• Ambrizzi, T., and B. J. Hoskins, 1997: Stationary Rossby wave propagation in a baroclinic atmosphere. Quart. J. Roy. Meteor. Soc., 123, 919928, https://doi.org/10.1002/qj.49712354007.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Behringer, D. W., 2007: The Global Ocean Data Assimilation System (GODAS) at NCEP. 11th Symp. on Integrated Observing and Assimilation Systems for Atmosphere, Oceans, and Land Surface, San Antonio, TX, Amer. Meteor. Soc., 3.3, http://ams.confex.com/ams/87ANNUAL/techprogram/paper_119541.htm.

  • Berrisford, P., P. Kallberg, S. Kobayashi, D. Dee, S. Uppala, A. J. Simmons, P. Poli, and H. Sato, 2011: Atmospheric conservation properties in ERA-Interim. Quart. J. Roy. Meteor. Soc., 137, 13811399, https://doi.org/10.1002/qj.864.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bjerknes, J., 1964: Atlantic air–sea interaction. Advances in Geophysics, Vol. 10, Academic Press, 182, https://doi.org/10.1016/S0065-2687(08)60005-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bracco, A., F. Kucharski, F. Molteni, W. Hazeleger, and C. Severijns, 2005: Internal and forced modes of variability in the Indian Ocean. Geophys. Res. Lett., 32, L12707, https://doi.org/10.1029/2005GL023154.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, M., P. Xie, J. E. Janowiak, and P. A. Arkin, 2002: Global land precipitation: A 50-yr monthly analysis based on gauge observations. J. Hydrometeor., 3, 249266, https://doi.org/10.1175/1525-7541(2002)003<0249:GLPAYM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, S. F., R. Wu, and Y. Liu, 2016: Dominant modes of interannual variability in Eurasian surface air temperature during boreal spring. J. Climate, 29, 11091125, https://doi.org/10.1175/JCLI-D-15-0524.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chiang, J. C. H., and D. J. Vimont, 2004: Analogous Pacific and Atlantic meridional modes of tropical atmosphere–ocean variability. J. Climate, 17, 41434158, https://doi.org/10.1175/JCLI4953.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Delworth, T. L., F. Zeng, G. A. Vecchi, X. Yang, L. Zhang, and R. Zhang, 2016: The North Atlantic Oscillation as a driver of rapid climate change in the Northern Hemisphere. Nat. Geosci., 9, 509512, https://doi.org/10.1038/ngeo2738.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Deser, C., and M. L. Blackmon, 1993: Surface climate variations over the North Atlantic Ocean during winter: 1900–93. J. Climate, 6, 17431753, https://doi.org/10.1175/1520-0442(1993)006<1743:SCVOTN>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Deser, C., and M. S. Timlin, 1997: Atmosphere–ocean interaction on weekly time scales in the North Atlantic and Pacific. J. Climate, 10, 393408, https://doi.org/10.1175/1520-0442(1997)010<0393:AOIOWT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Di Lorenzo, E., and Coauthors, 2008: North Pacific Gyre Oscillation links ocean climate and ecosystem change. Geophys. Res. Lett., 35, L08607, https://doi.org/10.1029/2007GL032838.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Di Lorenzo, E., K. Cobb, J. Furtado, N. Schneider, B. T. Anderson, A. Bracco, M. A. Alexander, and D. J. Vimont, 2010: Central Pacific El Niño and decadal climate change in the North Pacific Ocean. Nat. Geosci., 3, 762765, https://doi.org/10.1038/ngeo984.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ding, H., N. S. Keenlyside, and M. Latif, 2012: Impact of the equatorial Atlantic on the El Niño Southern Oscillation. Climate Dyn., 38, 19651972, https://doi.org/10.1007/s00382-011-1097-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ding, R., J. Li, Y. Tseng, C. Sun, and Y. Guo, 2015: The Victoria mode in the North Pacific linking extratropical sea level pressure variations to ENSO. J. Geophys. Res. Atmos, 120, 2745, https://doi.org/10.1002/2014JD022221.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Enfield, D. B., and D. A. Mayer, 1997: Tropical Atlantic sea surface temperature variability and its relation to El Niño–Southern Oscillation. J. Geophys. Res. Atmos, 102, 929945, https://doi.org/10.1029/96JC03296.

