/10.1038/ncomms16010.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Speer, K., S. R. Rintoul, and B. Sloyan, 2000: The diabatic Deacon cell. J. Phys. Oceanogr., 30, 32123222, https://doi.org/10.1175/1520-0485(2000)030<3212:TDDC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • St. Laurent, L., H. Simmons, and S. Jayne, 2002: Estimating tidally driven mixing in the deep ocean. Geophys. Res. Lett., 29, 2106, https://doi.org/10.1029/2002GL015633.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stuiver, M., P. D. Quay, and H. G. Ostlund, 1983: Abyssal water carbon-14 distribution and the age of the world oceans. Science, 219, 849851, https://doi.org/10.1126/science.219.4586.849.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stuut, J.-B. W., M. A. Prins, R. R. Schneider, G. J. Weltje, J. F. Jansen, and G. Postma, 2002: A 300-kyr record of aridity and wind strength in southwestern Africa: Inferences from grain-size distributions of sediments on Walvis Ridge, SE Atlantic. Mar. Geol., 180, 221233, https://doi.org/10.1016/S0025-3227(01)00215-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sun, S., I. Eisenman, and A. L. Stewart, 2018: Does Southern Ocean surface forcing shape the global ocean overturning circulation? Geophys. Res. Lett., 45, 24132423, https://doi.org/10.1002/2017GL076437.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sun, S., I. Eisenman, L. Zanna, and A. L. Stewart, 2020: Surface constraints on the depth of the Atlantic meridional overturning circulation: Southern Ocean versus North Atlantic. J. Climate, 33, 31253149, https://doi.org/10.1175/JCLI-D-19-0546.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tagliabue, A., and Coauthors, 2009: Quantifying the roles of ocean circulation and biogeochemistry in governing ocean carbon-13 and atmospheric carbon dioxide at the last glacial maximum. Climate Past, 5, 695706, https://doi.org/10.5194/cp-5-695-2009.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Talley, L. D., 2003: Shallow, intermediate, and deep overturning components of the global heat budget. J. Phys. Oceanogr., 33, 530560, https://doi.org/10.1175/1520-0485(2003)033<0530:SIADOC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Talley, L. D., 2013: Closure of the global overturning circulation through the Indian, Pacific, and Southern Oceans: Schematics and transports. Oceanography, 26, 8097, https://doi.org/10.5670/oceanog.2013.07.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tamsitt, V., and Coauthors, 2017: Spiraling pathways of global deep waters to the surface of the Southern Ocean. Nat. Commun., 8, 172, https://doi.org/10.1038/s41467-017-00197-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tamsitt, V., R. P. Abernathey, M. R. Mazloff, J. Wang, and L. D. Talley, 2018: Transformation of deep water masses along Lagrangian upwelling pathways in the Southern Ocean. J. Geophys. Res. Oceans, 123, 19942017, https://doi.org/10.1002/2017JC013409.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Toggweiler, J. R., 1999: Variation of atmospheric CO2 by ventilation of the ocean’s deepest water. Paleoceanogr. Paleoclimatol., 14, 571588, https://doi.org/10.1029/1999PA900033.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • van de Flierdt, T., A. M. Griffiths, M. Lambelet, S. H. Little, T. Stichel, and D. J. Wilson, 2016: Neodymium in the oceans: A global database, a regional comparison and implications for palaeoceanographic research. Philos. Trans. Roy. Soc., A374, 20150293, https://doi.org/10.1098/rsta.2015.0293.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Waterhouse, A. F., and Coauthors, 2014: Global patterns of diapycnal mixing from measurements of the turbulent dissipation rate. J. Phys. Oceanogr., 44, 18541872, https://doi.org/10.1175/JPO-D-13-0104.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Watson, A. J., and A. C. Naveira Garabato, 2006: The role of Southern Ocean mixing and upwelling in glacial–interglacial atmospheric CO2 change. Tellus, 58B, 7387, https://doi.org/10.1111/j.1600-0889.2005.00167.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Watson, A. J., G. K. Vallis, and M. Nikurashin, 2015: Southern Ocean buoyancy forcing of ocean ventilation and glacial atmospheric CO2. Nature, 8, 861864, https://doi.org/10.1038/ngeo2538.

