• Ambrizzi, T., B. J. Hoskins, and H.-H. Hsu, 1995: Rossby wave propagation and teleconnection patterns in the austral winter. J. Atmos. Sci., 52, 36613672, https://doi.org/10.1175/1520-0469(1995)052<3661:RWPATP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Beverley, J. D., S. J. Woolnough, L. H. Baker, S. J. Johnson, A. Weisheimer, and C. H. O’Reilly, 2021: Dynamical mechanisms linking Indian monsoon precipitation and the circumglobal teleconnection. Climate Dyn., 57, 26152636, https://doi.org/10.1007/s00382-021-05825-6.

    • Search Google Scholar
    • Export Citation
  • Bluestein, H., 1992: Synoptic-Dynamic Meteorology in Midlatitudes. Oxford University Press, 276 pp.

  • Branstator, G., 1983: Horizontal energy propagation in a barotropic atmosphere with meridional and zonal structure. J. Atmos. Sci., 40, 16891708, https://doi.org/10.1175/1520-0469(1983)040<1689:HEPIAB>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Branstator, G., 2002: Circumglobal teleconnections, the jet stream waveguide, and the North Atlantic Oscillation. J. Climate, 15, 18931910, https://doi.org/10.1175/1520-0442(2002)015<1893:CTTJSW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Branstator, G., and H. Teng, 2017: Tropospheric waveguide teleconnections and their seasonality. J. Atmos. Sci., 74, 15131532, https://doi.org/10.1175/JAS-D-16-0305.1.

    • Search Google Scholar
    • Export Citation
  • Chen, G., and R. Huang, 2012: Excitation mechanisms of the teleconnection patterns affecting the July precipitation in northwest China. J. Climate, 25, 78347851, https://doi.org/10.1175/JCLI-D-11-00684.1.

    • Search Google Scholar
    • Export Citation
  • Chen, G., R. Huang, and L. Zhou, 2013: Baroclinic instability of the Silk Road pattern induced by thermal damping. J. Atmos. Sci., 70, 28752893, https://doi.org/10.1175/JAS-D-12-0326.1.

    • Search Google Scholar
    • Export Citation
  • Chowdary, J. S., K. Hu, G. Srinivas, Y. Kosaka, L. Wang, and K. K. Rao, 2019: The Eurasian jet streams as conduits for East Asian monsoon variability. Curr. Climate Change Rep., 5, 233244, https://doi.org/10.1007/s40641-019-00134-x.

    • Search Google Scholar
    • Export Citation
  • Compo, G. P., and Coauthors, 2011: The Twentieth Century Reanalysis Project. Quart. J. Roy. Meteor. Soc., 137 (654), 128, https://doi.org/10.1002/qj.776.

    • Search Google Scholar
    • Export Citation
  • Dee, D. P., and Coauthors, 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597, https://doi.org/10.1002/qj.828.

    • Search Google Scholar
    • Export Citation
  • Deng, K., S. Yang, M. Ting, A. Lin, and Z. Wang, 2018: An intensified mode of variability modulating the summer heat waves in eastern Europe and northern China. Geophys. Res. Lett., 45, 11 36111 369, https://doi.org/10.1029/2018GL079836.

    • Search Google Scholar
    • Export Citation
  • Ding, Q., and B. Wang, 2005: Circumglobal teleconnection in the Northern Hemisphere summer. J. Climate, 18, 34833505, https://doi.org/10.1175/JCLI3473.1.

    • Search Google Scholar
    • Export Citation
  • Du, L., and R. Lu, 2021: Wave trains of 10–30-day meridional wind variations over the North Pacific during summer. J. Climate, 34, 92679277, https://doi.org/10.1175/JCLI-D-21-0096.1.

    • Search Google Scholar
    • Export Citation
  • Du, Y., J. Zhang, S. Zhao, and H. Chen, 2020: Impact of the eastward shift in the negative-phase NAO on extreme drought over northern China in summer. J. Geophys. Res. Atmos., 125, e2019JD032019, https://doi.org/10.1029/2019JD032019.