    • Search Google Scholar
    • Export Citation
  • Fan, M., and E. K. Schneider, 2012: Observed decadal North Atlantic tripole SST variability. Part I: Weather noise forcing and coupled response. J. Atmos. Sci., 69, 3550, https://doi.org/10.1175/JAS-D-11-018.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Frauen, C., and D. Dommenget, 2012: Influences of the tropical Indian and Atlantic Oceans on the predictability of ENSO. Geophys. Res. Lett. Atmos., 39, L02706, https://doi.org/10.1029/2011GL050520.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gill, A. E., 1980: Some simple solutions for heat-induced tropical circulation. Quart. J. Roy. Meteor. Soc., 106, 447462, https://doi.org/10.1002/qj.49710644905.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grötzner, A., M. Latif, and T. P. Barnett, 1998: A decadal climate cycle in the North Atlantic Ocean as simulated by the ECHO coupled GCM. J. Climate, 11, 831847, https://doi.org/10.1175/1520-0442(1998)011<0831:ADCCIT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gu, W., C. Y. Li, X. Wang, W. Zhou, and W. J. Li, 2009: Linkage between mei-yu precipitation and North Atlantic SST on the decadal timescale. Adv. Atmos. Sci., 26, 101108, https://doi.org/10.1007/s00376-009-0101-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ham, Y. G., J. S. Kug, and J. Y. Park, 2013: Two distinct roles of Atlantic SSTs in ENSO variability: North tropical Atlantic SST and Atlantic Niño. Geophys. Res. Lett., 40, 40124017, https://doi.org/10.1002/grl.50729.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hong, C.-C., M.-M. Lu, and M. Kanamitsu, 2008: Temporal and spatial characteristics of positive and negative Indian Ocean dipole with and without ENSO. J. Geophys. Res. Atmos., 113, D08107, https://doi.org/10.1029/2007JD009151.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hong, C.-C., T.-C. Chang, and H.-H. Hsu, 2014: Enhanced relationship between the tropical Atlantic SST and the summertime western North Pacific subtropical high after the early 1980s. J. Geophys. Res. Atmos., 119, 37153722, https://doi.org/10.1002/2013JD021394.

