• Ahlström, A., B. Smith, J. Lindström, M. Rummukainen, and C. B. Uvo, 2013: GCM characteristics explain the majority of uncertainty in projected 21st century terrestrial ecosystem carbon balance. Biogeosciences, 10, 15171528, https://doi.org/10.5194/bg-10-1517-2013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Akihiko, I., and Coauthors, 2020: Soil carbon sequestration simulated in CMIP6-LUMIP models: Implications for climatic mitigation. Environ. Res. Lett., 10, 17489326, https://doi.org/10.1088/1748-9326/abc912.

    • Search Google Scholar
    • Export Citation
  • Anav, A., and Coauthors, 2013: Evaluating the land and ocean components of the global carbon cycle in the CMIP5 Earth system models. J. Climate, 26, 68016843, https://doi.org/10.1175/JCLI-D-12-00417.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Arneth, A., and Coauthors, 2010: Terrestrial biogeochemical feedbacks in the climate system. Nat. Geosci., 3, 525532, https://doi.org/10.1038/ngeo905.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Arora, V. K., and Coauthors, 2009: The effect of terrestrial photosynthesis down regulation on the twentieth-century carbon budget simulated with the CCCma Earth system model. J. Climate, 22, 60666088, https://doi.org/10.1175/2009JCLI3037.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Arora, V. K., and Coauthors, 2020: Carbon–concentration and carbon–climate feedbacks in CMIP6 models and their comparison to CMIP5 models. Biogeosciences, 17, 41734222, https://doi.org/10.5194/bg-17-4173-2020.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Best, M. J., and Coauthors, 2011: The Joint UK Land Environment Simulator (JULES), model description—Part 1: Energy and water fluxes. Geosci. Model Dev., 4, 677699, https://doi.org/10.5194/gmd-4-677-2011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bloom, A. A., J.-F. Exbrayat, I. R. van der Velde, L. Feng, and M. Williams, 2016: The decadal state of the terrestrial carbon cycle: Global retrievals of terrestrial carbon allocation, pools, and residence times. Proc. Natl. Acad. Sci. USA, 113, 12851290, https://doi.org/10.1073/pnas.1515160113.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bodman, R. W., P. J. Rayner, and D. J. Karoly, 2013: Uncertainty in temperature projections reduced using carbon cycle and climate observations. Nat. Climate Change, 3, 725729, https://doi.org/10.1038/nclimate1903.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bonan, G. B., and S. C. Doney, 2018: Climate, ecosystems, and planetary futures: The challenge to predict life in Earth system models. Science, 359, eaam8328, https://doi.org/10.1126/science.aam8328.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bonan, G. B., D. L. Lombardozzi, W. R. Wieder, K. W. Oleson, D. M. Lawrence, F. M. Hoffman, and N. Collier, 2019: Model structure and climate data uncertainty in historical simulations of the terrestrial carbon cycle (1850–2014). Global Biogeochem. Cycles, 33, 13101326, https://doi.org/10.1029/2019GB006175.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Booth, B. B. B., and Coauthors, 2012: High sensitivity of future global warming to land carbon cycle processes. Environ. Res. Lett., 7, 024002, https://doi.org/10.1088/1748-9326/7/2/024002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bowring, S. P. K., R. Lauerwald, B. Guenet, D. Zhu, M. Guimberteau, A. Tootchi, A. Ducharne, and P. Ciais, 2019: ORCHIDEE MICT-LEAK (r5459), a global model for the production, transport, and transformation of dissolved organic carbon from Arctic permafrost regions—Part 1: Rationale, model description, and simulation protocol. Geosci. Model Dev., 12, 35033521, https://doi.org/10.5194/gmd-12-3503-2019.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bradford, M. A., and T. W. Crowther, 2013: Carbon use efficiency and storage in terrestrial ecosystems. New Phytol., 199, 79, https://doi.org/10.1111/nph.12334.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Burke, E. J., and Coauthors, 2017: Quantifying uncertainties of permafrost carbon–climate feedbacks. Biogeosciences, 14, 30513066, https://doi.org/10.5194/bg-14-3051-2017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Carvalhais, N., and Coauthors, 2014: Global covariation of carbon turnover times with climate in terrestrial ecosystems. Nature, 514, 213217, https://doi.org/10.1038/nature13731.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chevan, A., and M. Sutherland, 1991: Hierarchical partitioning. Amer. Stat., 45, 9096, https://doi.org/10.2307/2684366.

