• An, S.-I., and F.-F. Jin, 2004: Nonlinearity and asymmetry of ENSO. J. Climate, 17, 23992412, https://doi.org/10.1175/1520-0442(2004)017<2399:NAAOE>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • An, S.-I., Y.-G. Ham, J.-S. Kug, F.-F. Jin, and I.-S. Kang, 2005: El Niño–La Niña asymmetry in the Coupled Model Intercomparison Project simulations. J. Climate, 18, 26172627, https://doi.org/10.1175/JCLI3433.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Andrews, M. B., and Coauthors, 2020: Historical simulations with HadGEM3-GC3.1 for CMIP6. J. Adv. Model. Earth Syst., 12, e2019MS001995, https://doi.org/10.1029/2019MS001995.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Atems, B., M. Maresca, B. Ma, and E. McGraw, 2020: The impact of El Niño–Southern Oscillation on U.S. food and agricultural stock returns. Water Resour. Econ., 32, 100157, https://doi.org/10.1016/j.wre.2020.100157.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bayr, T., M. Latif, D. Dommenget, C. Wengel, J. Harlaß, and W. Park, 2018: Mean-state dependence of ENSO atmospheric feedbacks in climate models. Climate Dyn., 50, 31713194, https://doi.org/10.1007/s00382-017-3799-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bayr, T., C. Wengel, M. Latif, D. Dommenget, J. Lübbecke, and W. Park, 2019: Error compensation of ENSO atmospheric feedbacks in climate models and its influence on simulated ENSO dynamics. Climate Dyn., 53, 155172, https://doi.org/10.1007/s00382-018-4575-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bayr, T., D. Dommenget, and M. Latif, 2020: Walker circulation controls ENSO atmospheric feedbacks in uncoupled and coupled climate model simulations. Climate Dyn., 54, 28312846, https://doi.org/10.1007/s00382-020-05152-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bayr, T., A. Drews, M. Latif, and J. Lübbecke, 2021: The interplay of thermodynamics and ocean dynamics during ENSO growth phase. Climate Dyn., 56, 16811697, https://doi.org/10.1007/s00382-020-05552-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bellenger, H., E. Guilyardi, J. Leloup, M. Lengaigne, and J. Vialard, 2014: ENSO representation in climate models: From CMIP3 to CMIP5. Climate Dyn., 42, 19992018, https://doi.org/10.1007/s00382-013-1783-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bove, M. C., J. B. Elsner, C. W. Landsea, X. Niu, and J. J. O’Brien, 1998: Effect of El Niño on U.S. landfalling hurricanes, revisited. Bull. Amer. Meteor. Soc., 79, 24772482, https://doi.org/10.1175/1520-0477(1998)079<2477:EOENOO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brown, J. R., and Coauthors, 2020: Comparison of past and future simulations of ENSO in CMIP5/PMIP3 and CMIP6/PMIP4 models. Climate Past, 16, 17771805, https://doi.org/10.5194/cp-16-1777-2020.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Burgers, G., and D. B. Stephenson, 1999: The “normality” of El Niño. Geophys. Res. Lett., 26, 10271030, https://doi.org/10.1029/1999GL900161.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cai, W., and Coauthors, 2020: Climate impacts of the El Niño–Southern Oscillation on South America. Nat. Rev. Earth Environ., 1, 215231, https://doi.org/10.1038/s43017-020-0040-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Capotondi, A., C. Deser, A. S. Phillips, Y. Okumura, and S. M. Larson, 2020: ENSO and Pacific decadal variability in the Community Earth System Model version 2. J. Adv. Model. Earth Syst., 12, e2019MS002022, https://doi.org/10.1029/2019MS002022.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Carton, J. A., and B. S. Giese, 2008: A reanalysis of ocean climate using Simple Ocean Data Assimilation (SODA). Mon. Wea. Rev., 136, 29993017, https://doi.org/10.1175/2007MWR1978.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, C., M. A. Cane, A. T. Wittenberg, and D. Chen, 2017: ENSO in the CMIP5 simulations: Life cycles, diversity, and responses to climate change. J. Climate, 30, 775801, https://doi.org/10.1175/JCLI-D-15-0901.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, D., and Coauthors, 2015: Strong influence of westerly wind bursts on El Niño diversity. Nat. Geosci., 8, 339345, https://doi.org/10.1038/ngeo2399.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, H.-C., F.-F. Jin, S. Zhao, A. T. Wittenberg, and S. Xie, 2022: ENSO dynamics in the E3SM-1-0, CESM2, and GFDL-CM4 climate models. J. Climate, https://doi.org/10.1175/JCLI-D-21-0355.1, in press.