    • Search Google Scholar
    • Export Citation
  • Hong, C.-C., M.-Y. Lee, H.-H. Hsu, and T.-C. Chan, 2016: Compounding factors causing the unusual absence of tropical cyclones in the western North Pacific during August 2014. J. Geophy. Res. Atmos., 121, 99649976, https://doi.org/10.1002/2016JD025507.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hong, C.-C., W.-L. Tseng, H.-H. Hsu, M.-Y. Lee, and C.-C. Chang, 2021: Relative contribution of trend and interannually-varying SST anomalies to the 2018 heat waves in the extratropical Northern Hemisphere. J. Climate, 34, 63196333, https://doi.org/10.1175/JCLI-D-20-0556.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huang, B., and Coauthors, 2017: Extended reconstructed sea surface temperature, version 5 (ERSSTv5): Upgrades, validations, and intercomparisons. J. Climate, 30, 81798205, https://doi.org/10.1175/JCLI-D-16-0836.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77, 437471, https://doi.org/10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kim, S. T., J.-Y. Yu, A. Kumar, and H. Wang, 2012: Examination of the two types of ENSO in the NCEP CFS model and its extratropical associations. Mon. Wea. Rev., 140, 19081923, https://doi.org/10.1175/MWR-D-11-00300.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kucharski, F., F. Molteni, and A. Bracco, 2006: Decadal interactions between the western tropical Pacific and the North Atlantic Oscillation. Climate Dyn., 26, 7991, https://doi.org/10.1007/s00382-005-0085-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kushnir, Y., 1994: Interdecadal variations in North Atlantic sea surface temperature and associated atmospheric conditions. J. Climate, 7, 141157, https://doi.org/10.1175/1520-0442(1994)007<0141:IVINAS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lee, S.-K., A. T. Wittenberg, D. B. Enfield, S. J. Weaver, C. Wang, and R. Atlas, 2016: US regional tornado outbreaks and their links to spring ENSO phases and North Atlantic SST variability. Environ. Res. Lett., 11, 044008, https://doi.org/10.1088/1748-9326/11/4/044008.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, T., Y.-S. Zhang, C.-P. Chang, E. Lu, and D. Wang, 2002: Relative role of dynamic and thermodynamic processes in the of the Indian Ocean dipole: An OGCM diagnosis. Geophys. Res. Lett., 29, 2110, https://doi.org/10.1029/2002GL015789.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liang, Y.-C., J.-Y. Yu, and E. S. Saltzman, 2017: Linking the tropical Northern Hemisphere pattern to the Pacific warm blob and Atlantic cold blob. J. Climate, 30, 90419057, https://doi.org/10.1175/JCLI-D-17-0149.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marshall, J., H. Johnson, and J. Goodman, 2001: A study of the interaction of the North Atlantic oscillation with the ocean circulation. J. Climate, 14, 13991421, https://doi.org/10.1175/1520-0442(2001)014<1399:ASOTIO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Matsuno, T., 1966: Quasi-geostrophic motions in the equatorial area. J. Meteor. Soc. Japan, 44, 2543, https://doi.org/10.2151/jmsj1965.44.1_25.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Molinari, R. L., D. A. Mayer, J. F. Festa, and H. F. Bezdek, 1997: Multiyear variability in the near-surface temperature structure of the midlatitude western North Atlantic Ocean. J. Geophys. Res., 102, 32673278, https://doi.org/10.1029/96JC03544.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Molteni, F., 2003: Atmospheric simulations using a GCM with simplified physical parametrizations. I. Model climatology and variability in multi-decadal experiments. Climate Dyn., 20, 175191, https://doi.org/10.1007/s00382-002-0268-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Saravanan,R., and P. Chang, 2000: Interaction between tropical Atlantic variability and El Niño–Southern Oscillation. J. Climate, 13, 21772194, https://doi.org/10.1175/1520-0442(2000)013<2177:IBTAVA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schneider, E. K., and M. Fan, 2012: Observed decadal North Atlantic tripole SST variability. Part II: Diagnosis of mechanisms. J. Atmos. Sci., 69, 5164, https://doi.org/10.1175/JAS-D-11-019.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Simmons, A. J., J. M. Wallace, and G. W. Branstator, 1983: Barotropic wave propagation and instability, and atmospheric teleconnections patterns. J. Atmos. Sci., 40, 13631392, https://doi.org/10.1175/1520-0469(1983)040<1363:BWPAIA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ting, M., Y. Kushnir, R. Seager, and C. Li, 2009: Forced and internal twentieth-century SST trends in the North Atlantic. J. Climate, 22, 14691481, https://doi.org/10.1175/2008JCLI2561.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tseng, W.-L., C.-C. Hong, M.-Y. Lee, H.-H. Hsu, and C.-C. Chang, 2020: Compound effect of local and remote sea surface temperature on the unusual 2018 western North Pacific summer monsoon. J. Meteor. Soc. Japan, 98, 13691385, https://doi.org/10.2151/jmsj.2020-071.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Visbeck, M., E. Chassignet, R. Curry, T. Delworth, B. Dickson, and G. Rahmann, 2003: The ocean’s response to NAO variability. The North Atlantic Oscillation: Climatic Significance and Environment Impact, Geophys. Monogr., Vol. 134, Amer. Geophys. Union, 113146.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, L., J.-Y. Yu, and H. Paek, 2017: Enhanced biennial variability in the Pacific due to Atlantic capacitor effect. Nat. Commun., 8, 14887, https://doi.org/10.1038/ncomms14887.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, L., and Z. Liu, 2005: North Atlantic decadal variability: Air–sea coupling, oceanic memory, and potential Northern Hemisphere resonance. J. Climate, 18, 331349, https://doi.org/10.1175/JCLI-3264.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, Y.-K., C.-C. Hong, and C.-T. Chen, 2018: Distinct effects of the two strong El Niño events in 2015–2016 and 1997–1998 on the western North Pacific monsoon and tropical cyclone activity: Role of subtropical eastern North Pacific warm SSTA. J. Geophys. Res. Oceans, 123, 36033618, https://doi.org/10.1002/2018JC013798.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, Y.-K., A.-Y. Huang, C.-K. Wu, C.-C. Hong, and C.-C. Chang, 2020: Effect of warm SST in the subtropical eastern North Pacific on triggering the abrupt change of the mei-yu rainfall over South China in the early 1990s. J. Climate, 33, 657673, https://doi.org/10.1175/JCLI-D-18-0292.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, Z. W., B. Wang, J. Li, and F.-F. Jin, 2009: An empirical seasonal prediction model of the East Asian summer monsoon using ENSO and NAO. J. Geophys. Res. Atmos., 114, D18120, https://doi.org/10.1029/2009JD011733.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xie, S.-P., and S. G. H. Philander, 1994: A coupled ocean–atmosphere model of relevance to the ITCZ in the eastern Pacific. Tellus, 46A, 340350, https://doi.org/10.3402/tellusa.v46i4.15484.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yu, J. Y., and S. T. Kim, 2011: Relationships between extratropical sea level pressure variations and the central Pacific and eastern Pacific types of ENSO. J. Climate, 24, 708720, https://doi.org/10.1175/2010JCLI3688.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yu, J. Y., P. Kao, H. Paek, H.-H. Hsu, C.-W. Hung, M.-M. Lu, and S.-I. An, 2015: Linking emergence of the central Pacific El Niño to the Atlantic multidecadal oscillation. J. Climate, 28, 651662, https://doi.org/10.1175/JCLI-D-14-00347.1.