  • Ciais, P., and Coauthors, 2014: Carbon and other biogeochemical cycles. Climate Change 2013: The Physical Science Basis, T. F. Stocker et al., Eds., Cambridge University Press, 465570.

    • Search Google Scholar
    • Export Citation
  • Clark, D. B., and Coauthors, 2011: The Joint UK Land Environment Simulator (JULES), model description—Part 2: Carbon fluxes and vegetation dynamics. Geosci. Model Dev., 4, 701722, https://doi.org/10.5194/gmd-4-701-2011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Collier, N., and Coauthors, 2018: The International Land Model Benchmarking (ILAMB) system: Design, theory, and implementation. J. Adv. Model. Earth Syst., 10, 27312754, https://doi.org/10.1029/2018MS001354.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Collins, W. J., and Coauthors, 2011: Development and evaluation of an Earth-system model—HadGEM2. Geosci. Model Dev., 4, 10511075, https://doi.org/10.5194/gmd-4-1051-2011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cox, P. M., R. A. Betts, C. D. Jones, S. A. Spall, and I. J. Totterdell, 2000: Acceleration of global warming due to carbon-cycle feedbacks in a coupled climate model. Nature, 408, 184187, https://doi.org/10.1038/35041539.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cui, E., and Coauthors, 2019: Vegetation functional properties determine uncertainty of simulated ecosystem productivity: A traceability analysis in the East Asian monsoon region. Global Biogeochem. Cycles, 33, 668689, https://doi.org/10.1029/2018GB005909.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Davies-Barnard, T., and Coauthors, 2020: Nitrogen cycling in CMIP6 land surface models: Progress and limitations. Biogeosciences, 17, 51295148, https://doi.org/10.5194/bg-17-5129-2020.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • DeAngelis, D. L., and W. M. Mooij, 2003: In praise of mechanistically rich models. Models in Ecosystem Science, C. D. Canham, J. J. Cole, and W. K. Lauenroth, Eds., Princeton University Press, 6382.

    • Search Google Scholar
    • Export Citation
  • Du, Z., E. Weng, L. Jiang, Y. Luo, J. Xia, and X. Zhou, 2018: Carbon–nitrogen coupling under three schemes of model representation: A traceability analysis. Geosci. Model Dev., 11, 43994416, https://doi.org/10.5194/gmd-11-4399-2018.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dufresne, J. L., and Coauthors, 2013: Climate change projections using the IPSL-CM5 Earth System Model: From CMIP3 to CMIP5. Climate Dyn., 40, 21232165, https://doi.org/10.1007/s00382-012-1636-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dunne, J. P., and Coauthors, 2012: GFDL’s ESM2 global coupled climate–carbon Earth system models. Part II: Carbon system formulation and baseline simulation characteristics. J. Climate, 26, 22472267, https://doi.org/10.1175/JCLI-D-12-00150.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Eyring, V., S. Bony, G. A. Meehl, C. A. Senior, B. Stevens, R. J. Stouffer, and K. E. Taylor, 2016: Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization. Geosci. Model Dev., 9, 19371958, https://doi.org/10.5194/gmd-9-1937-2016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fan, N., and Coauthors, 2020: Apparent ecosystem carbon turnover time: Uncertainties and robust features. Earth Syst. Sci. Data, 12, 25172536, https://doi.org/10.5194/essd-12-2517-2020.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Flato, G. M., 2011: Earth system models: An overview. Wiley Interdiscip. Rev.: Climate Change, 2, 783800, https://doi.org/10.1002/wcc.148.

