• Abe-Ouchi, A., and Coauthors, 2015: Ice-sheet configuration in the CMIP5/PMIP3 Last Glacial Maximum experiments. Geosci. Model Dev., 8, 36213637, https://doi.org/10.5194/gmd-8-3621-2015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Albani, S., and Coauthors, 2014: Improved dust representation in the Community Atmosphere Model. J. Adv. Model. Earth Syst., 6, 541570, https://doi.org/10.1002/2013MS000279.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Annan, J. D., and J. C. Hargreaves, 2013: A new global reconstruction of temperature changes at the Last Glacial Maximum. Climate Past, 9, 367376, https://doi.org/10.5194/cp-9-367-2013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Barnett, T., L. Dümenil, U. Schlese, E. Roeckner, and M. Latif, 1989: The effect of Eurasian snow cover on regional and global climate variations. J. Atmos. Sci., 46, 661686, https://doi.org/10.1175/1520-0469(1989)046<0661:TEOESC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bartlein, P. J., and Coauthors, 2011: Pollen-based continental climate reconstructions at 6 and 21 ka: A global synthesis. Climate Dyn., 37, 775802, https://doi.org/10.1007/s00382-010-0904-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Berg, A., and Coauthors, 2016: Land–atmosphere feedbacks amplify aridity increase over land under global warming. Nat. Climate Change, 6, 869874, https://doi.org/10.1038/nclimate3029.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Berger, A., 1978: Long-term variations of daily insolation and quaternary climatic changes. J. Atmos. Sci., 35, 23622367, https://doi.org/10.1175/1520-0469(1978)035<2362:LTVODI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Blackport, R., and P. J. Kushner, 2016: The transient and equilibrium climate response to rapid summertime sea ice loss in CCSM4. J. Climate, 29, 401417, https://doi.org/10.1175/JCLI-D-15-0284.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Braconnot, P., and Coauthors, 2007: Results of PMIP2 coupled simulations of the mid-Holocene and Last Glacial Maximum—Part 1: Experiments and large-scale features. Climate Past, 3, 261277, https://doi.org/10.5194/cp-3-261-2007.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brierley, C., and I. Wainer, 2018: Inter-annual variability in the tropical Atlantic from the last glacial maximum into future climate projections simulated by CMIP5/PMIP3. Climate Past, 14, 13771390, https://doi.org/10.5194/cp-14-1377-2018.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brown, P. T., M. Yi, W. Li, and S. A. Hill, 2017: Change in the magnitude and mechanisms of global temperature variability with warming. Nat. Climate Change, 7, 743748, https://doi.org/10.1038/nclimate3381.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Byrne, M. P., and P. A. O’Gorman, 2013: Link between land–ocean warming contrast and surface relative humidities in simulations with coupled climate models. Geophys. Res. Lett., 40, 52235227, https://doi.org/10.1002/grl.50971.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cai, W., and Coauthors, 2014: Increasing frequency of extreme El Niño events due to greenhouse warming. Nat. Climate Change, 4, 111116, https://doi.org/10.1038/nclimate2100.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, J., Z. Wen, R. Wu, X. Wang, C. He, and Z. Chen, 2017: An interdecadal change in the intensity of interannual variability in summer rainfall over southern China around early 1990s. Climate Dyn., 48, 191207, https://doi.org/10.1007/s00382-016-3069-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, S., R. Wu, and Y. Liu, 2016: Dominant modes of interannual variability in Eurasian surface air temperature during boreal spring. J. Climate, 29, 11091125, https://doi.org/10.1175/JCLI-D-15-0524.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, W., and R. Y. Lu, 2014: The interannual variation in monthly temperature over Northeast China during summer. Adv. Atmos. Sci., 31, 515524, https://doi.org/10.1007/s00376-013-3102-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Christensen, J. H., and Coauthors, 2013: Climate phenomena and their relevance for future regional climate change. Climate Change 2013: The Physical Science Basis, T. F. Stocker et al., Eds., Cambridge University Press, 1217–1308, https://doi.org/10.1017/CBO9781107415324.028.