    • Search Google Scholar
    • Export Citation
  • Enomoto, T., B. J. Hoskins, and Y. Matsuda, 2003: The formation mechanism of the Bonin high in August. Quart. J. Roy. Meteor. Soc., 129, 157178, https://doi.org/10.1256/qj.01.211.

    • Search Google Scholar
    • Export Citation
  • Gong, H., L. Wang, W. Chen, and D. Nath, 2018: Multidecadal fluctuation of the wintertime Arctic Oscillation pattern and its implication. J. Climate, 31, 55955608, https://doi.org/10.1175/JCLI-D-17-0530.1.

    • Search Google Scholar
    • Export Citation
  • Harris, I., T. J. Osborn, P. Jones, and D. Lister, 2020: Version 4 of the CRU TS monthly high-resolution gridded multivariate climate dataset. Sci. Data, 7, 109, https://doi.org/10.1038/s41597-020-0453-3.

    • Search Google Scholar
    • Export Citation
  • Hong, H., J. Sun, and H. Wang, 2022: Interannual variations in summer extreme precipitation frequency over Northern Asia and related atmospheric circulation patterns. J. Hydrometeor., 23, 619636, https://doi.org/10.1175/JHM-D-21-0177.1.

    • Search Google Scholar
    • Export Citation
  • Hong, X., and R. Lu, 2016: The meridional displacement of the summer Asian jet, Silk Road pattern, and tropical SST anomalies. J. Climate, 29, 37533766, https://doi.org/10.1175/JCLI-D-15-0541.1.

    • Search Google Scholar
    • Export Citation
  • Hoskins, B. J., and D. J. Karoly, 1981: The steady linear response of a spherical atmosphere to thermal and orographic forcing. J. Atmos. Sci., 38, 11791196, https://doi.org/10.1175/1520-0469(1981)038<1179:TSLROA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hoskins, B. J., and T. Ambrizzi, 1993: Rossby wave propagation on a realistic longitudinally varying flow. J. Atmos. Sci., 50, 16611671, https://doi.org/10.1175/1520-0469(1993)050<1661:RWPOAR>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hoskins, B. J., A. J. Simmons, and D. G. Andrews, 1977: Energy dispersion in a barotropic atmosphere. Quart. J. Roy. Meteor. Soc., 103, 553567, https://doi.org/10.1002/qj.49710343802.

    • Search Google Scholar
    • Export Citation
  • Hsu, H.-H., and S.-H. Lin, 1992: Global teleconnections in the 250-mb streamfunction field during the Northern Hemisphere winter. Mon. Wea. Rev., 120, 11691190, https://doi.org/10.1175/1520-0493(1992)120<1169:GTITMS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hu, K., G. Huang, R. Wu, and L. Wang, 2017: Structure and dynamics of a wave train along the wintertime Asian jet and its impact on East Asian climate. Climate Dyn., 51, 41234137, https://doi.org/10.1007/s00382-017-3674-1.

    • Search Google Scholar
    • Export Citation
  • Iwao, K., and M. Takahashi, 2006: Interannual change in summertime precipitation over northeast Asia. Geophys. Res. Lett., 33, L16703, https://doi.org/10.1029/2006GL027119.

    • Search Google Scholar
    • Export Citation
  • Iwao, K., and M. Takahashi, 2008: A precipitation seesaw mode between northeast Asia and Siberia in summer caused by Rossby waves over the Eurasian continent. J. Climate, 21, 24012419, https://doi.org/10.1175/2007JCLI1949.1.

    • Search Google Scholar
    • Export Citation
  • Jin, R., H. Yu, M. Ying, and Z. Wu, 2022: An extreme tropical cyclone silence in the western North Pacific in July 2020. Atmos.–Ocean, 60, 2334, https://doi.org/10.1080/07055900.2022.2060179.