    • Search Google Scholar
    • Export Citation
  • Choi, J., S.-I. An, and S.-W. Yeh, 2012: Decadal amplitude modulation of two types of ENSO and its relationship with the mean state. Climate Dyn., 38, 26312644, https://doi.org/10.1007/s00382-011-1186-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dai, A., 2006: Precipitation characteristics in eighteen coupled climate models. J. Climate, 19, 46054630, https://doi.org/10.1175/JCLI3884.1.

  • Danabasoglu, G., and Coauthors, 2020: The Community Earth System Model version 2 (CESM2). J. Adv. Model. Earth Syst., 12, e2019MS001916, https://doi.org/10.1029/2019MS001916.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Deser, C., A. Capotondi, R. Saravanan, and A. S. Phillips, 2006: Tropical Pacific and Atlantic climate variability in CCSM3. J. Climate, 19, 24512481, https://doi.org/10.1175/JCLI3759.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Deser, C., and Coauthors, 2012: ENSO and Pacific decadal variability in the Community Climate System Model version 4. J. Climate, 25, 26222651, https://doi.org/10.1175/JCLI-D-11-00301.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dommenget, D., T. Bayr, and C. Frauen, 2013: Analysis of the non-linearity in the pattern and time evolution of El Niño Southern Oscillation. Climate Dyn., 40, 28252847, https://doi.org/10.1007/s00382-012-1475-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dunne, J. P., and Coauthors, 2020: The GFDL Earth System Model version 4.1 (GFDL-ESM 4.1): Overall coupled model description and simulation characteristics. J. Adv. Model. Earth Syst., 12, e2019MS002015, https://doi.org/10.1029/2019MS002015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Eyring, V., S. Bony, G. A. Meehl, C. A. Senior, B. Stevens, R. J. Stouffer, and K. E. Taylor, 2016: Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization. Geosci. Model Dev., 9, 19371958, https://doi.org/10.5194/gmd-9-1937-2016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fedorov, A. V., and S. G. Philander, 2001: A stability analysis of tropical ocean–atmosphere interactions: Bridging measurements and theory for El Niño. J. Climate, 14, 30863101, https://doi.org/10.1175/1520-0442(2001)014<3086:ASAOTO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fedorov, A. V., S. Hu, A. T. Wittenberg, A. F. Z. Levine, and C. Deser, 2020: ENSO low-frequency modulation and mean state interactions. El Niño Southern Oscillation in a Changing Climate, John Wiley & Sons, 173198.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Flato, G., and Coauthors, 2013: Evaluation of climate models. Climate Change 2013: The Physical Science Basis, T. F. Stocker et al., Eds., Cambridge University Press, 741866.

    • Search Google Scholar
    • Export Citation
  • Frauen, C., and D. Dommenget, 2010: El Niño and La Niña amplitude asymmetry caused by atmospheric feedbacks. Geophys. Res. Lett., 37, L18801, https://doi.org/10.1029/2010GL044444.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Geng, X., W. Zhang, M. F. Stuecker, and F.-F. Jin, 2017: Strong sub-seasonal wintertime cooling over East Asia and northern Europe associated with super El Niño events. Sci. Rep., 7, 3770, https://doi.org/10.1038/s41598-017-03977-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gill, A. E., and E. M. Rasmusson, 1983: The 1982–83 climate anomaly in the equatorial Pacific. Nature, 306, 229234, https://doi.org/10.1038/306229a0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grose, M. R., and Coauthors, 2020: Insights from CMIP6 for Australia’s future climate. Earth’s Future, 8, e2019EF001469, https://doi.org/10.1029/2019EF001469.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Guilyardi, E., A. Wittenberg, A. Fedorov, M. Collins, C. Wang, A. Capotondi, G. J. van Oldenborgh, and T. Stockdale, 2009: Understanding El Niño in ocean–atmosphere general circulation models: Progress and challenges. Bull. Amer. Meteor. Soc., 90, 325340, https://doi.org/10.1175/2008BAMS2387.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Guilyardi, E., H. Bellenger, M. Collins, S. Ferrett, W. Cai, and A. Wittenberg, 2012a: A first look at ENSO in CMIP5. CLIVAR Exchanges, No. 17, International CLIVAR Project Office, Southampton, United Kingdom, 2932.

