• Adames, A. F., D. Kim, A. H. Sobel, A. Del Genio, and J. Wu, 2017: Changes in the structure and propagation of the MJO with increasing CO2. J. Adv. Model. Earth Syst., 9, 12511268, https://doi.org/10.1002/2017MS000913.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Andersen, J. A., and Z. Kuang, 2012: Moist static energy budget of MJO-like disturbances in the atmosphere of a zonally symmetric aquaplanet. J. Climate, 25, 27822804, https://doi.org/10.1175/JCLI-D-11-00168.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Arnold, N. P., M. Branson, Z. Kuang, D. A. Randall, and E. Tziperman, 2015: MJO intensification with warming in the superparameterized CESM. J. Climate, 28, 27062724, https://doi.org/10.1175/JCLI-D-14-00494.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bosilovich, M. G., J. Chen, F. R. Robertson, and R. F. Adler, 2008: Evaluation of precipitation in reanalyses. J. Appl. Meteor. Climatol., 47, 22792299, https://doi.org/10.1175/2008JAMC1921.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bretherton, C. S., C. Smith, and J. M. Wallace, 1992: An intercomparison of methods for finding coupled patterns in climate data. J. Climate, 5, 541560, https://doi.org/10.1175/1520-0442(1992)005<0541:AIOMFF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bui, H. X., and E. D. Maloney, 2018: Changes in Madden–Julian oscillation precipitation and wind variance under global warming. Geophys. Res. Lett., 45, 71487155, https://doi.org/10.1029/2018GL078504.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bui, H. X., and E. D. Maloney, 2019: Mechanisms for global warming impacts on Madden–Julian oscillation precipitation amplitude. J. Climate, 32, 69616975, https://doi.org/10.1175/JCLI-D-19-0051.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bui, H. X., and E. D. Maloney, 2020: Changes to the Madden–Julian oscillation in coupled and uncoupled aquaplanet simulations with 4xCO2. J. Adv. Model. Earth Syst., 12, e2020MS002179, https://doi.org/10.1029/2020MS002179.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cao, J., and Coauthors, 2015: Major modes of short-term climate variability in the newly developed NUIST Earth System Model (NESM). Adv. Atmos. Sci., 32, 585600, https://doi.org/10.1007/s00376-014-4200-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Carvalho, L. M., C. Jones, and B. Liebmann, 2004: The South Atlantic convergence zone: Intensity, form, persistence, and relationships with intraseasonal to interannual activity and extreme rainfall. J. Climate, 17, 88108, https://doi.org/10.1175/1520-0442(2004)017<0088:TSACZI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cassou, C., 2008: Intraseasonal interaction between the Madden–Julian oscillation and the North Atlantic Oscillation. Nature, 455, 523527, https://doi.org/10.1038/nature07286.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, X., J. Ling, and C. Li, 2016: Evolution of the Madden–Julian oscillation in two types of El Niño. J. Climate, 29, 19191934, https://doi.org/10.1175/JCLI-D-15-0486.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Compo, G. P., and Coauthors, 2011: The Twentieth Century Reanalysis Project. Quart. J. Roy. Meteor. Soc., 137, 128, https://doi.org/10.1002/qj.776.