    • Crossref
    • Export Citation
  • Collow, T. W., W. Wang, and A. Kumar, 2019: Reduction in northern midlatitude 2-m temperature variability due to Arctic sea ice loss. J. Climate, 32, 50215035, https://doi.org/10.1175/JCLI-D-18-0692.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cubasch, U. D., D. Wuebbles, D. Chen, M. C. Facchini, D. Frame, N. Mahowald, and J. -G. Winther, 2013: Introduction. Climate Change 2013: The Physical Science Basis, T. F. Stocker et al., Eds., Cambridge University Press, 119–158, https://doi.org/10.1017/CBO9781107415324.007.

    • Crossref
    • Export Citation
  • Cuña-Rodríguez, C., E. L. Piovano, F. García-Rodríguez, F. Sylvestre, F. Rostek, S. M. Bernasconi, and D. Ariztegui, 2020: Paleolimnological record of the Pampean plains (Argentina) as a natural archive of South American hydroclimatic variability since the LGM to the current warm period. Quat. Sci. Rev., 250, 106675, https://doi.org/10.1016/j.quascirev.2020.106675.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Deser, C., A. Phillips, V. Bourdette, and H. Teng, 2012: Uncertainty in climate change projections: The role of internal variability. Climate Dyn., 38, 527546, https://doi.org/10.1007/s00382-010-0977-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • de Vernal, A., A. Rosell-Melé, M. Kucera, C. Hillaire-Marcel, F. Eynaud, M. Weinelt, T. Dokken, and M. Kageyama, 2006: Comparing proxies for the reconstruction of LGM sea-surface conditions in the northern North Atlantic. Quat. Sci. Rev., 25, 28202834, https://doi.org/10.1016/j.quascirev.2006.06.006.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ditlevsen, P. D., H. Svensmark, and S. Johnsen, 1996: Contrasting atmospheric and climate dynamics of the last-glacial and Holocene periods. Nature, 379, 810812, https://doi.org/10.1038/379810a0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Duchon, C. E., 1979: Lanczos filtering in one and two dimensions. J. Appl. Meteor. Climatol., 18, 10161022, https://doi.org/10.1175/1520-0450(1979)018<1016:LFIOAT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dufresne, J.-L., and Coauthors, 2013: Climate change projections using the IPSL-CM5 Earth System Model: From CMIP3 to CMIP5. Climate Dyn., 40, 21232165, https://doi.org/10.1007/s00382-012-1636-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dyke, A. S., J. T. Andrews, P. U. Clark, J. H. England, G. H. Miller, J. Shaw, and J. J. Veillette, 2002: The Laurentide and Innuitian ice sheets during the Last Glacial Maximum. Quat. Sci. Rev., 21, 931, https://doi.org/10.1016/S0277-3791(01)00095-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Eyring, V., S. Bony, G. A. Meehl, C. A. Senior, B. Stevens, R. J. Stouffer, and K. E. Taylor, 2016: Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization. Geosci. Model Dev., 9, 19371958, https://doi.org/10.5194/gmd-9-1937-2016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fan, K., Z. Xu, and B. Tian, 2014: Has the intensity of the interannual variability in summer rainfall over South China remarkably increased? Meteor. Atmos. Phys., 124, 2332, https://doi.org/10.1007/s00703-013-0301-5.

    • Search Google Scholar
    • Export Citation
  • Ferguson, I. M., J. A. Dracup, P. B. Duffy, P. Pegion, and S. Schubert, 2010: Influence of SST forcing on stochastic characteristics of simulated precipitation and drought. J. Hydrometeor., 11, 754769, https://doi.org/10.1175/2009JHM1132.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Foster, G., and S. Rahmstorf, 2011: Global temperature evolution 1979–2010. Environ. Res. Lett., 6, 044022, https://doi.org/10.1088/1748-9326/6/4/044022.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gent, P. R., and Coauthors, 2011: The Community Climate System Model version 4. J. Climate, 24, 49734991, https://doi.org/10.1175/2011JCLI4083.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hansen, J., M. Sato, and R. Ruedy, 2012: Perception of climate change. Proc. Natl. Acad. Sci. USA, 109, E2415E2423, https://doi.org/10.1073/pnas.1205276109.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hasselmann, K., 1976: Stochastic climate models: Part I. Theory. Tellus, 28, 473485, https://doi.org/10.3402/tellusa.v28i6.11316.

