• Adler, R. F., and Coauthors, 2003: The version-2 Global Precipitation Climatology Project (GPCP) monthly precipitation analysis (1979–present). J. Hydrometeor., 4, 11471167, https://doi.org/10.1175/1525-7541(2003)004<1147:TVGPCP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • As-syakur, A. R., and Coauthors, 2014: Observation of spatial patterns on the rainfall response to ENSO and IOD over Indonesia using TRMM Multisatellite Precipitation Analysis (TMPA). Int. J. Climatol., 34, 38253839, https://doi.org/10.1002/joc.3939.

    • Search Google Scholar
    • Export Citation
  • Chen, W., J.-K. Park, B. Dong, R. Lu, and W.-S. Jung, 2012: The relationship between El Niño and the western North Pacific summer climate in a coupled GCM: Role of the transition of El Niño decaying phases. J. Geophys. Res., 117, D12111, https://doi.org/10.1029/2011JD017385.

    • Search Google Scholar
    • Export Citation
  • Chowdary, J. S., S.-P. Xie, J.-Y. Lee, Y. Kosaka, and B. Wang, 2010: Predictability of summer northwest Pacific climate in 11 coupled model hindcasts: Local and remote forcing. J. Geophys. Res., 115, D22121, https://doi.org/10.1029/2010JD014595.

    • Search Google Scholar
    • Export Citation
  • Cong, J., Z. Y. Guan, and L. J. Wang, 2007: Interannual (interdecadal) variabilities of two cross-equatorial flows in association with the Asian summer monsoon variations (in Chinese). J. Nanjing Inst. Meteor., 30, 779785, http://dqkxxb.cnjournals.org/dqkxxb/article/abstract/20070607.

    • Search Google Scholar
    • Export Citation
  • Dai, A., and T. M. L. Wigley, 2000: Global patterns of ENSO-induced precipitation. Geophys. Res. Lett., 27, 12831286, https://doi.org/10.1029/1999GL011140.

    • Search Google Scholar
    • Export Citation
  • Dao, S. Y., S. Y. Hsu, and C. Y. Kuo, 1962: The characteristics of the zonal and meridional circulation over tropical and subtropical regions in Eastern Asia in summer (in Chinese). Acta Meteor. Sin., 32, 91103, https://doi.org/10.11676/qxxb1962.009.

    • Search Google Scholar
    • Export Citation
  • Feng, J., L. Wang, and W. Chen, 2014: How does the East Asian summer monsoon behave in the decaying phase of El Niño during different PDO phases? J. Climate, 27, 26822698, https://doi.org/10.1175/JCLI-D-13-00015.1.

    • Search Google Scholar
    • Export Citation
  • Feng, T., X. Y. Shen, R. H. Huang, and G. H. Chen, 2017: Influence of the interannual variation of cross-equatorial flow on tropical cyclogenesis over the western North Pacific. J. Trop. Meteor., 23, 6880, https://doi.org/10.16555/j.1006-8775.2017.01.007.

    • Search Google Scholar
    • Export Citation
  • Findlater, J., 1969: Interhemispheric transport of air in the lower troposphere over the western Indian Ocean. Quart. J. Roy. Meteor. Soc., 95, 400403, https://doi.org/10.1002/qj.49709540412.

    • Search Google Scholar
    • Export Citation
  • Fukutomi, Y., C. Kodama, Y. Yamada, A. T. Noda, and M. Satoh, 2015: Tropical synoptic-scale wave disturbances over the western Pacific simulated by a global cloud-system resolving model. Theor. Appl. Climatol., 124, 737755, https://doi.org/10.1007/s00704-015-1456-4.

    • Search Google Scholar
    • Export Citation
  • Gao, H., and F. Xue, 2006: Seasonal variation of the cross-equatorial flows and their influences on the onset of South China Sea summer monsoon (in Chinese). Climatic Environ. Res., 11, 5768, http://www.dqkxqk.ac.cn/qhhj/qhhj/article/abstract/20060105.