    • Search Google Scholar
    • Export Citation
  • Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77, 437471, https://doi.org/10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Karoly, D. J., and B. J. Hoskins, 1982: Three dimensional propagation of planetary waves. J. Meteor. Soc. Japan., 60, 109123, https://doi.org/10.2151/jmsj1965.60.1_109.

    • Search Google Scholar
    • Export Citation
  • Kobayashi, S., and Coauthors, 2015: The JRA-55 reanalysis: General specifications and basic characteristics. J. Meteor. Soc. Japan, 93, 548, https://doi.org/10.2151/jmsj.2015-001.

    • Search Google Scholar
    • Export Citation
  • Kosaka, Y., and H. Nakamura, M. Watanabe, and M. Kimoto, 2009: Analysis on the dynamics of a wave-like teleconnection pattern along the summertime Asian jet based on a reanalysis dataset and climate model simulations. J. Meteor. Soc. Japan, 87, 561580, https://doi.org/10.2151/jmsj.87.561.

    • Search Google Scholar
    • Export Citation
  • Lau, N. C., and M. J. Nath, 1991: Variability of the baroclinic and barotropic transient eddy forcing associated with monthly changes in the midlatitude storm tracks. J. Atmos. Sci., 48, 25892613, https://doi.org/10.1175/1520-0469(1991)048<2589:VOTBAB>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Li, X., R. Lu, and J.-B. Ahn, 2021: Combined effects of the British–Baikal Corridor pattern and the Silk Road pattern on Eurasian surface air temperatures in summer. J. Climate, 34, 37073720, https://doi.org/10.1175/JCLI-D-20-0325.1.

    • Search Google Scholar
    • Export Citation
  • Li, Y., J. Li, F. F. Jin, and S. Zhao, 2015: Interhemispheric propagation of stationary Rossby waves in a horizontally nonuniform background flow. J. Atmos. Sci., 72, 32333256, https://doi.org/10.1175/JAS-D-14-0239.1.

    • Search Google Scholar
    • Export Citation
  • Lin, Z., 2014: Intercomparison of the impacts of four summer teleconnections over Eurasia on East Asian rainfall. Adv. Atmos. Sci., 31, 13661376, https://doi.org/10.1007/s00376-014-3171-y.

    • Search Google Scholar
    • Export Citation
  • Lin, Z., F. Liu, B. Wang, R. Lu, and X. Qu, 2017: Southern European rainfall reshapes the early-summer circumglobal teleconnection after the late 1970s. Climate Dyn., 48, 38553868, https://doi.org/10.1007/s00382-016-3306-1.

    • Search Google Scholar
    • Export Citation
  • Lu, R.-Y., J.-H. Oh, and B.-J. Kim, 2002: A teleconnection pattern in upper-level meridional wind over the North African and Eurasian continent in summer. Tellus, 54A, 4455, https://doi.org/10.3402/tellusa.v54i1.12122.

    • Search Google Scholar
    • Export Citation
  • Manola, I., F. Selten, H. de Vries, and W. Hazeleger, 2013: “Waveguidability” of idealized jets. J. Geophys. Res. Atmos., 118, 10 43210 440, https://doi.org/10.1002/jgrd.50758.

    • Search Google Scholar
    • Export Citation
  • Matsuno, T., 1970: Vertical propagation of stationary planetary waves in the winter Northern Hemisphere. J. Atmos. Sci., 27, 871883, https://doi.org/10.1175/1520-0469(1970)027<0871:VPOSPW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Nakamura, H., and T. Fukamachi, 2004: Evolution and dynamics of summertime blocking over the Far East and the associated surface Okhotsk high. Quart. J. Roy. Meteor. Soc., 130, 12131233, https://doi.org/10.1256/qj.03.101.

    • Search Google Scholar
    • Export Citation
  • Ninomiya, K., 1984: Characteristics of Baiu front as a predominant subtropical front in the summer Northern Hemisphere. J. Meteor. Soc. Japan, 62, 880894, https://doi.org/10.2151/jmsj1965.62.6_880.