  • He, C., and T. Li, 2019: Does global warming amplify interannual climate variability? Climate Dyn., 52, 26672684, https://doi.org/10.1007/s00382-018-4286-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Holmes, C. R., T. Woollings, E. Hawkins, and H. de Vries, 2016: Robust future changes in temperature variability under greenhouse gas forcing and the relationship with thermal advection. J. Climate, 29, 22212236, https://doi.org/10.1175/JCLI-D-14-00735.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hopcroft, P. O., P. J. Valdes, S. Woodward, and M. M. Joshi, 2015: Last Glacial Maximum radiative forcing from mineral dust aerosols in an Earth system model. J. Geophys. Res. Atmos., 120, 81868205, https://doi.org/10.1002/2015JD023742.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Horton, R. M., J. S. Mankin, C. Lesk, E. Coffel, and C. Raymond, 2016: A review of recent advances in research on extreme heat events. Curr. Climate Change Rep., 2, 242259, https://doi.org/10.1007/s40641-016-0042-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hsiang, S. M., M. Burke, and E. Miguel, 2013: Quantifying the influence of climate on human conflict. Science, 341, 1235367, https://doi.org/10.1126/science.1235367.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ivanovic, R. F., and Coauthors, 2016: Transient climate simulations of the deglaciation 21–9 thousand years before present (version 1)—PMIP4 core experiment design and boundary conditions. Geosci. Model Dev., 9, 25632587, https://doi.org/10.5194/gmd-9-2563-2016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jones, T., W. H. G. Roberts, E. J. Steig, K. M. Cuffey, B. R. Markle, and J. W. C. White, 2018: Southern Hemisphere climate variability forced by Northern Hemisphere ice-sheet topography. Nature, 554, 351355, https://doi.org/10.1038/nature24669.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Joshi, M. M., J. M. Gregory, M. J. Webb, D. M. H. Sexton, and T. C. Johns, 2008: Mechanisms for the land/sea warming contrast exhibited by simulations of climate change. Climate Dyn., 30, 455465, https://doi.org/10.1007/s00382-007-0306-1.

    • Search Google Scholar
    • Export Citation
  • Kageyama, M., and Coauthors, 2017: The PMIP4 contribution to CMIP6—Part 4: Scientific objectives and experimental design of the PMIP4–CMIP6 Last Glacial Maximum experiments and PMIP4 sensitivity experiments. Geosci. Model Dev., 10, 40354055, https://doi.org/10.5194/gmd-10-4035-2017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77, 437472, https://doi.org/10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Katz, R. W., and B. G. Brown, 1992: Extreme events in a changing climate: Variability is more important than averages. Climatic Change, 21, 289302, https://doi.org/10.1007/BF00139728.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kharin, V. V., and F. W. Zwiers, 2005: Estimating extremes in transient climate change simulations. J. Climate, 18, 11561173, https://doi.org/10.1175/JCLI3320.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Koutavas, A., and S. Joanides, 2012: El Niño–Southern Oscillation extrema in the Holocene and Last Glacial Maximum. Paleoceanogr. Paleoclimatol., 27, PA4208, https://doi.org/10.1029/2012PA002378.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kummu, M., D. Gerten, J. Heinke, M. Konzmann, and O. Varis, 2014: Climate-driven interannual variability of water scarcity in food production potential: A global analysis. Hydrol. Earth Syst. Sci., 18, 447461, https://doi.org/10.5194/hess-18-447-2014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kunz, T., and T. Laepple, 2021: Frequency-dependent estimation of effective spatial degrees of freedom. J. Climate, 34, 73737388, https://doi.org/10.1175/JCLI-D-20-0228.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Laepple, T., and P. Huybers, 2014: Ocean surface temperature variability: Large model–data differences at decadal and longer periods. Proc. Natl. Acad. Sci. USA, 111, 162682162687, https://doi.org/10.1073/pnas.1412077111.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lambert, F., A. Tagliabue, G. Shaffer, F. Lamy, G. Winckler, L. Farias, L. Gallardo, and R. De Pol-Holz, 2015: Dust fluxes and iron fertilization in Holocene and Last Glacial Maximum climates. Geophys. Res. Lett., 42, 60146023, https://doi.org/10.1002/2015GL064250.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lenton, T. M., V. Dakos, S. Bathiany, and M. Scheffer, 2017: Observed trends in the magnitude and persistence of monthly temperature variability. Sci. Rep., 7, 5940, https://doi.org/10.1038/s41598-017-06382-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, L., and Coauthors, 2013: The Flexible Global Ocean–Atmosphere–Land System Model, grid-point version 2: FGOALS-g2. Adv. Atmos. Sci., 30, 543560, https://doi.org/10.1007/s00376-012-2140-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lindzen, R. S., and B. Farrell, 1980: A simple approximate result for the maximum growth rate of baroclinic instabilities. J. Atmos. Sci., 37, 16481654, https://doi.org/10.1175/1520-0469(1980)037<1648:ASARFT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lofverstrom, M., 2020: A dynamic link between high-intensity precipitation events in southwestern North America and Europe at the Last Glacial Maximum. Earth Planet. Sci. Lett., 534, 116081, https://doi.org/10.1016/j.epsl.2020.116081.