    • Search Google Scholar
    • Export Citation
  • Zhang, W., G. Vecchi, H. Murakami, G. Villarini, and L. Jia, 2016: The Pacific meridional mode and the occurrence of tropical cyclones in the western North Pacific. J. Climate, 29, 381398, https://doi.org/10.1175/JCLI-D-15-0282.1.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 468 462 21
Full Text Views 181 179 5
PDF Downloads 227 225 3

Intensification of Interannual Cross-Basin SST Interaction between the North Atlantic Tripole and Pacific Meridional Mode since the 1990s

Pei-ken KaoaSchool of Tourism and Historical Culture, Zhaoqing University, Zhaoqing, China
bSchool of Geography and Tourism, Huanggang Normal University, Huanggang, China
cDepartment of Earth and Life Science, University of Taipei, Taipei, Taiwan

Search for other papers by Pei-ken Kao in
Current site
Google Scholar
PubMed
Close
,
Chi-Cherng HongcDepartment of Earth and Life Science, University of Taipei, Taipei, Taiwan

Search for other papers by Chi-Cherng Hong in
Current site
Google Scholar
PubMed
Close
,
An-Yi HuangcDepartment of Earth and Life Science, University of Taipei, Taipei, Taiwan

Search for other papers by An-Yi Huang in
Current site
Google Scholar
PubMed
Close
, and
Chih-Chun ChangcDepartment of Earth and Life Science, University of Taipei, Taipei, Taiwan