    • Search Google Scholar
    • Export Citation
  • North, G. R., T. L. Bell, R. F. Cahalan, and F. J. Moeng, 1982: Sampling errors in the estimation of empirical orthogonal functions. Mon. Wea. Rev., 110, 699706, https://doi.org/10.1175/1520-0493(1982)110<0699:SEITEO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Park, C., and Coauthors, 2021: Record-breaking summer rainfall in South Korea in 2020: Synoptic characteristics and the role of large-scale circulations. Mon. Wea. Rev., 149, 30853100, https://doi.org/10.1175/MWR-D-21-0051.1.

    • Search Google Scholar
    • Export Citation
  • Poli, P., and Coauthors, 2016: ERA-20C: An atmospheric reanalysis of the twentieth century. J. Climate, 29, 40834097, https://doi.org/10.1175/JCLI-D-15-0556.1.

    • Search Google Scholar
    • Export Citation
  • Rayner, N., D. E. Parker, E. B. Horton, C. K. Folland, L. V. Alexander, D. P. Rowell, E. C. Kent, and A. Kaplan, 2003: Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J. Geophys. Res., 108, 4407, https://doi.org/10.1029/2002JD002670.

    • Search Google Scholar
    • Export Citation
  • Riboldi, J., E. Rousi, F. D’Andrea, G. Rivière, and F. Lott, 2022: Circumglobal Rossby wave patterns during boreal winter highlighted by space–time spectral analysis. Wea. Climate Dyn., 3, 449469, https://doi.org/10.5194/wcd-3-449-2022.

    • Search Google Scholar
    • Export Citation
  • Screen, J. A., and I. Simmonds, 2014: Amplified mid-latitude planetary waves favour particular regional weather extremes. Nat. Climate Change, 4, 704709, https://doi.org/10.1038/nclimate2271.

    • Search Google Scholar
    • Export Citation
  • Sun, C., J. Li, and S. Zhao, 2015: Remote influence of Atlantic multidecadal variability on Siberian warm season precipitation. Sci. Rep., 5, 16853, https://doi.org/10.1038/srep16853.

    • Search Google Scholar
    • Export Citation
  • Takaya, K., and H. Nakamura, 2001: A formulation of a phase-independent wave-activity flux for stationary and migratory quasigeostrophic eddies on a zonally varying basic flow. J. Atmos. Sci., 58, 608627, https://doi.org/10.1175/1520-0469(2001)058<0608:AFOAPI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Taylor, K. E., R. J. Stouffer, and G. A. Meehl, 2012: An overview of CMIP5 and the experiment design. Bull. Amer. Meteor. Soc., 93, 485498, https://doi.org/10.1175/BAMS-D-11-00094.1.

    • Search Google Scholar
    • Export Citation
  • Teng, H., and G. Branstator, 2019: Amplification of waveguide teleconnections in the boreal summer. Curr. Climate Change Rep., 5, 421432, https://doi.org/10.1007/s40641-019-00150-x.

    • Search Google Scholar
    • Export Citation
  • Teng, H., G. Branstator, A. B. Tawfik, and P. Callaghan, 2019: Circumglobal response to prescribed soil moisture over North America. J. Climate, 32, 45254545, https://doi.org/10.1175/JCLI-D-18-0823.1.

    • Search Google Scholar
    • Export Citation
  • Volodin, E. M., N. A. Dianskii, and A. V. Gusev, 2010: Simulating present-day climate with the INMCM4.0 coupled model of the atmospheric and oceanic general circulations. Izv. Atmos. Ocean. Phys., 46, 414431, https://doi.org/10.1134/S000143381004002X.

    • Search Google Scholar
    • Export Citation
  • Volodin, E. M., L. Wang, Y. Liu, W. Gu, P. Xu, and W. Chen, 2019: The southwest China flood of July 2018 and its causes. Atmosphere, 10, 247, https://doi.org/10.3390/atmos10050247.