    • Search Google Scholar
    • Export Citation
  • Manabe, S., and R. J. Stouffer, 1979: A CO2-climate sensitivity study with a mathematical model of the global climate. Nature, 282, 491493, https://doi.org/10.1038/282491a0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Masson-Delmotte, V., and Coauthors, 2005: GRIP deuterium excess reveals rapid and orbital-scale changes in Greenland moisture origin. Science, 309, 118121, https://doi.org/10.1126/science.1108575.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mauritsen, T., and E. Roeckner, 2020: Tuning the MPI-ESM1.2 global climate model to improve the match with instrumental record warming by lowering its climate sensitivity. J. Adv. Model. Earth Syst., 12, e2019MS002037, https://doi.org/10.1029/2019MS002037.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mearns, L. O., C. Rosenzweig, and R. Goldberg, 1992: Effect of changes in interannual climatic variability on CERES-wheat yields: Sensitivity and 2 × CO2 general circulation model studies. Agric. For. Meteor., 62, 159189, https://doi.org/10.1016/0168-1923(92)90013-T.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • North Greenland Ice Core Project Members, 2004: High-resolution record of Northern Hemisphere climate extending into the last interglacial period. Nature, 431, 147151, https://doi.org/10.1038/nature02805.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ohgaito, R., A. Yamamoto, T. Hajima, R. O’ishi, M. Abe, H. Tatebe, A. Abe-Ouchi, and M. Kawamiya, 2021: PMIP4 experiments using MIROC-ES2L Earth system model. Geosci. Model Dev., 14, 11951217, https://doi.org/10.5194/gmd-14-1195-2021.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Olonscheck, D., and D. Notz, 2017: Consistently estimating internal climate variability from climate model simulations. J. Climate, 30, 95559573, https://doi.org/10.1175/JCLI-D-16-0428.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Olonscheck, D., A. P. Schurer, L. Lücke, and G. C. Hegerl, 2021: Large-scale emergence of regional changes in year-to-year temperature variability by the end of the 21st century. Nat. Commun., 12, 7237, https://doi.org/10.1038/s41467-021-27515-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Osman, M. B., J. E. Tierney, J. Zhu, R. Tardif, G. J. Hakim, J. King, and C. J. Poulsen, 2021: Globally resolved surface temperatures since the Last Glacial Maximum. Nature, 599, 239244, https://doi.org/10.1038/s41586-021-03984-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Peltier, W. R., 1994: Ice age paleotopography. Science, 265, 195201, https://doi.org/10.1126/science.265.5169.195.

  • Peltier, W. R., D. F. Argus, and R. Drummond, 2015: Space geodesy constrains ice age terminal deglaciation: The global ICE-6G_C (VM5a) model. J. Geophys. Res. Solid Earth, 120, 450487, https://doi.org/10.1002/2014JB011176.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Phillips, A. S., C. Deser, and J. Fasullo, 2014: Evaluating modes of variability in climate models. Eos, Trans. Amer. Geophys. Union, 95, 453455, https://doi.org/10.1002/2014EO490002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Qin, D., and Coauthors, 2014: Annex III: Glossary. Climate Change 2013: The Physical Science Basis, T. F. Stocker et al., Eds., Cambridge University Press, 1447–1466, https://doi.org/10.1017/CBO9781107415324.031.

