• Ardö, J., 2013: A 10-year dataset of basic meteorology and soil properties in central Sudan. Dataset Pap. Geosci., 2013, 297973, https://doi.org/10.7167/2013/297973.

    • Search Google Scholar
    • Export Citation
  • Armstrong, B., and Coauthors, 2019: The role of humidity in associations of high temperature with mortality: A multicountry, multicity study. Environ. Health Perspect., 127, 097007, https://doi.org/10.1289/EHP5430.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Azongo, D. K., T. Awine, G. Wak, F. N. Binka, and A. Rexford Oduro, 2012: A time series analysis of weather variables and all-cause mortality in the Kasena-Nankana districts of northern Ghana, 1995–2010. Global Health Action, 5, 19073, https://doi.org/10.3402/gha.v5i0.19073.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ban, N., J. Rajczak, J. Schmidli, and C. Schär, 2020: Analysis of Alpine precipitation extremes using generalized extreme value theory in convection-resolving climate simulations. Climate Dyn., 55, 6175, https://doi.org/10.1007/s00382-018-4339-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Barbier, J., F. Guichard, D. Bouniol, F. Couvreux, and R. Roehrig, 2018: Detection of intraseasonal large-scale heat waves: Characteristics and historical trends during the Sahelian spring. J. Climate, 31, 6180, https://doi.org/10.1175/JCLI-D-17-0244.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Berthou, S., E. J. Kendon, D. P. Rowell, M. J. Roberts, S. Tucker, and R. A. Stratton, 2019a: Larger future intensification of rainfall in the West African Sahel in a convection-permitting model. Geophys. Res. Lett., 46, 13 29913 307, https://doi.org/10.1029/2019GL083544.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Berthou, S., D. P. Rowell, E. J. Kendon, M. J. Roberts, R. A. Stratton, J. A. Crook, and C. Wilcox, 2019b: Improved climatological precipitation characteristics over West Africa at convection-permitting scales. Climate Dyn., 53, 19912011, https://doi.org/10.1007/s00382-019-04759-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Birch, C. E., J. H. Marsham, D. J. Parker, and C. M. Taylor, 2014a: The scale dependence and structure of convergence fields preceding the initiation of deep convection. Geophys. Res. Lett., 41, 47694776, https://doi.org/10.1002/2014GL060493.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Birch, C. E., D. J. Parker, J. H. Marsham, D. Copsey, and L. Garcia-Carreras, 2014b: A seamless assessment of the role of convection in the water cycle of the West African monsoon. J. Geophys. Res., 119, 28902912, https://doi.org/10.1002/2013JD020887.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bouniol, D., F. Guichard, J. Barbier, F. Couvreux, and R. Roehrig, 2021: Sahelian heat wave characterization from observational data sets. J. Geophys. Res. Atmos., 126, e2020JD034465, https://doi.org/10.1029/2020JD034465.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Buzan, J. R., K. Oleson, and M. Huber, 2015: Implementation and comparison of a suite of heat stress metrics within the Community Land Model version 4.5. Geosci. Model Dev., 8, 151170, https://doi.org/10.5194/gmd-8-151-2015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ceccherini, G., S. Russo, I. Ameztoy, A. F. Marchese, and C. Carmona-Moreno, 2017: Heat waves in Africa 1981–2015, observations and reanalysis. Nat. Hazards Earth Syst. Sci., 17, 115125, https://doi.org/10.5194/nhess-17-115-2017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chan, S. C., E. J. Kendon, N. M. Roberts, H. J. Fowler, and S. Blenkinsop, 2016: Downturn in scaling of UK extreme rainfall with temperature for future hottest days. Nat. Geosci., 9, 2428, https://doi.org/10.1038/ngeo2596.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Coffel, E. D., R. M. Horton, and A. de Sherbinin, 2017: Temperature and humidity based projections of a rapid rise in global heat stress exposure during the 21st century. Environ. Res. Lett., 13, 014001, https://doi.org/10.1088/1748-9326/aaa00e.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Couvreux, F., and Coauthors, 2015: Representation of daytime moist convection over the semi-arid tropics by parametrizations used in climate and meteorological models. Quart. J. Roy. Meteor. Soc., 141, 22202236, https://doi.org/10.1002/qj.2517.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Crook, J., C. Klein, S. Folwell, C. M. Taylor, D. J. Parker, R. Stratton, and T. Stein, 2019: Assessment of the representation of West African storm lifecycles in convection-permitting simulations. Earth Space Sci., 6, 818835, https://doi.org/10.1029/2018EA000491.