    • Search Google Scholar
    • Export Citation
  • Held, I. M., S. W. Lyons, and S. Nigam, 1989: Transients and the extratropical response to El Niño. J. Atmos. Sci., 46, 163174, https://doi.org/10.1175/1520-0469(1989)046<0163:TATERT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Henley, B. J., J. Gergis, D. J. Karoly, S. Power, J. Kennedy, and C. K. Folland, 2015: A tripole index for the interdecadal Pacific oscillation. Climate Dyn., 45, 30773090, https://doi.org/10.1007/s00382-015-2525-1.

    • Search Google Scholar
    • Export Citation
  • Hersbach, H., and Coauthors, 2020: The ERA5 global reanalysis. Quart. J. Roy. Meteor. Soc., 146, 19992049, https://doi.org/10.1002/qj.3803.

    • Search Google Scholar
    • Export Citation
  • Hirota, N., and M. Takahashi, 2012: A tripolar pattern as an internal mode of the East Asian summer monsoon. Climate Dyn., 39, 22192238, https://doi.org/10.1007/s00382-012-1416-y.

    • Search Google Scholar
    • Export Citation
  • Hsu, H.-H., T. Zhou, and J. Matsumoto, 2014: East Asian, Indochina and western North Pacific summer monsoon—An update. Asia-Pac. J. Atmos. Sci., 50, 4568, https://doi.org/10.1007/s13143-014-0027-4.

    • Search Google Scholar
    • Export Citation
  • Huang, R., and L. Li, 1989: Numerical simulation of the relationship between the anomaly of subtropical high over East Asia and the convective activities in the western tropical Pacific. Adv. Atmos. Sci., 6, 202214, https://doi.org/10.1007/BF02658016.

    • Search Google Scholar
    • Export Citation
  • Kao, H.-Y., and J.-Y. Yu, 2009: Contrasting eastern-Pacific and central-Pacific types of ENSO. J. Climate, 22, 615632, https://doi.org/10.1175/2008JCLI2309.1.

    • Search Google Scholar
    • Export Citation
  • Kosaka, Y., and H. Nakamura, 2010: Mechanisms of meridional teleconnection observed between a summer monsoon system and a subtropical anticyclone. Part I: The Pacific–Japan pattern. J. Climate, 23, 50855108, https://doi.org/10.1175/2010JCLI3413.1.

    • Search Google Scholar
    • Export Citation
  • Kug, J.-S., F.-F. Jin, and S.-I. An, 2009: Two types of El Niño events: Cold tongue El Niño and warm pool El Niño. J. Climate, 22, 14991515, https://doi.org/10.1175/2008JCLI2624.1.

    • Search Google Scholar
    • Export Citation
  • Kumar, K. K., B. Rajagopalan, and M. A. Cane, 1999: On the weakening relationship between the Indian monsoon and ENSO. Science, 284, 21562159, https://doi.org/10.1126/science.284.5423.2156.

    • Search Google Scholar
    • Export Citation
  • Lau, K.-M., and M.-T. Li, 1984: The Monsoon of East Asia and its Global Associations—A Survey. Bull. Amer. Meteor. Soc., 65, 114125, https://doi.org/10.1175/1520-0477(1984)065<0114:TMOEAA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Lee, S.-S., J.-Y. Lee, K.-J. Ha, B. Wang, and J. K. E. Schemm, 2011: Deficiencies and possibilities for long-lead coupled climate prediction of the western North Pacific–East Asian summer monsoon. Climate Dyn., 36, 11731188, https://doi.org/10.1007/s00382-010-0832-0.

    • Search Google Scholar
    • Export Citation
  • Li, C., and S. Li, 2014: Interannual seesaw between the Somali and the Australian cross-equatorial flows and its connection to the East Asian summer monsoon. J. Climate, 27, 39663981, https://doi.org/10.1175/JCLI-D-13-00288.1.