  • Cui, J., L. Wang, T. Li, and B. Wu, 2020: Can reanalysis products with only surface variables assimilated capture Madden–Julian oscillation characteristics? Int. J. Climatol., 40, 12791293, https://doi.org/10.1002/joc.6270.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dasgupta, P., A. Metya, C. V. Naidu, M. Singh, and M. K. Roxy, 2020: Exploring the long-term changes in the Madden Julian Oscillation using machine learning. Sci. Rep., 10, 18567, https://doi.org/10.1038/s41598-020-75508-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ding, H., N. S. Keenlyside, and M. Latif, 2012: Impact of the equatorial Atlantic on the El Niño Southern Oscillation. Climate Dyn., 38, 19651972, https://doi.org/10.1007/s00382-011-1097-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dong, B., and R. T. Sutton, 2007: Enhancement of ENSO variability by a weakened Atlantic thermohaline circulation in a coupled GCM. J. Climate, 20, 49204939, https://doi.org/10.1175/JCLI4284.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dong, B., R. T. Sutton, and A. A. Scaife, 2006: Multidecadal modulation of El Niño–Southern Oscillation (ENSO) variance by Atlantic Ocean sea surface temperatures. Geophys. Res. Lett., 33, L08705, https://doi.org/10.1029/2006GL025766.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Duchon, C. E., 1979: Lanczos filtering in one and two dimensions. J. Appl. Meteor., 18, 10161022, https://doi.org/10.1175/1520-0450(1979)018<1016:LFIOAT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Eyring, V., S. Bony, G. A. Meehl, C. Senior, B. Stevens, R. J. Stouffer, and K. E. Taylor, 2016: Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organisation. Geosci. Model Dev., 9, 19371958, https://doi.org/10.5194/gmd-9-1937-2016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Feng, S., and Q. Hu, 2008: How the North Atlantic Multidecadal Oscillation may have influenced the Indian summer monsoon during the past two millennia. Geophys. Res. Lett., 35, L01707, https://doi.org/10.1029/2007GL032484.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Frauen, C., and D. Dommenget, 2012: Influences of the tropical Indian and Atlantic Oceans on the predictability of ENSO. Geophys. Res. Lett., 39, L02706, https://doi.org/10.1029/2011GL050520.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fu, Z., P.-C. Hsu, and F. Liu, 2020: Factors regulating the multidecadal changes in MJO amplitude over the twentieth century. J. Climate, 33, 95139529, https://doi.org/10.1175/JCLI-D-20-0111.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hendon, H. H., C. Zhang, and J. D. Glick, 1999: Interannual variation of the Madden–Julian oscillation during austral summer. J. Climate, 12, 25382550, https://doi.org/10.1175/1520-0442(1999)012<2538:IVOTMJ>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hendon, H. H., M. C. Wheeler, and C. Zhang, 2007: Seasonal dependence of the MJO–ENSO relationship. J. Climate, 20, 531543, https://doi.org/10.1175/JCLI4003.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hersbach, H., and Coauthors, 2020: The ERA5 global reanalysis. Quart. J. Roy. Meteor. Soc., 146, 19992049, https://doi.org/10.1002/qj.3803.

  • Hong, S., I.-S. Kang, I. Choi, and Y.-G. Ham, 2013: Climate responses in the tropical Pacific associated with Atlantic warming in recent decades. Asia-Pac. J. Atmos. Sci., 49, 209217, https://doi.org/10.1007/s13143-013-0022-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hsu, P.-C., and T. Xiao, 2017: Differences in the initiation and development of the Madden–Julian oscillation over the Indian Ocean associated with two types of El Niño. J. Climate, 30, 13971415, https://doi.org/10.1175/JCLI-D-16-0336.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hsu, P.-C., J.-Y. Lee, and K.-J. Ha, 2016: Influence of boreal summer intraseasonal oscillation on rainfall extremes in southern China. Int. J. Climatol., 36, 14031412, https://doi.org/10.1002/joc.4433.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hsu, P.-C., J.-Y. Lee, K.-J. Ha, and C.-H. Tsou, 2017: Influences of boreal summer intraseasonal oscillation on heat waves in monsoon Asia. J. Climate, 30, 71917211, https://doi.org/10.1175/JCLI-D-16-0505.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hsu, P.-C., Z. Fu, H. Murakami, J. Y. Lee, C. Yoo, N. C. Johnson, C. H. Chang, and Y. Liu, 2021: East Antarctic cooling induced by decadal changes in Madden–Julian oscillation during austral summer. Sci. Adv., 7, eabf9903, https://doi.org/10.1126/sciadv.abf9903.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huang, B., and Coauthors, 2017: Extended Reconstructed Sea Surface Temperature, version 5 (ERSSTv5): Upgrades, validations, and intercomparisons. J. Climate, 30, 81798205, https://doi.org/10.1175/JCLI-D-16-0836.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hunke, E. C., W. H. Lipscomb, A. K. Turner, N. Jeffery, and S. Elliott, 2010: CICE: The Los Alamos Sea ice model documentation and software user’s manual version 4.1. LA-CC-06-012, Los Alamos National Laboratory, 76 pp., https://csdms.colorado.edu/w/images/CICE_documentation_and_software_user%27s_manual.pdf.