    • Search Google Scholar
    • Export Citation
  • Davies-Jones, R., 2008: An efficient and accurate method for computing the wet-bulb temperature along pseudoadiabats. Mon. Wea. Rev., 136, 27642785, https://doi.org/10.1175/2007MWR2224.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Diboulo, E., A. Sié, J. Rocklöv, L. Niamba, M. , C. Bagagnan, and R. Sauerborn, 2012: Weather and mortality: A 10 year retrospective analysis of the Nouna Health and Demographic Surveillance System, Burkina Faso. Global Health Action, 5, 19078, https://doi.org/10.3402/gha.v5i0.19078.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dosio, A., 2017: Projection of temperature and heat waves for Africa with an ensemble of CORDEX regional climate models. Climate Dyn., 49, 493519, https://doi.org/10.1007/s00382-016-3355-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dosio, A., L. Mentaschi, E. M. Fischer, and K. Wyser, 2018: Extreme heat waves under 1.5°C and 2°C global warming. Environ. Res. Lett., 13, 054006, https://doi.org/10.1088/1748-9326/aab827.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Eyring, V., S. Bony, G. A. Meehl, C. A. Senior, B. Stevens, R. J. Stouffer, and K. E. Taylor, 2016: Overview of the Coupled Model Intercomparison Project phase 6 (CMIP6) experimental design and organization. Geosci. Model Dev., 9, 19371958, https://doi.org/10.5194/gmd-9-1937-2016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fiedler, S., and Coauthors, 2020: Simulated tropical precipitation assessed across three major phases of the Coupled Model Intercomparison Project (CMIP). Mon. Wea. Rev., 148, 36533680, https://doi.org/10.1175/MWR-D-19-0404.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Finney, D. L., and Coauthors, 2019: Implications of improved representation of convection for the East Africa water budget using a convection-permitting model. J. Climate, 32, 21092129, https://doi.org/10.1175/JCLI-D-18-0387.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Finney, D. L., J. H. Marsham, D. P. Rowell, E. J. Kendon, S. O. Tucker, R. A. Stratton, and L. S. Jackson, 2020: Effects of explicit convection on future projections of mesoscale circulations, rainfall, and rainfall extremes over eastern Africa. J. Climate, 33, 27012718, https://doi.org/10.1175/JCLI-D-19-0328.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fischer, E. M., and R. Knutti, 2013: Robust projections of combined humidity and temperature extremes. Nat. Climate Change, 3, 126130, https://doi.org/10.1038/nclimate1682.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fitzpatrick, R. G. J., and Coauthors, 2020a: How a typical West African day in the future-climate compares with current-climate conditions in a convection-permitting and parameterised convection climate model. Climatic Change, 163, 267296, https://doi.org/10.1007/s10584-020-02881-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fitzpatrick, R. G. J., and Coauthors, 2020b: What drives the intensification of mesoscale convective systems over the West African Sahel under climate change? J. Climate, 33, 31513172, https://doi.org/10.1175/JCLI-D-19-0380.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fontaine, B., S. Janicot, and P.-A. Monerie, 2013: Recent changes in air temperature, heat waves occurrences, and atmospheric circulation in northern Africa. J. Geophys. Res., 118, 85368552, https://doi.org/10.1002/jgrd.50667.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gregory, D., and P. R. Rowntree, 1990: A mass flux convection scheme with representation of cloud ensemble characteristics and stability-dependent closure. Mon. Wea. Rev., 118, 14831506, https://doi.org/10.1175/1520-0493(1990)118<1483:AMFCSW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Guigma, K. H., M. Todd, and Y. Wang, 2020: Characteristics and thermodynamics of Sahelian heatwaves analysed using various thermal indices. Climate Dyn., 55, 31513175, https://doi.org/10.1007/s00382-020-05438-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Guigma, K. H., F. Guichard, M. Todd, P. Peyrille, and Y. Wang, 2021: Atmospheric tropical modes are important drivers of Sahelian springtime heatwaves. Climate Dyn., 56, 19671987, https://doi.org/10.1007/s00382-020-05569-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gutowski, W. J., Jr., and Coauthors, 2016: WCRP coordinated regional downscaling experiment (CORDEX): A diagnostic MIP for CMIP6. Geosci. Model Dev., 9, 40874095, https://doi.org/10.5194/gmd-9-4087-2016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Harrington, L. J., and F. E. L. Otto, 2020: Reconciling theory with the reality of African heatwaves. Nat. Climate Change, 10, 796798, https://doi.org/10.1038/s41558-020-0851-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Harris, I., T. J. Osborn, P. Jones, and D. Lister, 2020: Version 4 of the CRU TS monthly high-resolution gridded multivariate climate dataset. Sci. Data, 7, 109, https://doi.org/10.1038/s41597-020-0453-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hart, N. C. G., R. Washington, and R. A. Stratton, 2018: Stronger local overturning in convective-permitting regional climate model improves simulation of the subtropical annual cycle. Geophys. Res. Lett., 45, 11 33411 342, https://doi.org/10.1029/2018GL079563.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hersbach, H., and Coauthors, 2020: The ERA5 global reanalysis. Quart. J. Roy. Meteor. Soc., 146, 19992049, https://doi.org/10.1002/qj.3803.