    • Search Google Scholar
    • Export Citation
  • Li, C., R. Lu, and B. Dong, 2012: Predictability of the western North Pacific summer climate demonstrated by the coupled models of ENSEMBLES. Climate Dyn., 39, 329346, https://doi.org/10.1007/s00382-011-1274-z.

    • Search Google Scholar
    • Export Citation
  • Li, C., R. Lu, and B. Dong, 2013: Predictability of the western North Pacific summer climate associated with different ENSO phases by ENSEMBLES multi-model seasonal forecasts. Climate Dyn., 43, 18291845, https://doi.org/10.1007/s00382-013-2010-7.

    • Search Google Scholar
    • Export Citation
  • Li, C., J.-J. Luo, and S. Li, 2017: Impacts of different types of ENSO on the interannual seesaw between the Somali and the Maritime Continent cross-equatorial flows. J. Climate, 30, 26212638, https://doi.org/10.1175/JCLI-D-16-0521.1.

    • Search Google Scholar
    • Export Citation
  • Li, S., and Coauthors, 2018: Chemical evidence of inter-hemispheric air mass intrusion into the Northern Hemisphere mid-latitudes. Sci. Rep., 8, 4669, https://doi.org/10.1038/s41598-018-22266-0.

    • Search Google Scholar
    • Export Citation
  • Li, T., and B. Wang, 2005: A review on the western North Pacific monsoon: Synoptic-to-interannual variabilities. Terr. Atmos. Ocean. Sci., 16, 285314, https://doi.org/10.3319/TAO.2005.16.2.285(A).

    • Search Google Scholar
    • Export Citation
  • Li, Z. Z., C. H. Qian, and C. R. Sun, 2000: A preliminary analysis on the relationship between the cross-equatorial flow and the heavy rainfall over Yangtze and Huaihe River in 1991 (in Chinese). Acta Meteor. Sin., 58, 628636, http://qxxb.cmsjournal.net/cn/article/doi/10.11676/qxxb2000.064.

    • Search Google Scholar
    • Export Citation
  • Liebmann, B., and C. A. Smith, 1996: Description of a complete (interpolated) outgoing longwave radiation dataset. Bull. Amer. Meteor. Soc., 77, 12751277, https://doi.org/10.1175/1520-0477-77.6.1274.

    • Search Google Scholar
    • Export Citation
  • Lin, Y.-W., L. Ho, and C. Chou, 2014: The role of the New Guinea cross-equatorial flow in the interannual variability of the western North Pacific summer monsoon. Environ. Res. Lett., 9, 044003, https://doi.org/10.1088/1748-9326/9/4/044003.

    • Search Google Scholar
    • Export Citation
  • Lu, R., 2001: Interannual variability of the summertime North Pacific subtropical high and its relation to atmospheric convection over the warm pool. J. Meteor. Soc. Japan, 79, 771783, https://doi.org/10.2151/jmsj.79.771.

    • Search Google Scholar
    • Export Citation
  • Lu, R., and B. Dong, 2001: Westward extension of North Pacific subtropical high in summer. J. Meteor. Soc. Japan, 79, 12291241, https://doi.org/10.2151/jmsj.79.1229.

    • Search Google Scholar
    • Export Citation
  • Nitta, T., 1987: Convective activities in the tropical western Pacific and their impact on the Northern Hemisphere summer circulation. J. Meteor. Soc. Japan, 65, 373390, https://doi.org/10.2151/jmsj1965.65.3_373.

    • Search Google Scholar
    • Export Citation
  • Parker, D., C. Folland, A. Scaife, J. Knight, A. Colman, P. Baines, and B. Dong, 2007: Decadal to multidecadal variability and the climate change background. J. Geophys. Res., 112, D18115, https://doi.org/10.1029/2007JD008411.

    • Search Google Scholar
    • Export Citation
  • Philander, S. G., 1990: El Niño, La Niña, and the Southern Oscillation. Academic Press, 293 pp.