    • Search Google Scholar
    • Export Citation
  • Jiang, X., and Coauthors, 2015: Vertical structure and physical processes of the Madden–Julian oscillation: Exploring key model physics in climate simulations. J. Geophys. Res. Atmos., 120, 47184748, https://doi.org/10.1002/2014JD022375.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jiang, Z., S. B. Feldstein, and S. Lee, 2017: The relationship between the Madden–Julian Oscillation and the North Atlantic Oscillation. Quart. J. Roy. Meteor. Soc., 143, 240250, https://doi.org/10.1002/qj.2917.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jones, C., and L. M. V. Carvalho, 2006: Changes in the activity of the Madden–Julian oscillation during 1958–2004. J. Climate, 19, 63536370, https://doi.org/10.1175/JCLI3972.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kanamitsu, M., W. Ebisuzaki, J. Woollen, S.-K. Yang, J. J. Hnilo, M. Fiorino, and G. L. Potter, 2002: NCEP–DOE AMIP-II Reanalysis (R-2). Bull. Amer. Meteor. Soc., 83, 16311644, https://doi.org/10.1175/BAMS-83-11-1631.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kang, I.-S., H. No, and F. Kucharski, 2014: ENSO amplitude modulation associated with the mean SST changes in the tropical central Pacific induced by Atlantic multidecadal oscillation. J. Climate, 27, 79117920, https://doi.org/10.1175/JCLI-D-14-00018.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kerr, R. A., 2000: A North Atlantic climate pacemaker for the centuries. Science, 288, 19841985, https://doi.org/10.1126/science.288.5473.1984.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kessler, W. S., 2001: EOF representation of the Madden–Julian oscillation and its connection with ENSO. J. Climate, 14, 30553061, https://doi.org/10.1175/1520-0442(2001)014<3055:EROTMJ>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kim, H., M. A. Janiga, and K. Pegion, 2019: MJO propagation processes and mean biases in the SubX and S2S reforecasts. J. Geophys. Res. Atmos., 124, 93149331, https://doi.org/10.1029/2019JD031139.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kiranmayi, L., and E. D. Maloney, 2011: Intraseasonal moist static energy budget in reanalysis data. J. Geophys. Res., 116, D21117, https://doi.org/10.1029/2011JD016031.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Klingaman, N. P., X. Jiang, P. K. Xavier, J. Petch, D. Waliser, and S. J. Woolnough, 2015: Vertical structure and physical processes of the Madden–Julian oscillation: Synthesis and summary. J. Geophys. Res. Atmos., 120, 46714689, https://doi.org/10.1002/2015JD023196.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Knight, J. R., C. K. Folland, and A. A. Scaife, 2006: Climate impacts of the Atlantic Multidecadal Oscillation. Geophys. Res. Lett., 33, L17706, https://doi.org/10.1029/2006GL026242.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kucharski, F., I.-S. Kang, R. Farneti, and L. Feudale, 2011: Tropical Pacific response to 20th century Atlantic warming. Geophys. Res. Lett., 38, L03702, https://doi.org/10.1029/2010GL046248.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kucharski, F., and Coauthors, 2015: Atlantic forcing of Pacific decadal variability. Climate Dyn., 46, 23372351, https://doi.org/10.1007/s00382-015-2705-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Larson, J., R. Jacob, and E. Ong, 2005: The model coupling toolkit: A new Fortran90 toolkit for building multiphysics parallel coupled models. Int. J. High Perform. Comput. Appl., 19, 277292, https://doi.org/10.1177/1094342005056115.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Le, P. V. V., C. Guilloteau, A. Mamalakis, and E. Foufoula-Georgiou, 2021: Underestimated MJO variability in CMIP6 models. Geophys. Res. Lett., 48, e2020GL092244, https://doi.org/10.1029/2020GL092244.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lee, D. E., and M. Biasutti, 2014: Climatology and variability of precipitation in the Twentieth Century Reanalysis. J. Climate, 27, 59645981, https://doi.org/10.1175/JCLI-D-13-00630.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lee, J. Y., B. Wang, M. C. Wheeler, X. Fu, D. E. Waliser, and I.-S. Kang, 2013: Real-time multivariate indices for the boreal summer intraseasonal oscillation over the Asian summer monsoon region. Climate Dyn., 40, 493509, https://doi.org/10.1007/s00382-012-1544-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lee, S., T. Gong, N. Johnson, S. B. Feldstein, and D. Pollard, 2011: On the possible link between tropical convection and the Northern Hemisphere Arctic surface air temperature change between 1958 and 2001. J. Climate, 24, 43504367, https://doi.org/10.1175/2011JCLI4003.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, J., and B. Wang, 2018: Origins of the decadal predictability of East Asian land summer monsoon rainfall. J. Climate, 31, 62296243, https://doi.org/10.1175/JCLI-D-17-0790.