    • Search Google Scholar
    • Export Citation
  • Friedlingstein, P., and Coauthors, 2006: Climate–carbon cycle feedback analysis: Results from the C4MIP model intercomparison. J. Climate, 19, 33373353, https://doi.org/10.1175/JCLI3800.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Friedlingstein, P., M. Meinshausen, V. K. Arora, C. D. Jones, A. Anav, S. K. Liddicoat, and R. Knutti, 2013: Uncertainties in CMIP5 climate projections due to carbon cycle feedbacks. J. Climate, 27, 511526, https://doi.org/10.1175/JCLI-D-12-00579.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Friedlingstein, P., and Coauthors, 2019: Global carbon budget 2019. Earth Syst. Sci. Data, 11, 17831838, https://doi.org/10.5194/essd-11-1783-2019.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gent, P. R., and Coauthors, 2011: The Community Climate System Model version 4. J. Climate, 24, 49734991, https://doi.org/10.1175/2011JCLI4083.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Giorgetta, M. A., and Coauthors, 2013: Climate and carbon cycle changes from 1850 to 2100 in MPI-ESM simulations for the Coupled Model Intercomparison Project phase 5. J. Adv. Model. Earth Syst., 5, 572597, https://doi.org/10.1002/jame.20038.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Goll, D. S., V. Brovkin, B. R. Parida, C. H. Reick, J. Kattge, P. B. Reich, P. M. van Bodegom, and Ü. Niinemets, 2012: Nutrient limitation reduces land carbon uptake in simulations with a model of combined carbon, nitrogen and phosphorus cycling. Biogeosciences, 9, 35473569, https://doi.org/10.5194/bg-9-3547-2012.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hajima, T., and Coauthors, 2019: Development of the MIROC-ES2L Earth system model and evaluation of its climate–biogeochemical processes and feedbacks. Geosci. Model Dev., 13, 21972244, https://doi.org/10.5194/gmd-13-2197-2020.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hengl, T., and Coauthors, 2017: SoilGrids250m: Global gridded soil information based on machine learning. PLOS ONE, 12, e0169748, https://doi.org/10.1371/journal.pone.0169748.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hoesly, R. M., and Coauthors, 2018: Historical (1750–2014) anthropogenic emissions of reactive gases and aerosols from the Community Emissions Data System (CEDS). Geosci. Model Dev., 11, 369408, https://doi.org/10.5194/gmd-11-369-2018.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Houghton, R. A., 2007: Balancing the global carbon budget. Annu. Rev. Earth Planet. Sci., 35, 313347, https://doi.org/10.1146/annurev.earth.35.031306.140057.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huang, Y., and Coauthors, 2018: Matrix approach to land carbon cycle modeling: A case study with the Community Land Model. Global Change Biol., 24, 13941404, https://doi.org/10.1111/gcb.13948.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hugelius, G., and Coauthors, 2013: A new data set for estimating organic carbon storage to 3 m depth in soils of the northern circumpolar permafrost region. Earth Syst. Sci. Data, 5, 393402, https://doi.org/10.5194/essd-5-393-2013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ito, A., and T. Oikawa, 2002: A simulation model of the carbon cycle in land ecosystems (Sim-CYCLE): A description based on dry-matter production theory and plot-scale validation. Ecol. Modell., 151, 143176, https://doi.org/10.1016/S0304-3800(01)00473-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ji, D., and Coauthors, 2014: Description and basic evaluation of Beijing Normal University Earth System Model (BNU-ESM) version 1. Geosci. Model Dev., 7, 20392064, https://doi.org/10.5194/gmd-7-2039-2014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jiang, L., Z. Shi, J. Xia, J. Liang, X. Lu, Y. Wang, and Y. Luo, 2017: Transient traceability analysis of land carbon storage dynamics: Procedures and its application to two forest ecosystems. J. Adv. Model. Earth Syst., 9, 28222835, https://doi.org/10.1002/2017MS001004.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jones, C. D., and Coauthors, 2016: C4MIP—The Coupled Climate–Carbon Cycle Model Intercomparison Project: Experimental protocol for CMIP6. Geosci. Model Dev., 9, 28532880, https://doi.org/10.5194/gmd-9-2853-2016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jung, M., and Coauthors, 2017: Compensatory water effects link yearly global land CO2 sink changes to temperature. Nature, 541, 516520, https://doi.org/10.1038/nature20780.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Keenan, T. F., and C. A. Williams, 2018: The terrestrial carbon sink. Annu. Rev. Environ. Resour., 43, 219243, https://doi.org/10.1146/annurev-environ-102017-030204.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kolby Smith, W., and Coauthors, 2016: Large divergence of satellite and Earth system model estimates of global terrestrial CO2 fertilization. Nat. Climate Change, 6, 306310, https://doi.org/10.1038/nclimate2879.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Koven, C. D., P. Friedlingstein, P. Ciais, D. Khvorostyanov, G. Krinner, and C. Tarnocai, 2009: On the formation of high-latitude soil carbon stocks: Effects of cryoturbation and insulation by organic matter in a land surface model. Geophys. Res. Lett., 36, L21501, https://doi.org/10.1029/2009GL040150.