    • Search Google Scholar
    • Export Citation
  • Guilyardi, E., W. Cai, M. Collins, A. Fedorov, F.-F. Jin, A. Kumar, D.-Z. Sun, and A. Wittenberg, 2012b: New strategies for evaluating ENSO processes in climate models. Bull. Amer. Meteor. Soc., 93, 235238, https://doi.org/10.1175/BAMS-D-11-00106.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gutjahr, O., D. Putrasahan, K. Lohmann, J. H. Jungclaus, J.-S. von Storch, N. Brüggemann, H. Haak, and A. Stössel, 2019: Max Planck Institute Earth System Model (MPI-ESM1.2) for the High-Resolution Model Intercomparison Project (HighResMIP). Geosci. Model Dev., 12, 32413281, https://doi.org/10.5194/gmd-12-3241-2019.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hansen, J. W., A. W. Hodges, and J. W. Jones, 1998: ENSO influences on agriculture in the southeastern United States. J. Climate, 11, 404411, https://doi.org/10.1175/1520-0442(1998)011<0404:EIOAIT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hayashi, M., and F.-F. Jin, 2017: Subsurface nonlinear dynamical heating and ENSO asymmetry. Geophys. Res. Lett., 44, 12 42712 435, https://doi.org/10.1002/2017GL075771.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hayashi, M., and M. Watanabe, 2017: ENSO complexity induced by state dependence of westerly wind events. J. Climate, 30, 34013420, https://doi.org/10.1175/JCLI-D-16-0406.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hayashi, M., F.-F. Jin, and M. F. Stuecker, 2020: Dynamics for El Niño–La Niña asymmetry constrain equatorial-Pacific warming pattern. Nat. Commun., 11, 4230, https://doi.org/10.1038/s41467-020-17983-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hoyos, C. D., and P. J. Webster, 2012: Evolution and modulation of tropical heating from the last glacial maximum through the twenty-first century. Climate Dyn., 38, 15011519, https://doi.org/10.1007/s00382-011-1181-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hua, L., and L. Chen, 2019: ENSO asymmetry in the CAMS-CSM. Asia-Pac. J. Atmos. Sci., 55, 507528, https://doi.org/10.1007/s13143-018-00102-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hua, L., Y. Yu, and D.-Z. Sun, 2015: A further study of ENSO rectification: Results from an OGCM with a seasonal cycle. J. Climate, 28, 13621382, https://doi.org/10.1175/JCLI-D-14-00404.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hua, L., D.-Z. Sun, and Y. Yu, 2019: Why do we have El Niño: Quantifying a diabatic and nonlinear perspective using observations. Climate Dyn., 52, 67056717, https://doi.org/10.1007/s00382-018-4541-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huang, R., and Y. Wu, 1989: The influence of ENSO on the summer climate change in China and its mechanism. Adv. Atmos. Sci., 6, 2132. https://doi.org/10.1007/BF02656915

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Im, S.-H., S.-I. An, S. T. Kim, and F.-F. Jin, 2015: Feedback processes responsible for El Niño–La Niña amplitude asymmetry. Geophys. Res. Lett., 42, 55565563, https://doi.org/10.1002/2015GL064853.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Imada, Y., and M. Kimoto, 2012: Parameterization of tropical instability waves and examination of their impact on ENSO characteristics. J. Climate, 25, 45684581, https://doi.org/10.1175/JCLI-D-11-00233.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • IPCC, 2021: Climate Change 2021: The Physical Science Basis. Cambridge University Press, 3949 pp.