  • Hong, J.-S., S.-W. Yeh, and K.-H. Seo, 2018: Diagnosing physical mechanisms leading to pure heat waves versus pure tropical nights over the Korean Peninsula. J. Geophys. Res. Atmos., 123, 71497160, https://doi.org/10.1029/2018JD028360.

    • Search Google Scholar
    • Export Citation
  • Huffman, G., D. Bolvin, D. Braithwaite, K. Hsu, R. Joyce, and P. Xie, 2014: Integrated Multi-satellitE Retrievals for GPM (IMERG), version 6, NASA’s Precipitation Processing Center, accessed 23 June 2020, ftp://arthurhou.pps.eosdis.nasa.gov/gpmdata/.

    • Search Google Scholar
    • Export Citation
  • Im, E.-S., J. S. Pal, and E. A. B. Eltahir, 2017: Deadly heat waves projected in the densely populated agricultural regions of South Asia. Sci. Adv., 3, e1603322, https://doi.org/10.1126/sciadv.1603322.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jackson, L. S., and Coauthors, 2020: The effect of explicit convection on couplings between rainfall, humidity, and ascent over Africa under climate change. J. Climate, 33, 83158337, https://doi.org/10.1175/JCLI-D-19-0322.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kendon, E. J., N. M. Roberts, H. J. Fowler, M. J. Roberts, S. C. Chan, and C. A. Senior, 2014: Heavier summer downpours with climate change revealed by weather forecast resolution model. Nat. Climate Change, 4, 570576, https://doi.org/10.1038/nclimate2258.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kendon, E. J., R. A. Stratton, S. Tucker, J. H. Marsham, S. Berthou, D. P. Rowell, and C. A. Senior, 2019: Enhanced future changes in wet and dry extremes over Africa at convection-permitting scale. Nat. Commun., 10, 1794, https://doi.org/10.1038/s41467-019-09776-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kendon, E. J., A. F. Prein, C. A. Senior, and A. Stirling, 2021: Challenges and outlook for convection-permitting climate modelling. Philos. Trans. Roy. Soc., 379A, 20190547, https://doi.org/10.1098/rsta.2019.0547.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kennedy-Asser, A. T., O. Andrews, D. M. Mitchell, and R. F. Warren, 2020: Evaluating heat extremes in the UK Climate Projections (UKCP18). Environ. Res. Lett., 16, 014039, https://doi.org/10.1088/1748-9326/abc4ad.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kjellstrom, T., D. Briggs, C. Freyberg, B. Lemke, M. Otto, and O. Hyatt, 2016: Heat, Human performance, and occupational health: A key issue for the assessment of global climate change impacts. Ann. Rev. Pub. Health, 37, 97112, https://doi.org/10.1146/annurev-publhealth-032315-021740.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Largeron, Y., F. Guichard, R. Roehrig, F. Couvreux, and J. Barbier, 2020: The April 2010 North African heatwave: When the water vapor greenhouse effect drives nighttime temperatures. Climate Dyn., 54, 38793905, https://doi.org/10.1007/s00382-020-05204-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lebel, T., and Coauthors, 2009: AMMA-CATCH studies in the Sahelian region of West-Africa: An overview. J. Hydrol., 375, 313, https://doi.org/10.1016/j.jhydrol.2009.03.020.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liao, Z., Y. Chen, W. Li, and P. Zhai, 2021: Growing threats from unprecedented sequential flood-hot extremes across China. Geophys. Res. Lett., 48, e2021GL094505, https://doi.org/10.1029/2021GL094505.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lyon, B., 2009: Southern Africa summer drought and heat waves: Observations and coupled model behavior. J. Climate, 22, 60336046, https://doi.org/10.1175/2009JCLI3101.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mora, C., and Coauthors, 2017: Global risk of deadly heat. Nat. Climate Change, 7, 501506, https://doi.org/10.1038/nclimate3322.