  • Rodwell, M. J., and B. J. Hoskins, 1995: A model of the Asian summer monsoon. Part II: Cross-equatorial flow and PV behavior. J. Atmos. Sci., 52, 13411356, https://doi.org/10.1175/1520-0469(1995)052<1341:AMOTAS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Schiemann, R., M. E. Demory, M. S. Mizielinski, M. J. Roberts, L. C. Shaffrey, J. Strachan, and P. L. Vidale, 2014: The sensitivity of the tropical circulation and Maritime Continent precipitation to climate model resolution. Climate Dyn., 42, 24552468, https://doi.org/10.1007/s00382-013-1997-0.

    • Search Google Scholar
    • Export Citation
  • Schneider, T., T. Bischoff, and G. Haug, 2014: Migrations and dynamics of the intertropical convergence zone. Nature, 513, 4553, https://doi.org/10.1038/nature13636.

    • Search Google Scholar
    • Export Citation
  • Shi, N., G. L. Feng, J. Q. Gu, D. J. Gu, and J. H. Yu, 2007: Climatological variation of global cross-equatorial flows for the period 1948–2004. J. Trop. Meteor., 13, 201204, https://rdqxxb.itmm.org.cn/article/id/20070402.

    • Search Google Scholar
    • Export Citation
  • Song, F., and T. Zhou, 2014a: The climatology and interannual variability of East Asian summer monsoon in CMIP5 coupled models: Does air–sea coupling improve the simulations? J. Climate, 27, 87618777, https://doi.org/10.1175/JCLI-D-14-00396.1.

    • Search Google Scholar
    • Export Citation
  • Song, F., and T. Zhou, 2014b: Interannual variability of East Asian summer monsoon simulated by CMIP3 and CMIP5 AGCMs: Skill dependence on Indian Ocean–western Pacific anticyclone teleconnection. J. Climate, 27, 16791697, https://doi.org/10.1175/JCLI-D-13-00248.1.

    • Search Google Scholar
    • Export Citation
  • Song, F., and T. Zhou, 2015: The crucial role of internal variability in modulating the decadal variation of the East Asian summer monsoon–ENSO relationship during the twentieth century. J. Climate, 28, 70937107, https://doi.org/10.1175/JCLI-D-14-00783.1.

    • Search Google Scholar
    • Export Citation
  • Song, F., L. R. Leung, J. Lu, and L. Dong, 2018a: Future changes in seasonality of the North Pacific and North Atlantic subtropical highs. Geophys. Res. Lett., 45, 11 95911 968, https://doi.org/10.1029/2018GL079940.

    • Search Google Scholar
    • Export Citation
  • Song, F., L. R. Leung, J. Lu, and L. Dong, 2018b: Seasonally-dependent responses of subtropical highs and tropical rainfall to anthropogenic warming. Nat. Climate Change, 8, 787792, https://doi.org/10.1038/s41558-018-0244-4.

    • Search Google Scholar
    • Export Citation
  • Tang, B., P. W. Guo, and L. P. Yang, 2009: Interannual variation of summer cross-equatorial flow in lower troposphere in Eastern Hemisphere (in Chinese). J. Nanjing Inst. Meteor., 32, 298305, https://doi.org/10.3969/j.issn.1674-7097.2009.02.017.

    • Search Google Scholar
    • Export Citation
  • Wang, B., and Z. Fan, 1999: Choice of South Asian summer monsoon indices. Bull. Amer. Meteor. Soc., 80, 629638, https://doi.org/10.1175/1520-0477(1999)080<0629:COSASM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wang, B., R. G. Wu, and X. H. Fu, 2000: Pacific–East Asian teleconnection: How does ENSO affect East Asian climate? J. Climate, 13, 15171536, https://doi.org/10.1175/1520-0442(2000)013<1517:PEATHD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wang, H. J., and F. Xue, 2003: Interannual variability of Somali jet and its influences on the inter-hemispheric water vapor transport and on the East Asian summer rainfall (in Chinese). Chin. J. Geophys., 46, 1825, https://doi.org/10.1002/cjg2.311.