    • Search Google Scholar
    • Export Citation
  • Weber, S. L., and Coauthors, 2007: The modern and glacial overturning circulation in the Atlantic Ocean in PMIP coupled model simulations. Climate Past, 3, 5164, https://doi.org/10.5194/cp-3-51-2007.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wilmes, S.-B., A. Schmittner, and J. M. Green, 2019: Glacial ice sheet extent effects on modeled tidal mixing and the global overturning circulation. Paleoceanogr. Paleoclimatol., 34, 14371454, https://doi.org/10.1029/2019PA003644.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wilmes, S.-B., J. Green, and A. Schmittner, 2021: Enhanced vertical mixing in the glacial ocean inferred from sedimentary carbon isotopes. Commun. Earth Environ., 2, 166, https://doi.org/10.1038/s43247-021-00239-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Young, W. R., 2012: An exact thickness-weighted average formulation of the Boussinesq equations. J. Phys. Oceanogr., 42, 692707, https://doi.org/10.1175/JPO-D-11-0102.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zanna, L., S. Khatiwala, J. M. Gregory, J. Ison, and P. Heimbach, 2019: Global reconstruction of historical ocean heat storage and transport. Proc. Natl. Acad. Sci. USA, 116, 11261131, https://doi.org/10.1073/pnas.1808838115.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhao, N., D. W. Oppo, K.-F. Huang, J. N. Howe, J. Blusztajn, and L. D. Keigwin, 2019: Glacial–interglacial Nd isotope variability of North Atlantic Deep Water modulated by North American ice sheet. Nat. Commun., 10, 5773, https://doi.org/10.1038/s41467-019-13707-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 417 414 165
Full Text Views 230 226 99
PDF Downloads 262 256 106

Geometry of the Meridional Overturning Circulation at the Last Glacial Maximum

View More View Less
  • 1 aDepartment of Geological and Planetary Sciences, Caltech, Pasadena, California
  • | 2 bTexas A&M University, College Station, Texas
  • | 3 cLamont-Doherty Earth Observatory of Columbia University, Palisades, New York
  • | 4 dDepartment of Marine Chemistry and Geochemistry, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts
Restricted access

Abstract

Understanding the contribution of ocean circulation to glacial–interglacial climate change is a major focus of paleoceanography. Specifically, many have tried to determine whether the volumes and depths of Antarctic- and North Atlantic–sourced waters in the deep ocean changed at the Last Glacial Maximum (LGM; ∼22–18 kyr BP) when atmospheric pCO2 concentrations were 100 ppm lower than the preindustrial. Measurements of sedimentary geochemical proxies are the primary way that these deep ocean structural changes have been reconstructed. However, the main proxies used to reconstruct LGM Atlantic water mass geometry provide conflicting results as to whether North Atlantic–sourced waters shoaled during the LGM. Despite this, a number of idealized modeling studies have been advanced to describe the physical processes resulting in shoaled North Atlantic waters. This paper aims to critically assess the approaches used to determine LGM Atlantic circulation geometry and lay out best practices for future work. We first compile existing proxy data and paleoclimate model output to deduce the processes responsible for setting the ocean distributions of geochemical proxies in the LGM Atlantic Ocean. We highlight how small-scale mixing processes in the ocean interior can decouple tracer distributions from the large-scale circulation, complicating the straightforward interpretation of geochemical tracers as proxies for water mass structure. Finally, we outline promising paths toward ascertaining the LGM circulation structure more clearly and deeply.

© 2022 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

All the authors contributed equally to this work.

Corresponding author: Frank J. Pavia, fjpavia@caltech.edu

Abstract

Understanding the contribution of ocean circulation to glacial–interglacial climate change is a major focus of paleoceanography. Specifically, many have tried to determine whether the volumes and depths of Antarctic- and North Atlantic–sourced waters in the deep ocean changed at the Last Glacial Maximum (LGM; ∼22–18 kyr BP) when atmospheric pCO2 concentrations were 100 ppm lower than the preindustrial. Measurements of sedimentary geochemical proxies are the primary way that these deep ocean structural changes have been reconstructed. However, the main proxies used to reconstruct LGM Atlantic water mass geometry provide conflicting results as to whether North Atlantic–sourced waters shoaled during the LGM. Despite this, a number of idealized modeling studies have been advanced to describe the physical processes resulting in shoaled North Atlantic waters. This paper aims to critically assess the approaches used to determine LGM Atlantic circulation geometry and lay out best practices for future work. We first compile existing proxy data and paleoclimate model output to deduce the processes responsible for setting the ocean distributions of geochemical proxies in the LGM Atlantic Ocean. We highlight how small-scale mixing processes in the ocean interior can decouple tracer distributions from the large-scale circulation, complicating the straightforward interpretation of geochemical tracers as proxies for water mass structure. Finally, we outline promising paths toward ascertaining the LGM circulation structure more clearly and deeply.

© 2022 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

All the authors contributed equally to this work.

Corresponding author: Frank J. Pavia, fjpavia@caltech.edu

Supplementary Materials

    • Supplemental Materials (PDF 4.67 MB)
Save