  • Moron, V., B. Oueslati, B. Pohl, S. Rome, and S. Janicot, 2016: Trends of mean temperatures and warm extremes in northern tropical Africa (1961–2014) from observed and PPCA-reconstructed time series. J. Geophys. Res., 121, 52985319, https://doi.org/10.1002/2015JD024303.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Moss, R. H., and Coauthors, 2010: The next generation of scenarios for climate change research and assessment. Nature, 463, 747756, https://doi.org/10.1038/nature08823.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Oueslati, B., B. Pohl, V. Moron, S. Rome, and S. Janicot, 2017: Characterization of heat waves in the Sahel and associated physical mechanisms. J. Climate, 30, 30953115, https://doi.org/10.1175/JCLI-D-16-0432.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pal, J. S., and E. A. B. Eltahir, 2016: Future temperature in southwest Asia projected to exceed a threshold for human adaptability. Nat. Climate Change, 6, 197200, https://doi.org/10.1038/nclimate2833.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pastorello, G., and Coauthors, 2020: The FLUXNET2015 dataset and the ONEFlux processing pipeline for eddy covariance data. Sci. Data, 7, 225, https://doi.org/10.1038/s41597-020-0534-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Perkins-Kirkpatrick, S. E., and S. C. Lewis, 2020: Increasing trends in regional heatwaves. Nat. Commun., 11, 3357, https://doi.org/10.1038/s41467-020-16970-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Prein, A. F., and Coauthors, 2015: A review on regional convection-permitting climate modeling: Demonstrations, prospects, and challenges. Rev. Geophys., 53, 323361, https://doi.org/10.1002/2014RG000475.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Raghavendra, A., A. Dai, S. M. Milrad, and S. R. Cloutier-Bisbee, 2019: Floridian heatwaves and extreme precipitation: Future climate projections. Climate Dyn., 52, 495508, https://doi.org/10.1007/s00382-018-4148-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Raymond, C., and Coauthors, 2021: On the controlling factors for globally extreme humid heat. Geophys. Res. Lett., 48, e2021GL096082, https://doi.org/10.1029/2021GL096082.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reynolds, R. W., T. M. Smith, C. Liu, D. B. Chelton, K. S. Casey, and M. G. Schlax, 2007: Daily high-resolution-blended analyses for sea surface temperature. J. Climate, 20, 54735496, https://doi.org/10.1175/2007JCLI1824.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rohde, R. A., and Z. Hausfather, 2020: The Berkeley Earth Land/Ocean temperature record. Earth Syst. Sci. Data, 12, 34693479, https://doi.org/10.5194/essd-12-3469-2020.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Russo, S., J. Sillmann, and E. M. Fischer, 2015: Top ten European heatwaves since 1950 and their occurrence in the coming decades. Environ. Res. Lett., 10, 124003, https://doi.org/10.1088/1748-9326/10/12/124003.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Russo, S., A. F. Marchese, J. Sillmann, and G. Immé, 2016: When will unusual heat waves become normal in a warming Africa? Environ. Res. Lett., 11, 054016, https://doi.org/10.1088/1748-9326/11/5/054016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Russo, S., J. Sillmann, and A. Sterl, 2017: Humid heat waves at different warming levels. Sci. Rep., 7, 7477, https://doi.org/10.1038/s41598-017-07536-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Seneviratne, S. I., and Coauthors, 2021: Weather and climate extreme events in a changing climate. Climate Change 2021: The Physical Science Basis, V. Masson-Delmotte et al., Eds., Cambridge University Press, 15131766, https://doi.org/10.1017/9781009157896.013.