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Koven, C. D., B. Ringeval, P. Friedlingstein, P. Ciais, P. Cadule, D. Khvorostyanov, G. Krinner, and C. Tarnocai, 2011: Permafrost carbon-climate feedbacks accelerate global warming. Proc. Natl. Acad. Sci. USA, 108, 14 76914 774, https://doi.org/10.1073/pnas.1103910108.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Koven, C. D., and Coauthors, 2013: The effect of vertically resolved soil biogeochemistry and alternate soil C and N models on C dynamics of CLM4. Biogeosciences, 10, 71097131, https://doi.org/10.5194/bg-10-7109-2013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Koven, C. D., and Coauthors, 2015: Controls on terrestrial carbon feedbacks by productivity versus turnover in the CMIP5 Earth system models. Biogeosciences, 12, 52115228, https://doi.org/10.5194/bg-12-5211-2015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Koven, C. D., G. Hugelius, D. M. Lawrence, and W. R. Wieder, 2017: Higher climatological temperature sensitivity of soil carbon in cold than warm climates. Nat. Climate Change, 7, 817822, https://doi.org/10.1038/nclimate3421.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Krinner, G., and Coauthors, 2005: A dynamic global vegetation model for studies of the coupled atmosphere–biosphere system. Global Biogeochem. Cycles, 19, GB1015, https://doi.org/10.1029/2003GB002199.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Law, R. M., and Coauthors, 2017: The carbon cycle in the Australian Community Climate and Earth System Simulator (ACCESS-ESM1)—Part 1: Model description and pre-industrial simulation. Geosci. Model Dev., 10, 25672590, https://doi.org/10.5194/gmd-10-2567-2017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lawrence, D. M., and Coauthors, 2016: The Land Use Model Intercomparison Project (LUMIP) contribution to CMIP6: Rationale and experimental design. Geosci. Model Dev., 9, 29732998, https://doi.org/10.5194/gmd-9-2973-2016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lawrence, D. M., and Coauthors, 2019: The Community Land Model version 5: Description of new features, benchmarking, and impact of forcing uncertainty. J. Adv. Model. Earth Syst., 11, 42454287, https://doi.org/10.1029/2018MS001583.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lindsay, K., and Coauthors, 2014: Preindustrial-control and twentieth-century carbon cycle experiments with the Earth System Model CESM1(BGC). J. Climate, 27, 89819005, https://doi.org/10.1175/JCLI-D-12-00565.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lovenduski, N. S., and G. B. Bonan, 2017: Reducing uncertainty in projections of terrestrial carbon uptake. Environ. Res. Lett., 12, 044020, https://doi.org/10.1088/1748-9326/aa66b8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Luo, Y., and E. Weng, 2011: Dynamic disequilibrium of the terrestrial carbon cycle under global change. Trends Ecol. Evol., 26, 96104, https://doi.org/10.1016/j.tree.2010.11.003.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Luo, Y., and Coauthors, 2017: Transient dynamics of terrestrial carbon storage: Mathematical foundation and its applications. Biogeosciences, 14, 145161, https://doi.org/10.5194/bg-14-145-2017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mauritsen, T., and Coauthors, 2019: Developments in the MPI-M Earth System Model version 1.2 (MPI-ESM1.2) and its response to increasing CO2. J. Adv. Model. Earth Syst., 11, 9981038, https://doi.org/10.1029/2018MS001400.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Meyerholt, J., and S. Zaehle, 2015: The role of stoichiometric flexibility in modelling forest ecosystem responses to nitrogen fertilization. New Phytol., 208, 10421055, https://doi.org/10.1111/nph.13547.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Meyerholt, J., K. Sickel, and S. Zaehle, 2020: Ensemble projections elucidate effects of uncertainty in terrestrial nitrogen limitation on future carbon uptake. Global Change Biol., 26, 39783996, https://doi.org/10.1111/gcb.15114.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Muhr, J., A. Angert, R. I. Negrón-Juárez, W. A. Muñoz, G. Kraemer, J. Q. Chambers, and S. E. Trumbore, 2013: Carbon dioxide emitted from live stems of tropical trees is several years old. Tree Physiol., 33, 743752, https://doi.org/10.1093/treephys/tpt049.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Murray, K., and M. M. Conner, 2009: Methods to quantify variable importance: Implications for the analysis of noisy ecological data. Ecology, 90, 348355, https://doi.org/10.1890/07-1929.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nottingham, A. T., P. Meir, E. Velasquez, and B. L. Turner, 2020: Soil carbon loss by experimental warming in a tropical forest. Nature, 584, 234237, https://doi.org/10.1038/s41586-020-2566-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Piao, S., and Coauthors, 2013: Evaluation of terrestrial carbon cycle models for their response to climate variability and to CO2 trends. Global Change Biol., 19, 21172132, https://doi.org/10.1111/gcb.12187.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Randerson, J. T., and Coauthors, 2009: Systematic assessment of terrestrial biogeochemistry in coupled climate–carbon models. Global Change Biol., 15, 24622484, https://doi.org/10.1111/j.1365-2486.2009.01912.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ruesch, A., and H. K. Gibbs, 2008: New IPCC Tier-1 global biomass carbon map for the year 2000. Carbon Dioxide Information Analysis Center, https://cdiac.ess-dive.lbl.gov/epubs/ndp/global_carbon/carbon_documentation.html.