    • Crossref
    • Export Citation
  • Raddatz, T. J., and Coauthors, 2007: Will the tropical land biosphere dominate the climate–carbon cycle feedback during the twenty-first century? Climate Dyn., 29, 565574, https://doi.org/10.1007/s00382-007-0247-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rehfeld, K., T. Münch, S. L. Ho, and T. Laepple, 2018: Global patterns of declining temperature variability from the Last Glacial Maximum to the Holocene. Nature, 554, 356359, https://doi.org/10.1038/nature25454.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rehfeld, K., R. Hébert, J. M. Lora, M. Lofverstrom, and C. M. Brierley, 2020: Variability of surface climate in simulations of past and future. Earth Syst. Dyn., 11, 447468, https://doi.org/10.5194/esd-11-447-2020.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ren, Y., B. Zhou, L. Song, and Y. Xiao, 2017: Interannual variability of western North Pacific subtropical high, East Asian jet and East Asian summer precipitation: CMIP5 simulation and projection. Quat. Int., 440, 6470, https://doi.org/10.1016/j.quaint.2016.08.033.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rypdal, K., M. Rypdal, and H.-B. Fredriksen, 2015: Spatiotemporal long-range persistence in Earth’s temperature field: Analysis of stochastic–diffusive energy balance models. J. Climate, 28, 83798395, https://doi.org/10.1175/JCLI-D-15-0183.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schär, C., P. L. Vidale, D. Lüthi, C. Frei, C. Häberli, M. A. Liniger, and C. Appenzeller, 2004: The role of increasing temperature variability in European summer heatwaves. Nature, 427, 332336, https://doi.org/10.1038/nature02300.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schmidt, G. A., and Coauthors, 2006: Present-day atmospheric simulations using GISS Model E: Comparison to in situ, satellite, and reanalysis data. J. Climate, 19, 153192, https://doi.org/10.1175/JCLI3612.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schneider, T., T. Bischoff, and H. Płotka, 2015: Physics of changes in synoptic midlatitude temperature variability. J. Climate, 28, 23122331, https://doi.org/10.1175/JCLI-D-14-00632.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Screen, J. A., 2014: Arctic amplification decreases temperature variance in northern mid- to high-latitudes. Nat. Climate Change, 4, 577582, https://doi.org/10.1038/nclimate2268.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Screen, J. A., C. Deser, I. Simmonds, and R. Tomas, 2014: Atmospheric impacts of Arctic sea-ice loss, 1979–2009: Separating forced change from atmospheric internal variability. Climate Dyn., 43, 333344, https://doi.org/10.1007/s00382-013-1830-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Screen, J. A., C. Deser, and L. Sun, 2015: Reduced risk of North American cold extremes due to continued Arctic sea ice loss. Bull. Amer. Meteor. Soc., 96, 14891503, https://doi.org/10.1175/BAMS-D-14-00185.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Seager, R., N. Naik, and L. Vogel, 2012: Does global warming cause intensified interannual hydroclimate variability? J. Climate, 25, 33553372, https://doi.org/10.1175/JCLI-D-11-00363.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shao, Z.-G., and P. D. Ditlevsen, 2016: Contrasting scaling properties of interglacial and glacial climates. Nat. Commun., 7, 10951, https://doi.org/10.1038/ncomms10951.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sherwood, S., and Q. Fu, 2014: A drier future? Science, 343, 737739, https://doi.org/10.1126/science.1247620.