    • Search Google Scholar
    • Export Citation
  • Senior, C. A., 2019a: P25-Present: Present-day 25km regional pan-Africa data. Centre for Environmental Data Analysis, accessed November 2019, https://catalogue.ceda.ac.uk/uuid/4e362effa16146abbe45c2c58f1e54ed.

    • Search Google Scholar
    • Export Citation
  • Senior, C. A., 2019b: CP4A-Present: Present-day climate predictions for Africa, Centre for Environmental Data Analysis, accessed November 2019, https://catalogue.ceda.ac.uk/uuid/f46b14e670fc49cbaadf108c969e7ee0.

    • Search Google Scholar
    • Export Citation
  • Senior, C. A., 2019c: P25-Future: Future 25km regional pan-Africa data. Centre for Environmental Data Analysis, accessed November 2019, https://catalogue.ceda.ac.uk/uuid/8f8eab18b07e420a9b7230d86ed172fe.

    • Search Google Scholar
    • Export Citation
  • Senior, C. A., 2019d: CP4A-Future: Future climate predictions for Africa. Centre for Environmental Data Analysis, accessed November 2019, https://catalogue.ceda.ac.uk/uuid/a027093520b2432b8e782e3edefd6b47.

    • Search Google Scholar
    • Export Citation
  • Senior, C. A., and Coauthors, 2021: Convection permitting regional climate change simulations for understanding future climate and informing decision making in Africa. Bull. Amer. Meteor. Soc., 102, E1206E1223, https://doi.org/10.1175/BAMS-D-20-0020.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sherwood, S. C., 2018: How important is humidity in heat stress? J. Geophys. Res., 123, 11 80811 810, https://doi.org/10.1029/2018JD028969.