    • Search Google Scholar
    • Export Citation
  • Running, S., Q. Mu, and M. Zhao, 2015: MOD17A2H MODIS/Terra gross primary productivity 8-day L4 global 500m SIN grid V006. NASA EOSDIS Land Processes DAAC, https://doi.org/10.5067/MODIS/MOD17A2H.006.

    • Search Google Scholar
    • Export Citation
  • Sato, H., A. Itoh, and T. Kohyama, 2007: SEIB–DGVM: A new Dynamic Global Vegetation Model using a spatially explicit individual-based approach. Ecol. Modell., 200, 279307, https://doi.org/10.1016/j.ecolmodel.2006.09.006.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schädel, C., and Coauthors, 2018: Divergent patterns of experimental and model-derived permafrost ecosystem carbon dynamics in response to Arctic warming. Environ. Res. Lett., 13, 105002, https://doi.org/10.1088/1748-9326/aae0ff.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schneck, R., C. H. Reick, and T. Raddatz, 2013: Land contribution to natural CO2 variability on time scales of centuries. J. Adv. Model. Earth Syst., 5, 354365, https://doi.org/10.1002/jame.20029.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schuur, E. A. G., and Coauthors, 2015: Climate change and the permafrost carbon feedback. Nature, 520, 171179, https://doi.org/10.1038/nature14338.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Séférian, R., and Coauthors, 2019: Evaluation of CNRM Earth-system model, CNRM-ESM 2-1: Role of Earth system processes in present-day and future climate. J. Adv. Model. Earth Syst., 11, 41824227, https://doi.org/10.1029/2019MS001791.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Seland, Ø., and Coauthors, 2020: Overview of the Norwegian Earth System Model (NorESM2) and key climate response of CMIP6 DECK, historical, and scenario simulations. Geosci. Model Dev., 13, 61656200, https://doi.org/10.5194/gmd-13-6165-2020.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sierra, C. A., and Coauthors, 2022: Ideas and perspectives: Allocation of carbon from net primary production in models is inconsistent with observations of the age of respired carbon. EGUsphere, https://doi.org/10.5194/egusphere-2022-34, in press.