  • Jiang, W., P. Huang, G. Huang, and J. Ying, 2021: Origins of the excessive westward extension of ENSO SST simulated in CMIP5 and CMIP6 models. J. Climate, 34, 28392851, https://doi.org/10.1175/JCLI-D-20-0551.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jiménez-Muñoz, J. C., C. Mattar, J. Barichivich, A. Santamaría-Artigas, K. Takahashi, Y. Malhi, J. A. Sobrino, and G. van der Schrier, 2016: Record-breaking warming and extreme drought in the Amazon rainforest during the course of El Niño 2015–2016. Sci. Rep., 6, 33130, https://doi.org/10.1038/srep33130.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jin, F.-F., 1996: Tropical ocean–atmosphere interaction, the Pacific cold tongue, and the El Niño-Southern Oscillation. Science, 274, 7678, https://doi.org/10.1126/science.274.5284.76.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jin, F.-F., S.-I. An, A. Timmermann, and J. Zhao, 2003: Strong El Niño events and nonlinear dynamical heating. Geophys. Res. Lett., 30, 1120, https://doi.org/10.1029/2002GL016356.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jin, F.-F., S. T. Kim, and L. Bejarano, 2006: A coupled-stability index for ENSO. Geophys. Res. Lett., 33, L23708, https://doi.org/10.1029/2006GL027221.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kang, I.-S., and J.-S. Kug, 2002: El Niño and La Niña sea surface temperature anomalies: Asymmetry characteristics associated with their wind stress anomalies. J. Geophys. Res., 107, 4372, https://doi.org/10.1029/2001JD000393.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Karamperidou, C., F.-F. Jin, and J. L. Conroy, 2017: The importance of ENSO nonlinearities in tropical Pacific response to external forcing. Climate Dyn., 49, 26952704, https://doi.org/10.1007/s00382-016-3475-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kim, S. T., W. Cai, F.-F. Jin, and J.-Y. Yu, 2014: ENSO stability in coupled climate models and its association with mean state. Climate Dyn., 42, 33133321, https://doi.org/10.1007/s00382-013-1833-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Latif, M., and Coauthors, 2001: ENSIP: The El Niño Simulation Intercomparison Project. Climate Dyn., 18, 255276, https://doi.org/10.1007/s003820100174.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lee, J., Y. Y. Planton, P. J. Gleckler, K. R. Sperber, E. Guilyardi, A. T. Wittenberg, M. J. McPhaden, and G. Pallotta, 2021: Robust evaluation of ENSO in climate models: How many ensemble members are needed? Geophys. Res. Lett., 48, e2021GL095041, https://doi.org/10.1029/2021GL095041.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Levine, A., F. F. Jin, and M. J. McPhaden, 2016: Extreme noise–Extreme El Niño: How state-dependent noise forcing creates El Niño–La Niña asymmetry. J. Climate, 29, 54835499, https://doi.org/10.1175/JCLI-D-16-0091.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liang, J., X.-Q. Yang, and D.-Z. Sun, 2012: The effect of ENSO events on the tropical Pacific mean climate: Insights from an analytical model. J. Climate, 25, 75907606, https://doi.org/10.1175/JCLI-D-11-00490.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liang, J., X.-Q. Yang, and D.-Z. Sun, 2017: Factors determining the asymmetry of ENSO. J. Climate, 30, 60976106, https://doi.org/10.1175/JCLI-D-16-0923.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lloyd, J., E. Guilyardi, H. Weller, and J. Slingo, 2009: The role of atmosphere feedbacks during ENSO in the CMIP3 models. Atmos. Sci. Lett., 10, 170176, https://doi.org/10.1002/asl.227.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lloyd, J., E. Guilyardi, and H. Weller, 2011: The role of atmosphere feedbacks during ENSO in the CMIP3 models. Part II: Using AMIP runs to understand the heat flux feedback mechanisms. Climate Dyn., 37, 12711292, https://doi.org/10.1007/s00382-010-0895-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lloyd, J., E. Guilyardi, and H. Weller, 2012: The role of atmosphere feedbacks during ENSO in the CMIP3 models. Part III: The shortwave flux feedback. J. Climate, 25, 42754293, https://doi.org/10.1175/JCLI-D-11-00178.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lopez, H., B. P. Kirtman, E. Tziperman, and G. Gebbie, 2013: Impact of interactive westerly wind bursts on CCSM3. Dyn. Atmos. Oceans, 59, 2451, https://doi.org/10.1016/j.dynatmoce.2012.11.001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marzeion, B., A. Timmermann, R. Murtugudde, and F.-F. Jin, 2005: Biophysical feedbacks in the tropical Pacific. J. Climate, 18, 5870, https://doi.org/10.1175/JCLI3261.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McPhaden, M. J., 1999: Genesis and evolution of the 1997–98 El Niño. Science, 283, 950954, https://doi.org/10.1126/science.283.5404.950.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McPhaden, M. J., 2015: Playing hide and seek with El Niño. Nat. Climate Change, 5, 791795, https://doi.org/10.1038/nclimate2775.