  • Sherwood, S. C., and M. Huber, 2010: An adaptability limit to climate change due to heat stress. Proc. Natl. Acad. Sci. USA, 107, 95529555, https://doi.org/10.1073/pnas.0913352107.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stratton, R. A., and Coauthors, 2018: A pan-African convection-permitting regional climate simulation with the Met Office Unified Model: CP4-Africa. J. Climate, 31, 34853508, https://doi.org/10.1175/JCLI-D-17-0503.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Taylor, C. M., C. E. Birch, D. J. Parker, N. Dixon, F. Guichard, G. Nikulin, and G. M. S. Lister, 2013: Modeling soil moisture–precipitation feedback in the Sahel: Importance of spatial scale versus convective parameterization. Geophys. Res. Lett., 40, 62136218, https://doi.org/10.1002/2013GL058511.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Taylor, K. E., R. J. Stouffer, and G. A. Meehl, 2012: An overview of CMIP5 and the experiment design. Bull. Amer. Meteor. Soc., 93, 485498, https://doi.org/10.1175/BAMS-D-11-00094.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tölle, M. H., L. Schefczyk, and O. Gutjahr, 2018: Scale dependency of regional climate modeling of current and future climate extremes in Germany. Theor. Appl. Climatol., 134, 829848, https://doi.org/10.1007/s00704-017-2303-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vicedo-Cabrera, A. M., and Coauthors, 2021: The burden of heat-related mortality attributable to recent human-induced climate change. Nat. Climate Change, 11, 492500, https://doi.org/10.1038/s41558-021-01058-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Walters, D., and Coauthors, 2017: The Met Office Unified Model global atmosphere 6.0/6.1 and JULES global land 6.0/6.1 configurations. Geosci. Model Dev., 10, 14871520, https://doi.org/10.5194/gmd-10-1487-2017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • You, J., and S. Wang, 2021: Higher probability of occurrence of hotter and shorter heat waves followed by heavy rainfall. Geophys. Res. Lett., 48, e2021GL094831, https://doi.org/10.1029/2021GL094831.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, W., and G. Villarini, 2020: Deadly compound heat stress-flooding hazard across the central United States, Geophys. Res. Lett., 47, e2020GL089185, https://doi.org/10.1029/2020GL089185.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhao, Y., A. Ducharne, B. Sultan, P. Braconnot, and R. Vautard, 2015: Estimating heat stress from climate-based indicators: Present-day biases and future spreads in the CMIP5 global climate model ensemble. Environ. Res. Lett., 10, 084013, https://doi.org/10.1088/1748-9326/10/8/084013.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 799 730 44
Full Text Views 288 281 21
PDF Downloads 344 334 17

Future Changes in African Heatwaves and Their Drivers at the Convective Scale

C. E. BirchaSchool of Earth and Environment, University of Leeds, Leeds, United Kingdom

Search for other papers by C. E. Birch in
Current site
Google Scholar
PubMed
Close
,
L. S. JacksonaSchool of Earth and Environment, University of Leeds, Leeds, United Kingdom

Search for other papers by L. S. Jackson in
Current site
Google Scholar
PubMed
Close
,
D. L. FinneyaSchool of Earth and Environment, University of Leeds, Leeds, United Kingdom
bRonin Institute for Independent Scholarship, Montclair, New Jersey

Search for other papers by D. L. Finney in
Current site
Google Scholar
PubMed
Close
,
J. M. MarshamcUniversity of Leeds Met Office Strategic (LUMOS) Research Group, School of Earth and Environment, University of Leeds, Leeds, United Kingdom

Search for other papers by J. M. Marsham in
Current site
Google Scholar
PubMed
Close
,
R. A. StrattondMet Office, Exeter, United Kingdom

Search for other papers by R. A. Stratton in
Current site
Google Scholar
PubMed
Close
,
S. TuckerdMet Office, Exeter, United Kingdom

Search for other papers by S. Tucker in
Current site
Google Scholar
PubMed
Close
,
S. ChapmanaSchool of Earth and Environment, University of Leeds, Leeds, United Kingdom

Search for other papers by S. Chapman in
Current site
Google Scholar
PubMed
Close
,
C. A. SeniordMet Office, Exeter, United Kingdom

Search for other papers by C. A. Senior in
Current site
Google Scholar
PubMed
Close
,
R. J. KeaneaSchool of Earth and Environment, University of Leeds, Leeds, United Kingdom
dMet Office, Exeter, United Kingdom

Search for other papers by R. J. Keane in
Current site
Google Scholar
PubMed
Close
,
F. GuichardeCNRM, Université de Toulouse, Météo-France, CNRS, Toulouse, France

Search for other papers by F. Guichard in
Current site
Google Scholar
PubMed
Close
, and
E. J. KendondMet Office, Exeter, United Kingdom