Search for other papers by Chih-Chun Chang in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The cross-basin interaction of the second EOFs of the interannual SST in the North Atlantic and North Pacific—the North Atlantic tripole (NAT) SST and Pacific meridional mode (PMM)—is discussed. Observations revealed that the total variances of the NAT and PMM have simultaneously experienced interdecadal enhancement since the 1990s. Wavelet analysis indicated that this enhancement was associated with the interdecadal variations (8–16 years) of the NAT and PMM, which have become significantly and positively coherent since the 1990s. This interdecadal variation also changed the interannual NAT–PMM relationship from negative to positive. The regression analysis indicated that the NAT forced a Matsuno–Gill circulation anomaly, which had a substantial lag impact on the PMM SST through wind–evaporation–SST feedback. Additionally, the NAT induced oceanic temperature advection, which also partially contributed to the PMM SST. On the other hand, the PMM-associated middle–upper atmospheric teleconnection, a North Atlantic Oscillation (NAO)-like circulation anomaly in the North Atlantic, gave positive feedback to the NAT. The numerical experiments suggest that the enhancement of the NAT–PMM interaction since the 1990s was associated with the eastward shift of PMM-associated convection, which was further enhanced by eastward extension of the upper-level extratropical jet in the North Pacific.

Significance Statement

This study aimed at a better understanding of the cross-basin interaction between the North Atlantic and North Pacific. Our study indicates that the cross-basin interaction in the interannual sea surface temperature between the Pacific meridional mode (PMM) and North Atlantic tripole (NAT) became stronger since the 1990s. The observation yields that this enhancement was associated with the interdecadal variations of the NAT and PMM, which have become significantly and positively coherent since the 1990s. The observation yields that the NAT-forced atmospheric large-scale circulation anomaly had a substantial lag impact on the PMM. On the other hand, the PMM-induced middle–upper atmospheric teleconnection, a North Atlantic Oscillation (NAO)-like circulation anomaly, gave positive feedback to the NAT. The numerical experiments suggest that the enhancement of the NAT–PMM interaction since the 1990s primarily resulted from the eastward shift of PMM-associated convection.

© 2022 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Chi-Cherng Hong, cchong@utaipei.edu.tw

Abstract

The cross-basin interaction of the second EOFs of the interannual SST in the North Atlantic and North Pacific—the North Atlantic tripole (NAT) SST and Pacific meridional mode (PMM)—is discussed. Observations revealed that the total variances of the NAT and PMM have simultaneously experienced interdecadal enhancement since the 1990s. Wavelet analysis indicated that this enhancement was associated with the interdecadal variations (8–16 years) of the NAT and PMM, which have become significantly and positively coherent since the 1990s. This interdecadal variation also changed the interannual NAT–PMM relationship from negative to positive. The regression analysis indicated that the NAT forced a Matsuno–Gill circulation anomaly, which had a substantial lag impact on the PMM SST through wind–evaporation–SST feedback. Additionally, the NAT induced oceanic temperature advection, which also partially contributed to the PMM SST. On the other hand, the PMM-associated middle–upper atmospheric teleconnection, a North Atlantic Oscillation (NAO)-like circulation anomaly in the North Atlantic, gave positive feedback to the NAT. The numerical experiments suggest that the enhancement of the NAT–PMM interaction since the 1990s was associated with the eastward shift of PMM-associated convection, which was further enhanced by eastward extension of the upper-level extratropical jet in the North Pacific.

Significance Statement

This study aimed at a better understanding of the cross-basin interaction between the North Atlantic and North Pacific. Our study indicates that the cross-basin interaction in the interannual sea surface temperature between the Pacific meridional mode (PMM) and North Atlantic tripole (NAT) became stronger since the 1990s. The observation yields that this enhancement was associated with the interdecadal variations of the NAT and PMM, which have become significantly and positively coherent since the 1990s. The observation yields that the NAT-forced atmospheric large-scale circulation anomaly had a substantial lag impact on the PMM. On the other hand, the PMM-induced middle–upper atmospheric teleconnection, a North Atlantic Oscillation (NAO)-like circulation anomaly, gave positive feedback to the NAT. The numerical experiments suggest that the enhancement of the NAT–PMM interaction since the 1990s primarily resulted from the eastward shift of PMM-associated convection.

© 2022 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Chi-Cherng Hong, cchong@utaipei.edu.tw
Save