  • McPhaden, M. J., S. E. Zebiak, and M. H. Glantz, 2006: ENSO as an integrating concept in Earth science. Science, 314, 17401745, https://doi.org/10.1126/science.1132588.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Meehl, G. A., C. Covey, T. Delworth, M. Latif, B. McAvaney, J. F. B. Mitchell, R. J. Stouffer, and K. E. Taylor, 2007: The WCRP CMIP3 multimodel dataset: A new era in climate change research. Bull. Amer. Meteor. Soc., 88, 13831394, https://doi.org/10.1175/BAMS-88-9-1383.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Meinen, C. S., and M. J. McPhaden, 2000: Observations of warm water volume changes in the equatorial Pacific and their relationship to El Niño and La Niña. J. Climate, 13, 35513559, https://doi.org/10.1175/1520-0442(2000)013<3551:OOWWVC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Misra, V., L. Marx, M. Brunke, and X. Zeng, 2008: The equatorial Pacific cold tongue bias in a coupled climate model. J. Climate, 21, 58525869, https://doi.org/10.1175/2008JCLI2205.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Neale, R. B., J. H. Richter, and M. Jochum, 2008: The impact of convection on ENSO: From a delayed oscillator to a series of events. J. Climate, 21, 59045924, https://doi.org/10.1175/2008JCLI2244.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ogata, T., S.-P. Xie, A. Wittenberg, and D.-Z. Sun, 2013: Interdecadal amplitude modulation of El Niño–Southern Oscillation and its impact on tropical Pacific decadal variability. J. Climate, 26, 72807297, https://doi.org/10.1175/JCLI-D-12-00415.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Planton, Y. Y., and Coauthors, 2021: Evaluating climate models with the CLIVAR 2020 ENSO metrics package. Bull. Amer. Meteor. Soc., 102, E193E217, https://doi.org/10.1175/BAMS-D-19-0337.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rayner, N. A., D. E. Parker, E. B. Horton, C. K. Folland, L. V. Alexander, D. P. Rowell, E. C. Kent, and A. Kaplan, 2003: Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J. Geophys. Res., 108, 4407, https://doi.org/10.1029/2002JD002670.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rodgers, K. B., P. Friederichs, and M. Latif, 2004: Tropical Pacific decadal variability and its relation to decadal modulations of ENSO. J. Climate, 17, 37613774, https://doi.org/10.1175/1520-0442(2004)017<3761:TPDVAI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ropelewski, C. F., and M. S. Halpert, 1987: Global and regional scale precipitation patterns associated with the El Niño/Southern Oscillation. Mon. Wea. Rev., 115, 16061626, https://doi.org/10.1175/1520-0493(1987)115<1606:GARSPP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schmidt, G. A., and Coauthors, 2014: Configuration and assessment of the GISS ModelE2 contributions to the CMIP5 archive. J. Adv. Model. Earth Syst., 6, 141184, https://doi.org/10.1002/2013MS000265.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schopf, P. S., and R. J. Burgman, 2006: A simple mechanism for ENSO residuals and asymmetry. J. Climate, 19, 31673179, https://doi.org/10.1175/JCLI3765.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shuai, J., Z. Zhang, D.-Z. Sun, F. Tao, and P. Shi, 2013: ENSO, climate variability and crop yields in China. Climate Res., 58, 133148, https://doi.org/10.3354/cr01194.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stevenson, S. L., 2012: Significant changes to ENSO strength and impacts in the twenty-first century: Results from CMIP5. Geophys. Res. Lett., 39, L17703, https://doi.org/10.1029/2012GL052759.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Su, J., R. Zhang, T. Li, X. Rong, J.-S. Kug, and C.-C. Hong, 2010: Causes of the El Niño and La Niña amplitude asymmetry in the equatorial eastern Pacific. J. Climate, 23, 605617, https://doi.org/10.1175/2009JCLI2894.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sun, D.-Z., 1997: El Niño: A coupled response to radiative heating? Geophys. Res. Lett., 24, 20312034, https://doi.org/10.1029/97GL01960.