    • Search Google Scholar
    • Export Citation
  • Wang, L., P. Xu, W. Chen, and Y. Liu, 2017: Interdecadal variations of the Silk Road pattern. J. Climate, 30, 99159932, https://doi.org/10.1175/JCLI-D-17-0340.1.

    • Search Google Scholar
    • Export Citation
  • Wang, L., L. Wang, Y. Liu, W. Gu, P. Xu, and W. Chen, 2019: The southwest China flood of July 2018 and its causes. Atmosphere, 10, 247, https://doi.org/10.3390/atmos10050247.

    • Search Google Scholar
    • Export Citation
  • Wang, L., L. Wang, and J. S. Chowdary, 2021: Teleconnection along the Asian jet stream and its association with the Asian summer monsoon. Indian Summer Monsoon Variability: El Niño Teleconnections and Beyond, J. S. Chowdary, A. Parekh, and C. Gnanaseelan, Eds., Elsevier, 287298.

    • Search Google Scholar
    • Export Citation
  • Wang, M., and B. Tan, 2021: Formation and maintenance mechanisms of the subseasonal eastern Pacific pattern: Energetics analysis. Earth Space Sci., 8, e2021EA001851, https://doi.org/10.1029/2021EA001851.

    • Search Google Scholar
    • Export Citation
  • Watanabe, M., and M. Kimoto, 2000: Atmosphere–ocean thermal coupling in the North Atlantic: A positive feedback. Quart. J. Roy. Meteor. Soc., 126, 33433369, https://doi.org/10.1002/qj.49712657017.

    • Search Google Scholar
    • Export Citation
  • Wei, W., R. H. Zhang, M. Wen, B. J. Kim, and J. C. Nam, 2015: Interannual variation of the South Asian high and its relation with Indian and East Asian summer monsoon rainfall. J. Climate, 28, 26232634, https://doi.org/10.1175/JCLI-D-14-00454.1.

    • Search Google Scholar
    • Export Citation
  • White, R. H., K. Kornhuber, O. Martius, and V. Wirth, 2022: From atmospheric waves to heatwaves: A waveguide perspective for understanding and predicting concurrent, persistent, and extreme extratropical weather. Bull. Amer. Meteor. Soc., 103, E923E935, https://doi.org/10.1175/BAMS-D-21-0170.1.

    • Search Google Scholar
    • Export Citation
  • Wu, R., 2002: A mid-latitude Asian circulation anomaly pattern in boreal summer and its connection with the Indian and East Asian summer monsoons. Int. J. Climatol., 22, 18791895, https://doi.org/10.1002/joc.845.

    • Search Google Scholar
    • Export Citation
  • Wu, R., 2017: Relationship between Indian and East Asian summer rainfall variations. Adv. Atmos. Sci., 34, 415, https://doi.org/10.1007/s00376-016-6216-6.

    • Search Google Scholar
    • Export Citation
  • Xu, P., L. Wang, and W. Chen, 2019: The British–Baikal Corridor: A teleconnection pattern along the summertime polar front jet over Eurasia. J. Climate, 32, 877896, https://doi.org/10.1175/JCLI-D-18-0343.1.

    • Search Google Scholar
    • Export Citation
  • Xu, P., L. Wang, Y. Liu, W. Chen, and P. Huang, 2020a: The record-breaking heat wave of June 2019 in Central Europe. Atmos. Sci. Lett., 21, e964, https://doi.org/10.1002/asl.964.

    • Search Google Scholar
    • Export Citation
  • Xu, P., L. Wang, W. Chen, G. Chen, and I.-S. Kang, 2020b: Intraseasonal variations of the British–Baikal Corridor pattern. J. Climate, 33, 21832200, https://doi.org/10.1175/JCLI-D-19-0458.1.

    • Search Google Scholar
    • Export Citation
  • Xu, P., L. Wang, P. Huang, and W. Chen, 2021a: Disentangling dynamical and thermodynamical contributions to the record-breaking heatwave over Central Europe in June 2019. Atmos. Res., 252, 105446, https://doi.org/10.1016/j.atmosres.2020.105446.