Search for other papers by E. J. Kendon in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The future change in dry and humid heatwaves is assessed in 10-yr pan-African convective-scale (4.5 km) and parameterized convection (25 km) climate model simulations. Compared to reanalysis, the convective-scale simulation is better able to represent humid heatwaves than the parameterized simulation. Model performance for dry heatwaves is much more similar. Both model configurations simulate large increases in the intensity, duration, and frequency of heatwaves by 2100 under RCP8.5. Present-day conditions that occur on 3–6 heatwave days per year will be normal by 2100, occurring on 150–180 days per year. The future change in dry heatwaves is similar in both climate model configurations, whereas the future change in humid heatwaves is 56% higher in intensity and 20% higher in frequency in the convective-scale model. Dry heatwaves are associated with low rainfall, reduced cloud, increased surface shortwave heating, and increased sensible heat flux. In contrast, humid heatwaves are predominately controlled by increased humidity, rainfall, cloud, longwave heating, and evaporation, with dry-bulb temperature gaining more significance in the most humid regions. Approximately one-third (32%) of humid heatwaves commence on wet days. Moist processes are known to be better represented in convective-scale models. Climate models with parameterized convection, such as those in CMIP, may underestimate the future change in humid heatwaves, which heightens the need for mitigation and adaptation strategies and indicates there may be less time available to implement them to avoid future catastrophic heat stress conditions than previously thought.

Significance Statement

Temperatures are higher in dry heatwaves, but humid heatwaves can be more dangerous, as the ability to cool by sweating is limited. We found that dry heatwaves are caused by decreased cloud, allowing the sun to heat the surface, whereas humid heatwaves are caused by increased cloud, rainfall, and evaporation from the surface. We found that a state-of-the-art very high-resolution climate model predicts a larger future change in humid heatwaves compared to a more traditional global climate model. Previous estimates of the prevalence of humid heatwaves in the future may therefore be underestimated. If we do not cut emissions of greenhouse gases, present-day African heatwave conditions could be experienced on up to half of all days of the year by 2100.

© 2022 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Author Guichard is deceased.

Corresponding author: Cathryn Birch, c.e.birch@leeds.ac.uk

Abstract

The future change in dry and humid heatwaves is assessed in 10-yr pan-African convective-scale (4.5 km) and parameterized convection (25 km) climate model simulations. Compared to reanalysis, the convective-scale simulation is better able to represent humid heatwaves than the parameterized simulation. Model performance for dry heatwaves is much more similar. Both model configurations simulate large increases in the intensity, duration, and frequency of heatwaves by 2100 under RCP8.5. Present-day conditions that occur on 3–6 heatwave days per year will be normal by 2100, occurring on 150–180 days per year. The future change in dry heatwaves is similar in both climate model configurations, whereas the future change in humid heatwaves is 56% higher in intensity and 20% higher in frequency in the convective-scale model. Dry heatwaves are associated with low rainfall, reduced cloud, increased surface shortwave heating, and increased sensible heat flux. In contrast, humid heatwaves are predominately controlled by increased humidity, rainfall, cloud, longwave heating, and evaporation, with dry-bulb temperature gaining more significance in the most humid regions. Approximately one-third (32%) of humid heatwaves commence on wet days. Moist processes are known to be better represented in convective-scale models. Climate models with parameterized convection, such as those in CMIP, may underestimate the future change in humid heatwaves, which heightens the need for mitigation and adaptation strategies and indicates there may be less time available to implement them to avoid future catastrophic heat stress conditions than previously thought.

Significance Statement

Temperatures are higher in dry heatwaves, but humid heatwaves can be more dangerous, as the ability to cool by sweating is limited. We found that dry heatwaves are caused by decreased cloud, allowing the sun to heat the surface, whereas humid heatwaves are caused by increased cloud, rainfall, and evaporation from the surface. We found that a state-of-the-art very high-resolution climate model predicts a larger future change in humid heatwaves compared to a more traditional global climate model. Previous estimates of the prevalence of humid heatwaves in the future may therefore be underestimated. If we do not cut emissions of greenhouse gases, present-day African heatwave conditions could be experienced on up to half of all days of the year by 2100.

© 2022 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Author Guichard is deceased.

Corresponding author: Cathryn Birch, c.e.birch@leeds.ac.uk

Supplementary Materials

    • Supplemental Materials (PDF 901 KB)
Save