  • Sun, D.-Z., 2003: A possible effect of an increase in the warm-pool SST on the magnitude of El Niño warming. J. Climate, 16, 185205, https://doi.org/10.1175/1520-0442(2003)016<0185:APEOAI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sun, D.-Z., 2007: The role of El Niño–Southern Oscillation in regulating its background state. Nonlinear Dynamics in Geosciences, Springer, 537555.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sun, D.-Z., 2010: The diabatic and nonlinear aspects of El Niño–Southern Oscillation: Implications for its past and future behavior. Climate Dyn., 189, 79103, https://doi.org/10.1029/2009GM000865.

    • Search Google Scholar
    • Export Citation
  • Sun, D.-Z., and K. E. Trenberth, 1998: Coordinated heat removal from the equatorial Pacific during the 1986-87 El Niño. Geophys. Res. Lett., 25, 26592662, https://doi.org/10.1029/98GL01813.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sun, D.-Z., and T. Zhang, 2006: A regulatory effect of ENSO on the time-mean thermal stratification of the equatorial upper ocean. Geophys. Res. Lett., 33, L07710, https://doi.org/10.1029/2005GL025296.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sun, D.-Z., J. Fasullo, T. Zhang, and A. Roubicek, 2003: On the radiative and dynamical feedbacks over the equatorial Pacific cold tongue. J. Climate, 16, 24252432, https://doi.org/10.1175/2786.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sun, D.-Z., and Coauthors, 2006: Radiative and dynamical feedbacks over the equatorial cold tongue: Results from nine atmospheric GCMs. J. Climate, 19, 40594074, https://doi.org/10.1175/JCLI3835.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sun, D.-Z., Y. Yu, and T. Zhang, 2009: Tropical water vapor and cloud feedbacks in climate models: A further assessment using coupled simulations. J. Climate, 22, 12871304, https://doi.org/10.1175/2008JCLI2267.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sun, D.-Z., T. Zhang, Y. Sun, and Y. Yu, 2014: Rectification of El Niño–Southern Oscillation into climate anomalies of decadal and longer time scales: Results from forced ocean GCM experiments. J. Climate, 27, 25452561, https://doi.org/10.1175/JCLI-D-13-00390.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sun, F., and J.-Y. Yu, 2009: A 10–15-yr modulation cycle of ENSO intensity. J. Climate, 22, 17181735, https://doi.org/10.1175/2008JCLI2285.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sun, Y., D.-Z. Sun, L. Wu, and F. Wang, 2013: Western Pacific warm pool and ENSO asymmetry in CMIP3 models. Adv. Atmos. Sci., 30, 940953, https://doi.org/10.1007/s00376-012-2161-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sun, Y., F. Wang, and D.-Z. Sun, 2016: Weak ENSO asymmetry due to weak nonlinear air–sea interaction in CMIP5 climate models. Adv. Atmos. Sci., 33, 352364, https://doi.org/10.1007/s00376-015-5018-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Taylor, K. E., R. J. Stouffer, and G. A. Meehl, 2012: An overview of CMIP5 and the experiment design. Bull. Amer. Meteor. Soc., 93, 485498, https://doi.org/10.1175/BAMS-D-11-00094.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tian, B., and X. Dong, 2020: The double-ITCZ bias in CMIP3, CMIP5, and CMIP6 models based on annual mean precipitation. Geophys. Res. Lett., 47, e2020GL087232, https://doi.org/10.1029/2020gl087232.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Timmermann, A., and Coauthors, 2018: El Niño–Southern Oscillation complexity. Nature, 559, 535545, https://doi.org/10.1038/s41586-018-0252-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., G. W. Branstator, D. Karoly, A. Kumar, N.-C. Lau, and C. Ropelewski, 1998: Progress during TOGA in understanding and modeling global teleconnections associated with tropical sea surface temperatures. J. Geophys. Res., 103, 14 29114 324, https://doi.org/10.1029/97JC01444.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Uppala, S. M., and Coauthors, 2005: The ERA-40 Re-Analysis. Quart. J. Roy. Meteor. Soc., 131, 29613012, https://doi.org/10.1256/qj.04.176.