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, T., J. Ling, and P.-C. Hsu, 2020: Madden–Julian Oscillation: Its discovery, dynamics and impact on East Asia. J. Meteor. Res., 34, 2042, https://doi.org/10.1007/s13351-020-9153-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lin, H., G. Brunet, and R. Mo, 2010: Impact of the Madden–Julian oscillation on wintertime precipitation in Canada. Mon. Wea. Rev., 138, 38223839, https://doi.org/10.1175/2010MWR3363.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ling, J., Y. Zhao, and G. Chen, 2019: Barrier effect on MJO propagation by the Maritime Continent in the MJO Task Force/GEWEX atmospheric system study models. J. Climate, 32, 55295547, https://doi.org/10.1175/JCLI-D-18-0870.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, F., B. Wang, Y. Ouyang, H. Wang, S. Qiao, G. Chen, and W. Dong, 2022: Intraseasonal variability of global land monsoon precipitation and its recent trend. npj Climate Atmos. Sci., 5, 30, https://doi.org/10.1038/s41612-022-00253-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, P., T. Li, B. Wang, M. Zhang, J.-J. Luo, Y. Masumoto, X. Wang, and E. Roeckner, 2013: MJO change with A1B global warming estimated by the 40-km ECHAM5. Climate Dyn., 41, 10091023, https://doi.org/10.1007/s00382-012-1532-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, Z., and M. Alexander, 2007: Atmospheric bridge, oceanic tunnel, and global climatic teleconnections. Rev. Geophys., 45, RG2005, https://doi.org/10.1029/2005RG000172.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lu, R., B. Dong, and H. Ding, 2006: Impact of the Atlantic Multidecadal Oscillation on the Asian summer monsoon. Geophys. Res. Lett., 33, L24701, https://doi.org/10.1029/2006GL027655.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lu, W., and P.-C. Hsu, 2017: Factors controlling the seasonality of the Madden–Julian Oscillation. Dyn. Atmos. Oceans, 78, 106120, https://doi.org/10.1016/j.dynatmoce.2017.04.002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Madden, R. A., and P. R. Julian, 1971: Detection of a 40–50 day oscillation in the zonal wind in the tropical Pacific. J. Atmos. Sci., 28, 702708, https://doi.org/10.1175/1520-0469(1971)028<0702:DOADOI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Madden, R. A., and P. R. Julian, 1972: Description of global-scale circulation cells in the tropics with a 40–50 day period. J. Atmos. Sci., 29, 11091123, https://doi.org/10.1175/1520-0469(1972)029<1109:DOGSCC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Madden, R. A., and P. R. Julian, 1994: Observations of the 40–50-day tropical oscillation—A review. Mon. Wea. Rev., 122, 814837, https://doi.org/10.1175/1520-0493(1994)122<0814:OOTDTO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Maloney, E. D., 2009: The moist static energy budget of a composite tropical intraseasonal oscillation in a climate model. J. Climate, 22, 711729, https://doi.org/10.1175/2008JCLI2542.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Maloney, E. D., Á. F. Adames, and H. X. Bui, 2019: Madden–Julian oscillation changes under anthropogenic warming. Nat. Climate Change, 9, 2633, https://doi.org/10.1038/s41558-018-0331-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mantua, N. J., S. R. Hare, Y. Zhang, J. M. Wallace, and R. C. Francis, 1997: A Pacific interdecadal climate oscillation with impacts on salmon production. Bull. Amer. Meteor. Soc., 78, 10691080, https://doi.org/10.1175/1520-0477(1997)078<1069:APICOW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McGregor, S., A. Timmermann, M. F. Stuecker, M. H. England, M. Merrifield, F.-F. Jin, and Y. Chikamoto, 2014: Recent Walker circulation strengthening and Pacific cooling amplified by Atlantic warming. Nat. Climate Change, 4, 888892, https://doi.org/10.1038/nclimate2330.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Monerie, P. A., J. Robson, B. Dong, D. L. R. Hodson, and N. P. Klingaman, 2019: Effect of the Atlantic multidecadal variability on the global monsoon. Geophys. Res. Lett., 46, 17651775, https://doi.org/10.1029/2018GL080903.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Neelin, J. D., and I. M. Held, 1987: Modeling tropical convergence based on the moist static energy budget. Mon. Wea. Rev., 115, 312, https://doi.org/10.1175/1520-0493(1987)115<0003:MTCBOT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Poli, P., and Coauthors, 2016: ERA-20C: An atmospheric reanalysis of the twentieth century. J. Climate, 29, 40834097, https://doi.org/10.1175/JCLI-D-15-0556.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Roeckner, E., and Coauthors, 2003: The atmospheric general circulation model ECHAM5. Part I: Model description. Max Planck Institute for Meteorology Rep. 349, 127 pp.