    • Search Google Scholar
    • Export Citation
  • Sitch, S., and Coauthors, 2003: Evaluation of ecosystem dynamics, plant geography and terrestrial carbon cycling in the LPJ dynamic global vegetation model. Global Change Biol., 9, 161185, https://doi.org/10.1046/j.1365-2486.2003.00569.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shi, Z., and Coauthors, 2020: The age distribution of global soil carbon inferred from radiocarbon measurements. Nat. Geosci., 13, 555559, https://doi.org/10.1038/s41561-020-0596-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smith, B., D. Wårlind, A. Arneth, T. Hickler, P. Leadley, J. Siltberg, and S. Zaehle, 2014: Implications of incorporating N cycling and N limitations on primary production in an individual-based dynamic vegetation model. Biogeosciences, 11, 20272054, https://doi.org/10.5194/bg-11-2027-2014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Spawn, S. A., C. C. Sullivan, T. J. Lark, and H. K. Gibbs, 2020: Harmonized global maps of above and belowground biomass carbon density in the year 2010. Sci. Data, 7, 112, https://doi.org/10.1038/s41597-020-0444-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Swart, N. C., and Coauthors, 2019: The Canadian Earth System Model version 5 (CanESM5.0.3). Geosci. Model Dev., 12, 48234873, https://doi.org/10.5194/gmd-12-4823-2019.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Taylor, K. E., R. J. Stouffer, and G. A. Meehl, 2011: An overview of CMIP5 and the experiment design. Bull. Amer. Meteor. Soc., 93, 485498, https://doi.org/10.1175/BAMS-D-11-00094.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tjiputra, J. F., C. Roelandt, M. Bentsen, D. M. Lawrence, T. Lorentzen, J. Schwinger, Ø. Seland, and C. Heinze, 2013: Evaluation of the carbon cycle components in the Norwegian Earth System Model (NorESM). Geosci. Model Dev., 6, 301325, https://doi.org/10.5194/gmd-6-301-2013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Todd-Brown, K. E. O., J. T. Randerson, W. M. Post, F. M. Hoffman, C. Tarnocai, E. A. G. Schuur, and S. D. Allison, 2013: Causes of variation in soil carbon simulations from CMIP5 Earth system models and comparison with observations. Biogeosciences, 10, 17171736, https://doi.org/10.5194/bg-10-1717-2013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Todd-Brown, K. E. O., and Coauthors, 2014: Changes in soil organic carbon storage predicted by Earth system models during the 21st century. Biogeosciences, 11, 23412356, https://doi.org/10.5194/bg-11-2341-2014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Varney, R. M., S. E. Chadburn, P. Friedlingstein, E. J. Burke, C. D. Koven, G. Hugelius, and P. M. Cox, 2020: A spatial emergent constraint on the sensitivity of soil carbon turnover to global warming. Nat. Commun., 11, 5544, https://doi.org/10.1038/s41467-020-19208-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vuichard, N., P. Messina, S. Luyssaert, B. Guenet, S. Zaehle, J. Ghattas, V. Bastrikov, and P. Peylin, 2019: Accounting for carbon and nitrogen interactions in the global terrestrial ecosystem model ORCHIDEE (trunk version, rev 4999): Multi-scale evaluation of gross primary production. Geosci. Model Dev., 12, 47514779, https://doi.org/10.5194/gmd-12-4751-2019.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, J., and Coauthors, 2019: Evaluating the simulated mean soil carbon transit times by Earth system models using observations. Biogeosciences, 16, 917926, https://doi.org/10.5194/bg-16-917-2019.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Watanabe, S., and Coauthors, 2011: MIROC-ESM 2010: Model description and basic results of CMIP5-20c3m experiments. Geosci. Model Dev., 4, 845872, https://doi.org/10.5194/gmd-4-845-2011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wei, N., and Coauthors, 2019: Decadal stabilization of soil inorganic nitrogen as a benchmark for global land models. J. Adv. Model. Earth Syst., 11, 10881099, https://doi.org/10.1029/2019MS001633.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wieder, W., 2014: Regridded Harmonized World Soil Database v1.2. Data set. Oak Ridge National Laboratory Distributed Active Archive Center, http://daac.ornl.gov.