    • Search Google Scholar
    • Export Citation
  • Wang, J. Z., and M. C. Li, 1982: Cross-equator flow from Australia and monsoon over China (in Chinese). Chin. J. Atmos. Sci., 6 (1), 110, https://doi.org/10.3878/j.issn.1006-9895.1982.01.01.

    • Search Google Scholar
    • Export Citation
  • Wang, W. P., and X. Q. Yang, 2008: Variation of Somali jet and its impact on East Asian summer monsoon and associated China rainfall anomalies (in Chinese). Sci. Meteor. Sin., 28, 139146, http://www.jms1980.com/ch/reader/view_abstract.aspx?file_no=20080223.

    • Search Google Scholar
    • Export Citation
  • Wang, W. P., and X. Q. Yang, 2014: Relationship between Somali jet and Australia cross-equatorial flow interannual variabilities and its impact (in Chinese). J. Meteor. Sci., 34, 591600, https://doi.org/10.3969/2014jms.0093.

    • Search Google Scholar
    • Export Citation
  • Watanabe, M., and M. Kimoto, 2000: Atmosphere–ocean thermal coupling in the North Atlantic: A positive feedback. Quart. J. Roy. Meteor. Soc., 126, 33433369, https://doi.org/10.1002/qj.49712657017.

    • Search Google Scholar
    • Export Citation
  • Watanabe, M., and M. Kimoto, 2001: Corrigendum. Quart. J. Roy. Meteor. Soc., 127, 733734, https://doi.org/10.1002/qj.49712757223.

  • Watanabe, M., and F.-F. Jin, 2004: Dynamical prototype of the Arctic Oscillation as revealed by a neutral singular vector. J. Climate, 17, 21192138, https://doi.org/10.1175/1520-0442(2004)017<2119:DPOTAO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wu, B., T. Li, and T. Zhou, 2010: Relative contributions of the Indian Ocean and local SST anomalies to the maintenance of the western North Pacific anomalous anticyclone during the El Niño decaying summer. J. Climate, 23, 29742986, https://doi.org/10.1175/2010JCLI3300.1.

    • Search Google Scholar
    • Export Citation
  • Wu, B., T. Zhou, and T. Li, 2009: Seasonally evolving dominant interannual variability modes of East Asian climate. J. Climate, 22, 29923005, https://doi.org/10.1175/2008JCLI2710.1.

    • Search Google Scholar
    • Export Citation
  • Wu, M. M., and L. Wang, 2019: Enhanced correlation between ENSO and western North Pacific monsoon during boreal summer around the 1990s. Atmos. Ocean. Sci. Lett., 12, 376384, https://doi.org/10.1080/16742834.2019.1641397.

    • Search Google Scholar
    • Export Citation
  • Wu, R., and B. Wang, 2002: A contrast of the East Asian summer monsoon–ENSO relationship between 1962–77 and 1978–93. J. Climate, 15, 32663279, https://doi.org/10.1175/1520-0442(2002)015<3266:ACOTEA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Xiang, B., B. Wang, and T. Li, 2012: A new paradigm for the predominance of standing Central Pacific warming after the late 1990s. Climate Dyn., 41, 327340, https://doi.org/10.1007/s00382-012-1427-8.

    • Search Google Scholar
    • Export Citation
  • Xie, S.-P., K. Hu, J. Hafner, H. Tokinaga, Y. Du, G. Huang, and T. Sampe, 2009: Indian Ocean capacitor effect on Indo–western Pacific climate during the summer following El Niño. J. Climate, 22, 730747, https://doi.org/10.1175/2008JCLI2544.1.

    • Search Google Scholar
    • Export Citation
  • Xie, S.-P., Y. Kosaka, Y. Du, K. Hu, J. S. Chowdary, and G. Huang, 2016: Indo-western Pacific Ocean capacitor and coherent climate anomalies in post-ENSO summer: A review. Adv. Atmos. Sci., 33, 411432, https://doi.org/10.1007/s00376-015-5192-6.