    • Search Google Scholar
    • Export Citation
  • Roxy, M. K., P. Dasgupta, M. J. McPhaden, T. Suematsu, C. Zhang, and D. Kim, 2019: Twofold expansion of the Indo-Pacific warm pool warps the MJO life cycle. Nature, 575, 647651, https://doi.org/10.1038/s41586-019-1764-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Salby, M. L., R. R. Garcia, and H. H. Hendon, 1994: Planetary-scale circulations in the presence of climatological and wave-induced heating. J. Atmos. Sci., 51, 23442367, https://doi.org/10.1175/1520-0469(1994)051<2344:PSCITP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schubert, S., R. Dole, H. van den Dool, M. Suarez, and D. Waliser, 2002: Prospects for improved forecasts of weather and short-term climate variability on subseasonal (2-week to 2-month) times scales. NASA Tech. Memo. NASA/TM 2002-104606, Vol. 23, 171 pp.

    • Search Google Scholar
    • Export Citation
  • Slingo, J., D. Rowell, K. Sperber, and F. Nortley, 1999: On the predictability of the interannual behaviour of the Madden–Julian Oscillation and its relationship with El Niño. Quart. J. Roy. Meteor. Soc., 125, 583609, https://doi.org/10.1256/smsqj.55410.

    • Search Google Scholar
    • Export Citation
  • Sobel, A. H., S. Wang, and D. Kim, 2014: Moist static energy budget of the MJO during DYNAMO. J. Atmos. Sci., 71, 42764291, https://doi.org/10.1175/JAS-D-14-0052.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stan, C., D. M. Straus, J. S. Frederiksen, H. Lin, E. D. Maloney, and C. Schumacher, 2017: Review of tropical–extratropical teleconnections on intraseasonal time scales. Rev. Geophys., 55, 902937, https://doi.org/10.1002/2016RG000538.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sun, C., F. Kucharski, J. Li, F.-F. Jin, I.-S. Kang, and R. Ding, 2017: Western tropical Pacific multidecadal variability forced by the Atlantic multidecadal oscillation. Nat. Commun., 8, 15998, https://doi.org/10.1038/ncomms15998.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sun, C., Y. Liu, Z. Gong, F. Kucharski, J. Li, Q. Wang, and X. Li, 2020: The footprint of Atlantic multidecadal oscillation on the intensity of tropical cyclones over the western North Pacific. Front. Earth Sci, 8, 604807, https://doi.org/10.3389/feart.2020.604807.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sutton, R. T., and D. L. R. Hodson, 2005: Atlantic Ocean forcing of North American and European summer climate. Science, 309, 115118, https://doi.org/10.1126/science.1109496.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sutton, R. T., and D. L. R. Hodson, 2007: Climate response to basin-scale warming and cooling of the North Atlantic Ocean. J. Climate, 20, 891907, https://doi.org/10.1175/JCLI4038.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Timmermann, A., S. I. An, U. Krebs, and H. Goosse, 2005: ENSO suppression due to weakening of the North Atlantic thermohaline circulation. J. Climate, 18, 31223139, https://doi.org/10.1175/JCLI3495.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tippett, M. K., 2018: Robustness of relations between the MJO and U.S. tornado occurrence. Mon. Wea. Rev., 146, 38733884, https://doi.org/10.1175/MWR-D-18-0207.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vitart, F., and Coauthors, 2017: The Subseasonal to Seasonal (S2S) Prediction Project Database. Bull. Amer. Meteor. Soc., 98, 163173, https://doi.org/10.1175/BAMS-D-16-0017.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Waliser, D. E., K. M. Lau, W. Stern, and C. Jones, 2003: Potential predictability of the Madden–Julian oscillation. Bull. Amer. Meteor. Soc., 84, 3350, https://doi.org/10.1175/BAMS-84-1-33.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Waliser, D. E., and Coauthors, 2009: MJO simulation diagnostics. J. Climate, 22, 30063030, https://doi.org/10.1175/2008JCLI2731.1.