    • Search Google Scholar
    • Export Citation
  • Wieder, W., C. C. Cleveland, W. K. Smith, and K. Todd-Brown, 2015: Future productivity and carbon storage limited by terrestrial nutrient availability. Nat. Geosci., 8, 441444, https://doi.org/10.1038/ngeo2413.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, T., and Coauthors, 2013: Global carbon budgets simulated by the Beijing Climate Center Climate System Model for the last century. J. Geophys. Res. Atmos., 118, 43264347, https://doi.org/10.1002/jgrd.50320.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, T., and Coauthors, 2019: The Beijing Climate Center Climate System Model (BCC-CSM): The main progress from CMIP5 to CMIP6. Geosci. Model Dev., 12, 15731600, https://doi.org/10.5194/gmd-12-1573-2019.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xia, J., Y. Luo, Y.-P. Wang, and O. Hararuk, 2013: Traceable components of terrestrial carbon storage capacity in biogeochemical models. Global Change Biol., 19, 21042116, https://doi.org/10.1111/gcb.12172.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xia, J., J. Chen, S. Piao, P. Ciais, Y. Luo, and S. Wan, 2014: Terrestrial carbon cycle affected by non-uniform climate warming. Nat. Geosci., 7, 173180, https://doi.org/10.1038/ngeo2093.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xia, J., and Coauthors, 2017: Terrestrial ecosystem model performance in simulating productivity and its vulnerability to climate change in the northern permafrost region. J. Geophys. Res. Biogeosci., 122, 430446, https://doi.org/10.1002/2016JG003384.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xia, J., J. Wang, and S. Niu, 2020: Research challenges and opportunities for using big data in global change biology. Global Change Biol., 26, 60406061, https://doi.org/10.1111/gcb.15317.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xu, L., and Coauthors, 2021: Changes in global terrestrial live biomass over the 21st century. Sci. Adv., 7, eabe9829, https://doi.org/10.1126/sciadv.abe9829.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yukimoto, S., and Coauthors, 2011: Meteorological Research Institute-Earth System Model version 1 (MRI-ESM1)—Model description. Tech. Rep. 64, 96 pp., http://www.mri-jma.go.jp/Publish/Technical/DATA/VOL_64/index_en.html.

    • Search Google Scholar
    • Export Citation
  • Zhang, Y., X. Xiao, X. Wu, S. Zhou, G. Zhang, Y. Qin, and J. Dong, 2017: A global moderate resolution dataset of gross primary production of vegetation for 2000–2016. Sci. Data, 4, 170165. https://doi.org/10.1038/sdata.2017.165.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhou, S., and Coauthors, 2018: Sources of uncertainty in modeled land carbon storage within and across three MIPs: Diagnosis with three new techniques. J. Climate, 31, 28332851, https://doi.org/10.1175/JCLI-D-17-0357.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 634 613 239
Full Text Views 240 235 67
PDF Downloads 301 291 69

Evolution of Uncertainty in Terrestrial Carbon Storage in Earth System Models from CMIP5 to CMIP6

View More View Less
  • 1 aResearch Center for Global Change and Complex Ecosystems, State Key Laboratory of Estuarine and Coastal Research, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, China
  • | 2 bCenter for Ecosystem Science and Society, Northern Arizona University, Flagstaff, Arizona
Restricted access