    • Search Google Scholar
    • Export Citation
  • Xu, Y. M., 2011: The genesis of Tropical Cyclone Bilis (2000) associated with cross-equatorial surges. Adv. Atmos. Sci., 28, 665681, https://doi.org/10.1007/s00376-010-9142-z.

    • Search Google Scholar
    • Export Citation
  • Yeh, S. W., J. S. Kug, B. Dewitte, M. H. Kwon, B. P. Kirtman, and F. F. Jin, 2009: El Niño in a changing climate. Nature, 461, 511514, https://doi.org/10.1038/nature08316.

    • Search Google Scholar
    • Export Citation
  • Yeh, S. W., X. Wang, C. Wang, and B. Dewitte, 2015: On the relationship between the North Pacific climate variability and the central Pacific El Niño. J. Climate, 28, 663677, https://doi.org/10.1175/JCLI-D-14-00137.1.

    • Search Google Scholar
    • Export Citation
  • Yoneyama, K., and C. Zhang, 2020: Years of the Maritime Continent. Geophys. Res. Lett., 47, e2020GL087182, https://doi.org/10.1029/2020GL087182.

    • Search Google Scholar
    • Export Citation
  • Yu, J.-Y., M.-M. Lu, and S. T. Kim, 2012: A change in the relationship between tropical central Pacific SST variability and the extratropical atmosphere around 1990. Environ. Res. Lett., 7, 034025, https://doi.org/10.1088/1748-9326/7/3/034025.

    • Search Google Scholar
    • Export Citation
  • Zeng, Q. C., and J. P. Li, 2002: Interactions between the Northern and Southern Hemispheric atmospheres and the essence of monsoon (in Chinese). Chin. J. Atmos. Sci., 26, 433448, http://www.iapjournals.ac.cn/dqkx/cn/article/doi/10.3878/j.issn.1006-9895.2002.04.01.

    • Search Google Scholar
    • Export Citation
  • Zhang, T., S. Yang, X. Jiang, and P. Zhao, 2016: Seasonal–interannual variation and prediction of wet and dry season rainfall over the Maritime Continent: Roles of ENSO and monsoon circulation. J. Climate, 29, 36753695, https://doi.org/10.1175/JCLI-D-15-0222.1.

    • Search Google Scholar
    • Export Citation
  • Zhao, H., and C. Wang, 2018: On the relationship between ENSO and tropical cyclones in the western North Pacific during the boreal summer. Climate Dyn., 52, 275288, https://doi.org/10.1007/s00382-018-4136-0.

    • Search Google Scholar
    • Export Citation
  • Zhao, X., and R. Lu, 2020: Vertical structure of interannual variability in cross-equatorial flows over the Maritime Continent and Indian Ocean in boreal summer. Adv. Atmos. Sci., 37, 173186, https://doi.org/10.1007/s00376-019-9103-0.

    • Search Google Scholar
    • Export Citation
  • Zhou, X., R. Lu, G. Chen, and L. Wu, 2018: Interannual variations in synoptic-scale disturbances over the western North Pacific. Adv. Atmos. Sci., 35, 507517, https://doi.org/10.1007/s00376-017-7143-x.

    • Search Google Scholar
    • Export Citation
  • Zhu, Y., 2012: Variations of the summer Somali and Australia cross-equatorial flows and the implications for the Asian summer monsoon. Adv. Atmos. Sci., 29, 509518, https://doi.org/10.1007/s00376-011-1120-6.