  • Wang, Z., T. Li, and Y. Sun, 2021: Interdecadal variability of intensity of the Madden–Julian oscillation. Atmos. Sci. Lett., 22, e1027, https://doi.org/10.1002/asl.1027.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wheeler, M. C., and H. H. Hendon, 2004: An all-season real-time multivariate MJO index: Development of an index for monitoring and prediction. Mon. Wea. Rev., 132, 19171932, https://doi.org/10.1175/1520-0493(2004)132<1917:AARMMI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wolding, B. O., E. D. Maloney, S. Henderson, and M. Branson, 2017: Climate change and the Madden–Julian Oscillation: A vertically resolved weak temperature gradient analysis. J. Adv. Model. Earth Syst., 9, 307331, https://doi.org/10.1002/2016MS000843.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xiu, J., M. Wen, Z. Wang, and R. Zhang, 2019: Interdecadal variation of the MJO propagation during the boreal winter in the context of global climate change (in Chinese). Chin. J. Atmos. Sci., 43, 155170, https://doi.org/10.3878/j.issn.1006-9895.1804.17278.

    • Search Google Scholar
    • Export Citation
  • Yan, X., and Coauthors, 2018: Influence of springtime Atlantic SST on ENSO: Role of the Madden–Julian Oscillation. J. Meteor. Res., 32, 380393, https://doi.org/10.1007/s13351-018-7046-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yanai, M., S. Esbensen, and J.-H. Chu, 1973: Determination of bulk properties of tropical cloud clusters from large-scale heat and moisture budgets. J. Atmos. Sci., 30, 611627, https://doi.org/10.1175/1520-0469(1973)030<0611:DOBPOT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yang, Y.-M., S.-I. An, B. Wang, and J. H. Park, 2020a: A global-scale multidecadal variability driven by Atlantic multidecadal oscillation. Natl. Sci. Rev., 7, 11901197, https://doi.org/10.1093/nsr/nwz216.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yang, Y.-M., B. Wang, J. Cao, L. Ma, and J. Li, 2020b: Improved historical simulation by enhancing moist physical parameterizations in the climate system model NESM3.0. Climate Dyn., 54, 38193840, https://doi.org/10.1007/s00382-020-05209-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yoo, C., S. Lee, and S. B. Feldstein, 2012: Mechanisms of Arctic surface air temperature change in response to the Madden–Julian oscillation. J. Climate, 25, 57775790, https://doi.org/10.1175/JCLI-D-11-00566.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yu, J., T. Li, Z. Tan, and Z. Zhu, 2015: Effects of tropical North Atlantic SST on tropical cyclone genesis in the western North Pacific. Climate Dyn., 46, 865877, https://doi.org/10.1007/s00382-015-2618-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, C., 2005: Madden–Julian Oscillation. Rev. Geophys., 43, RG2003, https://doi.org/10.1029/2004RG000158.

  • Zhang, C., 2013: Madden–Julian oscillation: Bridging weather and climate. Bull. Amer. Meteor. Soc., 94, 18491870, https://doi.org/10.1175/BAMS-D-12-00026.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, C., and M. Dong, 2004: Seasonality in the Madden–Julian oscillation. J. Climate, 17, 31693180, https://doi.org/10.1175/1520-0442(2004)017<3169:SITMO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, W., G. A. Vecchi, H. Murakami, G. Villarini, T. L. Delworth, X. Yang, and L. Jia, 2018: Dominant role of Atlantic multidecadal oscillation in the recent decadal changes in western North Pacific tropical cyclone activity. Geophys. Res. Lett., 45, 354362, https://doi.org/10.1002/2017GL076397.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 450 442 11
Full Text Views 229 224 6
PDF Downloads 267 261 6