  • Shi, X., G. Lohmann, D. Sidorenko, and H. Yang, 2020: Early-Holocene simulations using different forcings and resolutions in AWI-ESM. Holocene, 30, 9961015, https://doi.org/10.1177/0959683620908634.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Simmonds, I., and E.-P. Lim, 2009: Biases in the calculation of Southern Hemisphere mean baroclinic eddy growth rate. Geophys. Res. Lett., 36, L01707, https://doi.org/10.1029/2008GL036320.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sloyan, B. M., and T. J. O’Kane, 2015: Drivers of decadal variability in the Tasman Sea. J. Geophys. Res.Oceans, 120, 31933210, https://doi.org/10.1002/2014JC010550.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stevenson, S., B. Fox-Kemper, M. Jochum, R. Neale, C. Deser, and G. Meehl, 2012: Will there be a significant change to El Niño in the twenty-first century? J. Climate, 25, 21292145, https://doi.org/10.1175/JCLI-D-11-00252.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stevenson, S., A. Timmermann, Y. Chikamoto, S. Langford, and P. DiNezio, 2015: Stochastically generated North American megadroughts. J. Climate, 28, 18651880, https://doi.org/10.1175/JCLI-D-13-00689.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stouffer, R. J., and R. T. Wetherald, 2007: Changes of variability in response to increasing greenhouse gases. Part I: Temperature. J. Climate, 20, 54555467, https://doi.org/10.1175/2007JCLI1384.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sun, L., J. Perlwitz, and M. Hoerling, 2016: What caused the recent “warm Arctic, cold continents” trend pattern in winter temperatures? Geophys. Res. Lett., 43, 53455352, https://doi.org/10.1002/2016GL069024.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Taylor, K. E., 2001: Summarizing multiple aspects of model performance in a single diagram. J. Geophys. Res. Atmos., 106, 71837192, https://doi.org/10.1029/2000JD900719.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Taylor, K. E., R. J. Stouffer, and G. A. Meehl, 2012: An overview of CMIP5 and the experiment design. Bull. Amer. Meteor. Soc., 93, 485498, https://doi.org/10.1175/BAMS-D-11-00094.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thompson, D. W. J., E. A. Barnes, C. Deser, W. E. Foust, and A. S. Phillips, 2015: Quantifying the role of internal climate variability in future climate trends. J. Climate, 28, 64436456, https://doi.org/10.1175/JCLI-D-14-00830.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tian, Z., and D. Jiang, 2020: Weakening and eastward shift of the tropical Pacific Walker circulation during the Last Glacial Maximum. Boreas, 49, 200210, https://doi.org/10.1111/bor.12417.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vallis, G. K., 2006: Atmospheric and Oceanic Fluid Dynamics. Cambridge University Press, 964 pp.

  • Voldoire, A., and Coauthors, 2013: The CNRM-CM5.1 global climate model: Description and basic evaluation. Climate Dyn., 40, 20912121, https://doi.org/10.1007/s00382-011-1259-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Volodin, E. M., and Coauthors, 2018: Simulation of the modern climate using the INM-CM48 climate model. Russ. J. Numer. Anal. Math. Modell., 33, 367374, https://doi.org/10.1515/rnam-2018-0032.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Waelbroeck, C., and Coauthors, 2009: Constraints on the magnitude and patterns of ocean cooling at the Last Glacial Maximum. Nat. Geosci., 2, 127132, https://doi.org/10.1038/ngeo411.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wallace, J. M., E. M. Rasmusson, T. P. Mitchell, V. E. Kousky, E. S. Sarachik, and H. von Storch, 1998: On the structure and evolution of ENSO-related climate variability in the tropical Pacific: Lessons from TOGA. J. Geophys. Res. Oceans, 103, 142241142259, https://doi.org/10.1029/97JC02905.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wallace, J. M., C. Deser, B. V. Smoliak, and A. S. Phillips, 2015: Attribution of climate change in the presence of internal variability. Climate Change: Multidecadal and Beyond, 1st. ed., C.-P. Chang et al., Eds., World Scientific, 1–29.

    • Crossref
    • Export Citation
  • Wang, G., 2005: Agricultural drought in a future climate: Results from 15 global climate models participating in the IPCC 4th assessment. Climate Dyn., 25, 739753, https://doi.org/10.1007/s00382-005-0057-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Watanabe, S., and Coauthors, 2011: MIROC-ESM 2010: Model description and basic results of CMIP5-20c3m experiments. Geosci. Model Dev., 4, 845872, https://doi.org/10.5194/gmd-4-845-2011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xiao, W., O. Esper, and R. Gersonde, 2016: Last Glacial–Holocene climate variability in the Atlantic sector of the Southern Ocean. Quat. Sci. Rev., 135, 115137, https://doi.org/10.1016/j.quascirev.2016.01.023.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xie, S.-P., and Coauthors, 2015: Towards predictive understanding of regional climate change. Nat. Climate Change, 5, 921930, https://doi.org/10.1038/nclimate2689.