Abstract

The spatial and temporal variations in terrestrial carbon storage play a pivotal role in regulating future climate change. However, Earth system models (ESMs), which have coupled the terrestrial biosphere and atmosphere, show great uncertainty in simulating the global land carbon storage. Here, based on multiple global datasets and a traceability analysis, we diagnosed the uncertainty source of terrestrial carbon storage in 22 ESMs that participated in phases 5 and 6 of the Coupled Model Intercomparison Project (CMIP5 and CMIP6). The modeled global terrestrial carbon storage has converged among ESMs from CMIP5 (1936.9 ± 739.3 PgC) to CMIP6 (1774.4 ± 439.0 PgC) but is persistently lower than the observation-based estimates (2285 ± 669 PgC). By further decomposing terrestrial carbon storage into net primary production (NPP) and ecosystem carbon residence time (τE), we found that the decreased intermodel spread in land carbon storage primarily resulted from more accurate simulations on NPP among ESMs from CMIP5 to CMIP6. The persistent underestimation of land carbon storage was caused by the biased τE. In CMIP5 and CMIP6, the modeled τE was far shorter than the observation-based estimates. The potential reasons for the biased τE could be the lack of or incomplete representation of nutrient limitation, vertical soil biogeochemistry, and the permafrost carbon cycle. Moreover, the modeled τE became the key driver for the intermodel spread in global land carbon storage in CMIP6. Overall, our study indicates that CMIP6 models have greatly improved the terrestrial carbon cycle, with a decreased model spread in global terrestrial carbon storage and less uncertain productivity. However, more efforts are needed to understand and reduce the persistent data–model disagreement on carbon storage and residence time in the terrestrial biosphere.

© 2022 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

This article is included in the Process-Oriented Model Diagnostics Special Collection.

Wei’s ORCID: 0000-0003-2864-9568.

Xia’s ORCID: 0000-0001-5923-6665.

Zhou’s ORCID: 0000-0001-9276-6086.

Cui’s ORCID: 0000-0002-2639-5069.

Ping’s ORCID: 0000-0003-3427-4328.

Luo’s ORCID: 0000-0002-4556-0218.

Corresponding author: Jianyang Xia, jyxia@des.ecnu.edu.cn

Abstract

The spatial and temporal variations in terrestrial carbon storage play a pivotal role in regulating future climate change. However, Earth system models (ESMs), which have coupled the terrestrial biosphere and atmosphere, show great uncertainty in simulating the global land carbon storage. Here, based on multiple global datasets and a traceability analysis, we diagnosed the uncertainty source of terrestrial carbon storage in 22 ESMs that participated in phases 5 and 6 of the Coupled Model Intercomparison Project (CMIP5 and CMIP6). The modeled global terrestrial carbon storage has converged among ESMs from CMIP5 (1936.9 ± 739.3 PgC) to CMIP6 (1774.4 ± 439.0 PgC) but is persistently lower than the observation-based estimates (2285 ± 669 PgC). By further decomposing terrestrial carbon storage into net primary production (NPP) and ecosystem carbon residence time (τE), we found that the decreased intermodel spread in land carbon storage primarily resulted from more accurate simulations on NPP among ESMs from CMIP5 to CMIP6. The persistent underestimation of land carbon storage was caused by the biased τE. In CMIP5 and CMIP6, the modeled τE was far shorter than the observation-based estimates. The potential reasons for the biased τE could be the lack of or incomplete representation of nutrient limitation, vertical soil biogeochemistry, and the permafrost carbon cycle. Moreover, the modeled τE became the key driver for the intermodel spread in global land carbon storage in CMIP6. Overall, our study indicates that CMIP6 models have greatly improved the terrestrial carbon cycle, with a decreased model spread in global terrestrial carbon storage and less uncertain productivity. However, more efforts are needed to understand and reduce the persistent data–model disagreement on carbon storage and residence time in the terrestrial biosphere.

© 2022 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

This article is included in the Process-Oriented Model Diagnostics Special Collection.

Wei’s ORCID: 0000-0003-2864-9568.

Xia’s ORCID: 0000-0001-5923-6665.

Zhou’s ORCID: 0000-0001-9276-6086.

Cui’s ORCID: 0000-0002-2639-5069.

Ping’s ORCID: 0000-0003-3427-4328.

Luo’s ORCID: 0000-0002-4556-0218.

Corresponding author: Jianyang Xia, jyxia@des.ecnu.edu.cn

Supplementary Materials

    • Supplemental Materials (PDF 6.91 MB)
Save