    • Search Google Scholar
    • Export Citation
  • Zhuang, M., and A. Duan, 2019: Revisiting the cross-equatorial flows and Asian summer monsoon precipitation associated with the Maritime Continent. J. Climate, 32, 68036821, https://doi.org/10.1175/JCLI-D-18-0749.1.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 413 337 7
Full Text Views 277 228 10
PDF Downloads 341 271 12

Tropical Anomalies Associated with the Interannual Variability of the Cross-Equatorial Flows over the Maritime Continent in Boreal Summer

Xiaoxuan ZhaoaNansen-Zhu International Research Center, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China

Search for other papers by Xiaoxuan Zhao in
Current site
Google Scholar
PubMed
Close
,
Riyu LubState Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China
cCollege of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing, China

Search for other papers by Riyu Lu in
Current site
Google Scholar
PubMed
Close
,
Buwen DongdDepartment of Meteorology, National Centre for Atmospheric Science, University of Reading, Reading, United Kingdom

Search for other papers by Buwen Dong in
Current site
Google Scholar
PubMed
Close
,
Xiaowei HongeClimate Change Research Center, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China

Search for other papers by Xiaowei Hong in
Current site
Google Scholar
PubMed
Close
,
Junqi LiubState Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China
cCollege of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing, China

Search for other papers by Junqi Liu in
Current site
Google Scholar
PubMed
Close
, and
Jianqi SunaNansen-Zhu International Research Center, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China
cCollege of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing, China

Search for other papers by Jianqi Sun in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

In this study, we investigate circulation, convection, and sea surface temperature (SST) anomalies associated with interannual variability of the cross-equatorial flow (CEF) intensity over the Maritime Continent (MC) in boreal summer. Observational diagnostics show that strengthened CEF is associated with large-scale circulation anomalies featuring weakened Walker circulation, upper-level northeasterly anomalies across the MC, and lower-level cyclonic anomalies over the tropical western North Pacific (WNP). Further analyses indicate that strengthened CEF is associated with both La Niña–like SST anomalies in the preceding winter and El Niño–like SST anomalies in the simultaneous summer. These relationships between CEF and ENSO are established by two key convection regions: enhanced convection over WNP and depressed convection over the MC. A linear baroclinic model is applied here to further discuss the causality between circulation and convection. Results suggest that both the WNP heating and MC cooling can induce the strengthened CEF. Moreover, the stability of the relationship between CEF and El Niño–Southern Oscillation (ENSO) is also discussed. Results show that the relationship between CEF and SST anomalies in the simultaneous summer is stable and remains significant, whereas that between CEF and SST anomalies in the preceding winter experienced a decadal strengthening around 1997/98 from insignificant to significant. After 1998, the preceding winter ENSO is followed by strong summer SST anomalies in the MC that significantly affect CEF via modulating local convection. However, this ENSO–summer MC SST relationship is weak before 1997, failing to establish the relationship between the preceding ENSO and CEF.

© 2022 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Riyu Lu, lr@mail.iap.ac.cn

Abstract

In this study, we investigate circulation, convection, and sea surface temperature (SST) anomalies associated with interannual variability of the cross-equatorial flow (CEF) intensity over the Maritime Continent (MC) in boreal summer. Observational diagnostics show that strengthened CEF is associated with large-scale circulation anomalies featuring weakened Walker circulation, upper-level northeasterly anomalies across the MC, and lower-level cyclonic anomalies over the tropical western North Pacific (WNP). Further analyses indicate that strengthened CEF is associated with both La Niña–like SST anomalies in the preceding winter and El Niño–like SST anomalies in the simultaneous summer. These relationships between CEF and ENSO are established by two key convection regions: enhanced convection over WNP and depressed convection over the MC. A linear baroclinic model is applied here to further discuss the causality between circulation and convection. Results suggest that both the WNP heating and MC cooling can induce the strengthened CEF. Moreover, the stability of the relationship between CEF and El Niño–Southern Oscillation (ENSO) is also discussed. Results show that the relationship between CEF and SST anomalies in the simultaneous summer is stable and remains significant, whereas that between CEF and SST anomalies in the preceding winter experienced a decadal strengthening around 1997/98 from insignificant to significant. After 1998, the preceding winter ENSO is followed by strong summer SST anomalies in the MC that significantly affect CEF via modulating local convection. However, this ENSO–summer MC SST relationship is weak before 1997, failing to establish the relationship between the preceding ENSO and CEF.

© 2022 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Riyu Lu, lr@mail.iap.ac.cn
Save