    • Search Google Scholar
    • Export Citation
  • Xu, P., L. Wang, G. Vallis, R. Geen, J. Screen, P. Wu, S. Ding, P. Huang, and W. Chen, 2021b: Amplified waveguide teleconnections along the polar front jet favor summer temperature extremes over northern Eurasia. Geophys. Res. Lett., 48, e2021GL093735, https://doi.org/10.1029/2021GL093735.

    • Search Google Scholar
    • Export Citation
  • Xu, P., L. Wang, and J. Ming, 2022: Central Asian precipitation extremes affected by an intraseasonal planetary wave pattern. J. Climate, 35, 26032616, https://doi.org/10.1175/JCLI-D-21-0657.1.

    • Search Google Scholar
    • Export Citation
  • Zhou, F., R. Zhang, and J. Han, 2019: Relationship between the circumglobal teleconnection and Silk Road pattern over Eurasian continent. Sci. Bull., 64, 374376, https://doi.org/10.1016/j.scib.2019.02.014.

    • Search Google Scholar
    • Export Citation
  • Zhou, F., R. Zhang, and J. Han, 2020: Influences of the East Asian summer rainfall on circumglobal teleconnection. J. Climate, 33, 52135221, https://doi.org/10.1175/JCLI-D-19-0325.1.

    • Search Google Scholar
    • Export Citation
  • Zhuge, A., and B. Tan, 2021: The zonal North Pacific oscillation: A high-impact atmospheric teleconnection pattern influencing the North Pacific and North America. Environ. Res. Lett., 16, 074007, https://doi.org/10.1088/1748-9326/ac037b.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 1064 893 34
Full Text Views 535 412 31
PDF Downloads 688 525 51

The British–Okhotsk Corridor Pattern and Its Linkage to the Silk Road Pattern

Peiqiang XuaCenter for Monsoon System Research, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China
bCollaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters (CIC-FEMD), Nanjing University of Information Science and Technology, Nanjing, China

Search for other papers by Peiqiang Xu in
Current site
Google Scholar
PubMed
Close
,
Lin WangaCenter for Monsoon System Research, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China
bCollaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters (CIC-FEMD), Nanjing University of Information Science and Technology, Nanjing, China

Search for other papers by Lin Wang in
Current site
Google Scholar
PubMed
Close
,
Zizhen DongcDepartment of Atmospheric Sciences, Yunnan University, Kunming, China

Search for other papers by Zizhen Dong in
Current site
Google Scholar
PubMed
Close
,
Yanjie LidState Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China

Search for other papers by Yanjie Li in
Current site
Google Scholar
PubMed
Close
,
Xiaocen ShenaCenter for Monsoon System Research, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China

Search for other papers by Xiaocen Shen in
Current site
Google Scholar
PubMed
Close
, and
Wen ChenaCenter for Monsoon System Research, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China

Search for other papers by Wen Chen in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Based on observation and reanalysis datasets, numerical experiments with a simple dynamical model, and climate model outputs, this study investigates the second leading waveguide teleconnection along the summer polar front jet (PFJ) over Eurasia on the interannual time scale, the British–Okhotsk Corridor (BOC) pattern. The BOC pattern explains 20.8% of the total variance over northern Eurasia, which is only slightly lower than the first leading teleconnection, the British–Baikal Corridor pattern. It consists of four zonally oriented action centers over the British Isles, western Russia, northern Siberia, and the Sea of Okhotsk. It is primarily confined to northern Eurasia and leads to wavelike temperature and precipitation anomalies along its routine. Besides, it is occasionally coupled to the dominant waveguide teleconnection along the subtropical jet (STJ), the Silk Road pattern (SRP). A bifurcated wavelike pattern appears over Eurasia when the coupling is strong, with two branches of waves over the PFJ and the STJ, respectively. The fluctuations of the BOC–SRP linkage play a profound role in shaping the dominant climate variability modes over Eurasia. Numerical experiments with a simple dynamical model suggest that the basic flow cannot directly influence the BOC–SRP linkage by affecting the propagation condition of Rossby waves. Nevertheless, the basic flow can indirectly influence the linkage by changing the exciting locations of the BOC pattern through modulating the wave–mean flow interaction at the exit of the Atlantic jet stream. The climate model INMCM4.0 can reproduce the observed BOC–SRP linkage and its time-varying characteristics, supporting the observation and the proposed mechanism.