  • Vialard, J., C. Menkes, J. P. Boulanger, P. Delecluse, E. Guilyardi, M. J. McPhaden, and G. Madec, 2001: A model study of oceanic mechanisms affecting equatorial Pacific sea surface temperature during the 1997–98 El Niño. J. Phys. Oceanogr., 31, 16491675, https://doi.org/10.1175/1520-0485(2001)031<1649:AMSOOM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, B., R. Wu, and X. Fu, 2000: Pacific–East Asian teleconnection: How does ENSO affect East Asian climate? J. Climate, 13, 15171536, https://doi.org/10.1175/1520-0442(2000)013<1517:PEATHD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, C., C. Deser, J.-Y. Yu, P. DiNezio, and A. Clement, 2017: El Niño and Southern Oscillation (ENSO): A review. Coral Reefs of the Eastern Tropical Pacific: Persistence and Loss in a Dynamic Environment, P. W. Glynn, D. P. Manzello, and I. C. Enochs, Eds., Springer, 85106.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, X.-Y., and Coauthors, 2021: Underestimated responses of Walker circulation to ENSO-related SST anomaly in atmospheric and coupled models. Geosci. Lett., 8, 17, https://doi.org/10.1186/s40562-021-00186-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Webster, P. J., and R. Lukas, 1992: TOGA COARE: The Coupled Ocean–Atmosphere Response Experiment. Bull. Amer. Meteor. Soc., 73, 13771416, https://doi.org/10.1175/1520-0477(1992)073<1377:TCTCOR>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wittenberg, A. T., 2009: Are historical records sufficient to constrain ENSO simulations? Geophys. Res. Lett., 36, L12702, https://doi.org/10.1029/2009GL038710.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wittenberg, A. T., A. Rosati, N.-C. Lau, and J. J. Ploshay, 2006: GFDL’s CM2 global coupled climate models. Part III: Tropical Pacific climate and ENSO. J. Climate, 19, 698722, https://doi.org/10.1175/JCLI3631.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wittenberg, A. T., A. Rosati, T. L. Delworth, G. A. Vecchi, and F. Zeng, 2014: ENSO modulation: Is it decadally predictable? J. Climate, 27, 26672681, https://doi.org/10.1175/JCLI-D-13-00577.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xie, P., and P. A. Arkin, 1997: Global precipitation: A 17-year monthly analysis based on gauge observations, satellite estimates, and numerical model outputs. Bull. Amer. Meteor. Soc., 78, 25392558, https://doi.org/10.1175/1520-0477(1997)078<2539:GPAYMA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yeh, S.-W., and B. P. Kirtman, 2004: Tropical Pacific decadal variability and ENSO amplitude modulation in a CGCM. J. Geophys. Res., 109, C11009, https://doi.org/10.1029/2004JC002442.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zebiak, S. E., 1989: Oceanic heat content variability and El Niño cycles. J. Phys. Oceanogr., 19, 475486, https://doi.org/10.1175/1520-0485(1989)019<0475:OHCVAE>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zebiak, S. E., and M. A. Cane, 1987: A model El Niño–Southern Oscillation. Mon. Wea. Rev., 115, 22622278, https://doi.org/10.1175/1520-0493(1987)115<2262:AMENO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, C., 1993: Large-scale variability of atmospheric deep convection in relation to sea surface temperature in the tropics. J. Climate, 6, 18981913, https://doi.org/10.1175/1520-0442(1993)006<1898:LSVOAD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, R., A. Sumi, and M. Kimoto, 1996: Impact of El Niño on the East Asian monsoon. J. Meteor. Soc. Japan, 74, 4962, https://doi.org/10.2151/jmsj1965.74.1_49.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, T., and D.-Z. Sun, 2014: ENSO asymmetry in CMIP5 models. J. Climate, 27, 40704093, https://doi.org/10.1175/JCLI-D-13-00454.1.