    • Search Google Scholar
    • Export Citation
  • Yasunari, T., A. Kitoh, and T. Tokioka, 1991: Local and remote responses to excessive snow mass over Eurasia appearing in the northern spring and summer climate: A study with the MRI GCM. J. Meteor. Soc. Japan, 69, 473487, https://doi.org/10.2151/jmsj1965.69.4_473.

    • Search Google Scholar
    • Export Citation
  • Ye, K., R. Wu, and Y. Liu, 2015: Interdecadal change of Eurasian snow, surface temperature, and atmospheric circulation in the late 1980s. J. Geophys. Res. Atmos., 120, 27382753, https://doi.org/10.1002/2015JD023148.

    • Search Google Scholar
    • Export Citation
  • Yukimoto, S., and Coauthors, 2012: A new global climate model of the Meteorological Research Institute: MRI-CGCM3—Model description and basic performance. J. Meteor. Soc. Japan, 90A, 2364, https://doi.org/10.2151/jmsj.2012-A02.

    • Search Google Scholar
    • Export Citation
  • Zhou, B., and P. Zhao, 2009: Inverse correlation between ancient winter and summer monsoons in East Asia? Chin. Sci. Bull., 54, 37603767, https://doi.org/10.1007/s11434-009-0583-7.

    • Search Google Scholar
    • Export Citation
  • Zhou, B., and Y. Xu, 2017: CMIP5 analysis of the interannual variability of the Pacific SST and its association with the Asian–Pacific oscillation. Atmos. Oceanic Sci. Lett., 10, 138145, https://doi.org/10.1080/16742834.2017.1260427.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 371 368 15
Full Text Views 176 175 9
PDF Downloads 222 221 9

Enhanced Interannual Variability in Temperature during the Last Glacial Maximum

Jiawen ShiaInstitute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China
cCollege of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing, China

Search for other papers by Jiawen Shi in
Current site
Google Scholar
PubMed
Close
,
Dabang JiangaInstitute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China
bCollaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, Nanjing University of Information Science and Technology, Nanjing, China
cCollege of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing, China

Search for other papers by Dabang Jiang in
Current site
Google Scholar
PubMed
Close
,
Zhiping TianaInstitute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China

Search for other papers by Zhiping Tian in
Current site
Google Scholar
PubMed
Close
, and
Xianmei LangaInstitute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China
bCollaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, Nanjing University of Information Science and Technology, Nanjing, China

Search for other papers by Xianmei Lang in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Using all relevant climate experiments archived in phases 3 and 4 of the Paleoclimate Modeling Intercomparison Project (PMIP3/4), we examine the interannual variability change in global-scale surface air temperature and associated physical mechanisms during the Last Glacial Maximum (LGM). The results show that relative to the preindustrial period, the LGM interannual temperature variability increased by 20% globally, which was mainly attributed to the large-scale increase in the meridional temperature gradient, especially at midlatitudes. Larger magnitudes of change occurred in areas where the underlying surface properties, such as the surface altitude, land–sea distribution, and ice sheet extent, differed from those in the preindustrial period. In addition, the relationship between changes in the meridional temperature gradient and the interannual temperature variability became closer in the winter hemisphere. In the tropical land regions, changes in interannual temperature variability are mainly related to the adjustment of latent and sensible heat fluxes during the LGM.

© 2022 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Dabang Jiang, jiangdb@mail.iap.ac.cn

Abstract

Using all relevant climate experiments archived in phases 3 and 4 of the Paleoclimate Modeling Intercomparison Project (PMIP3/4), we examine the interannual variability change in global-scale surface air temperature and associated physical mechanisms during the Last Glacial Maximum (LGM). The results show that relative to the preindustrial period, the LGM interannual temperature variability increased by 20% globally, which was mainly attributed to the large-scale increase in the meridional temperature gradient, especially at midlatitudes. Larger magnitudes of change occurred in areas where the underlying surface properties, such as the surface altitude, land–sea distribution, and ice sheet extent, differed from those in the preindustrial period. In addition, the relationship between changes in the meridional temperature gradient and the interannual temperature variability became closer in the winter hemisphere. In the tropical land regions, changes in interannual temperature variability are mainly related to the adjustment of latent and sensible heat fluxes during the LGM.

© 2022 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Dabang Jiang, jiangdb@mail.iap.ac.cn

Supplementary Materials

    • Supplemental Materials (PDF 1.15 MB)
Save