Significance Statement

Over Eurasia, extreme summer weather events are often related to long-lasting stagnant atmospheric circulation anomalies in the upper troposphere, which can be well determined by a few recurring modes called atmospheric teleconnections. Atmospheric teleconnections over Eurasia usually propagate along the subtropical jet (STJ) and the polar front jet (PFJ). Although the teleconnections along the STJ have been well understood, the teleconnections along the PFJ are currently not fully understood. This paper investigates the British–Okhotsk Corridor (BOC) pattern, a newly defined major summer teleconnection along the PFJ. The BOC pattern can be occasionally coupled to a dominant teleconnection along the STJ. Fluctuations of this linkage play a profound role in shaping the dominant surface climate variability modes over Eurasia. Observation and reanalysis datasets, numerical experiments with a simple dynamical model, and climate model output are used to understand this linkage in the study.

© 2022 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Lin Wang, wanglin@mail.iap.ac.cn

Abstract

Based on observation and reanalysis datasets, numerical experiments with a simple dynamical model, and climate model outputs, this study investigates the second leading waveguide teleconnection along the summer polar front jet (PFJ) over Eurasia on the interannual time scale, the British–Okhotsk Corridor (BOC) pattern. The BOC pattern explains 20.8% of the total variance over northern Eurasia, which is only slightly lower than the first leading teleconnection, the British–Baikal Corridor pattern. It consists of four zonally oriented action centers over the British Isles, western Russia, northern Siberia, and the Sea of Okhotsk. It is primarily confined to northern Eurasia and leads to wavelike temperature and precipitation anomalies along its routine. Besides, it is occasionally coupled to the dominant waveguide teleconnection along the subtropical jet (STJ), the Silk Road pattern (SRP). A bifurcated wavelike pattern appears over Eurasia when the coupling is strong, with two branches of waves over the PFJ and the STJ, respectively. The fluctuations of the BOC–SRP linkage play a profound role in shaping the dominant climate variability modes over Eurasia. Numerical experiments with a simple dynamical model suggest that the basic flow cannot directly influence the BOC–SRP linkage by affecting the propagation condition of Rossby waves. Nevertheless, the basic flow can indirectly influence the linkage by changing the exciting locations of the BOC pattern through modulating the wave–mean flow interaction at the exit of the Atlantic jet stream. The climate model INMCM4.0 can reproduce the observed BOC–SRP linkage and its time-varying characteristics, supporting the observation and the proposed mechanism.

Significance Statement

Over Eurasia, extreme summer weather events are often related to long-lasting stagnant atmospheric circulation anomalies in the upper troposphere, which can be well determined by a few recurring modes called atmospheric teleconnections. Atmospheric teleconnections over Eurasia usually propagate along the subtropical jet (STJ) and the polar front jet (PFJ). Although the teleconnections along the STJ have been well understood, the teleconnections along the PFJ are currently not fully understood. This paper investigates the British–Okhotsk Corridor (BOC) pattern, a newly defined major summer teleconnection along the PFJ. The BOC pattern can be occasionally coupled to a dominant teleconnection along the STJ. Fluctuations of this linkage play a profound role in shaping the dominant surface climate variability modes over Eurasia. Observation and reanalysis datasets, numerical experiments with a simple dynamical model, and climate model output are used to understand this linkage in the study.

© 2022 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Lin Wang, wanglin@mail.iap.ac.cn
Save