  • Zhang, T., D.-Z. Sun, R. Neale, and P. J. Rasch, 2009: An evaluation of ENSO asymmetry in the Community Climate System Models: A view from the subsurface. J. Climate, 22, 59335961, https://doi.org/10.1175/2009JCLI2933.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, T., X. Shao, and S. Li, 2017: Impacts of atmospheric processes on ENSO asymmetry: A comparison between CESM1 and CCSM4. J. Climate, 30, 97439762, https://doi.org/10.1175/JCLI-D-17-0360.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhao, Y., E. Di Lorenzo, D. Sun, and S. Stevenson, 2021: Tropical Pacific decadal variability and ENSO precursor in CMIP5 models. J. Climate, 34, 10231045, https://doi.org/10.1175/JCLI-D-20-0158.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 461 452 232
Full Text Views 159 156 58
PDF Downloads 212 208 70

ENSO Asymmetry in CMIP6 Models

View More View Less
  • 1 aDepartment of Atmospheric and Oceanic Sciences/Institutes of Atmospheric Sciences, Fudan University, Shanghai, China
Restricted access

Abstract

An interesting aspect of the El Niño–Southern Oscillation (ENSO) phenomenon is the asymmetry between its two phases. This paper evaluates the simulations of this property of ENSO by the Coupled Model Intercomparison Project phase 6 (CMIP6) models. Both the surface and subsurface signals of ENSO are examined for this purpose. The results show that the models still underestimate ENSO asymmetry as shown in the SST field, but do a better job in the subsurface. A much weaker negative feedback from the net surface heat flux during La Niña in the models is identified as a factor causing the degradation of the ENSO asymmetry at the surface. The simulated asymmetry in the subsurface is still weaker than the observations owing to a weaker dynamic coupling between the atmosphere and ocean. Consistent with the finding of a weaker dynamic coupling strength, the precipitation response to the SST changes is also found to be weaker in the models. The results underscore that a more objective assessment of the simulation of ENSO by climate models may have to involve the examination of the subsurface signals. Future improvements in simulating ENSO will likely require a better simulation of the surface heat flux feedback from the atmosphere as well as the dynamical coupling strength between the atmosphere and ocean.

Significance Statement

The ENSO phenomenon affects weather and climate worldwide. An interesting aspect of this phenomenon is the asymmetry between its two phases. Previous studies have reported a weaker asymmetry in the simulations by climate models. But these studies have focused on the ENSO asymmetry at the surface. Here by examining the ENSO asymmetry at the surface and the subsurface, we have found that ENSO asymmetry is better simulated in the subsurface than at the surface. We have also identified factors that are responsible for the degradation of the ENSO asymmetry at the surface as well as the remaining weakness in the subsurface, pointing out specific pathways to take to further improve ENSO simulations by coupled climate models.

© 2022 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: De-Zheng Sun, dezhengsun@fudan.edu.cn

Abstract

An interesting aspect of the El Niño–Southern Oscillation (ENSO) phenomenon is the asymmetry between its two phases. This paper evaluates the simulations of this property of ENSO by the Coupled Model Intercomparison Project phase 6 (CMIP6) models. Both the surface and subsurface signals of ENSO are examined for this purpose. The results show that the models still underestimate ENSO asymmetry as shown in the SST field, but do a better job in the subsurface. A much weaker negative feedback from the net surface heat flux during La Niña in the models is identified as a factor causing the degradation of the ENSO asymmetry at the surface. The simulated asymmetry in the subsurface is still weaker than the observations owing to a weaker dynamic coupling between the atmosphere and ocean. Consistent with the finding of a weaker dynamic coupling strength, the precipitation response to the SST changes is also found to be weaker in the models. The results underscore that a more objective assessment of the simulation of ENSO by climate models may have to involve the examination of the subsurface signals. Future improvements in simulating ENSO will likely require a better simulation of the surface heat flux feedback from the atmosphere as well as the dynamical coupling strength between the atmosphere and ocean.

Significance Statement

The ENSO phenomenon affects weather and climate worldwide. An interesting aspect of this phenomenon is the asymmetry between its two phases. Previous studies have reported a weaker asymmetry in the simulations by climate models. But these studies have focused on the ENSO asymmetry at the surface. Here by examining the ENSO asymmetry at the surface and the subsurface, we have found that ENSO asymmetry is better simulated in the subsurface than at the surface. We have also identified factors that are responsible for the degradation of the ENSO asymmetry at the surface as well as the remaining weakness in the subsurface, pointing out specific pathways to take to further improve ENSO simulations by coupled climate models.

© 2022 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: De-Zheng Sun, dezhengsun@fudan.edu.cn
Save