Multidecadal Changes in Zonal Displacement of Tropical Pacific MJO Variability Modulated by North Atlantic SST

Zhen FuaKey Laboratory of Meteorological Disaster of Ministry of Education/Joint International Research Laboratory of Climate and Environment Change/Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, Nanjing University of Information Science and Technology, Nanjing, China

Search for other papers by Zhen Fu in
Current site
Google Scholar
PubMed
Close
,
Pang-Chi HsuaKey Laboratory of Meteorological Disaster of Ministry of Education/Joint International Research Laboratory of Climate and Environment Change/Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, Nanjing University of Information Science and Technology, Nanjing, China

Search for other papers by Pang-Chi Hsu in
Current site
Google Scholar
PubMed
Close
,
Juan LiaKey Laboratory of Meteorological Disaster of Ministry of Education/Joint International Research Laboratory of Climate and Environment Change/Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, Nanjing University of Information Science and Technology, Nanjing, China

Search for other papers by Juan Li in
Current site
Google Scholar
PubMed
Close
,
Jian CaoaKey Laboratory of Meteorological Disaster of Ministry of Education/Joint International Research Laboratory of Climate and Environment Change/Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, Nanjing University of Information Science and Technology, Nanjing, China

Search for other papers by Jian Cao in
Current site
Google Scholar
PubMed
Close
,
Young-Min YangaKey Laboratory of Meteorological Disaster of Ministry of Education/Joint International Research Laboratory of Climate and Environment Change/Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, Nanjing University of Information Science and Technology, Nanjing, China

Search for other papers by Young-Min Yang in
Current site
Google Scholar
PubMed
Close
, and
Fei LiubSchool of Atmospheric Sciences Sun Yat-Sen University, Key Laboratory of Tropical Atmosphere-Ocean System Ministry of Education, and Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai, China

Search for other papers by Fei Liu in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The Madden–Julian oscillation (MJO) exhibits the most vigorous activity over the Indo-Pacific warm pool during the boreal winter. In this study, we find the interbasin connection between the tropical Pacific MJO activity and North Atlantic sea surface temperature at the interdecadal time scale. Accompanied with the negative phase of the Atlantic multidecadal oscillation (AMO), the enhanced MJO variability (i.e., larger amplitude of 20–90-day convection) tends to extend eastward into the central tropical Pacific (20°S–0°, 170°E–150°W), while the vigorous MJO variability is confined to the Indo-Pacific warm pool during the positive phase of AMO. The eastward displacement of MJO convection into the central tropical Pacific during the negative AMO phase is supported by the increased moist static energy and low-level moisture tendencies there when the low-frequency background (>90 days) westerly transports the moisture perturbation [(V¯q)] and the MJO-associated easterly perturbation transports the background moisture [(Vq¯)] toward the central tropical Pacific. This suggests that the interdecadal changes in zonal displacement of MJO activity over the tropical Pacific are closely linked with the impacts of AMO on the background flow and moisture condition over the central tropical Pacific. The results of coupled model sensitivity experiments and preindustrial simulations of phase 6 of the Coupled Model Intercomparison Project (CMIP6) support the observational findings.

© 2022 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Pang-Chi Hsu, pangchi@nuist.edu.cn

Abstract

The Madden–Julian oscillation (MJO) exhibits the most vigorous activity over the Indo-Pacific warm pool during the boreal winter. In this study, we find the interbasin connection between the tropical Pacific MJO activity and North Atlantic sea surface temperature at the interdecadal time scale. Accompanied with the negative phase of the Atlantic multidecadal oscillation (AMO), the enhanced MJO variability (i.e., larger amplitude of 20–90-day convection) tends to extend eastward into the central tropical Pacific (20°S–0°, 170°E–150°W), while the vigorous MJO variability is confined to the Indo-Pacific warm pool during the positive phase of AMO. The eastward displacement of MJO convection into the central tropical Pacific during the negative AMO phase is supported by the increased moist static energy and low-level moisture tendencies there when the low-frequency background (>90 days) westerly transports the moisture perturbation [(V¯q)] and the MJO-associated easterly perturbation transports the background moisture [(Vq¯)] toward the central tropical Pacific. This suggests that the interdecadal changes in zonal displacement of MJO activity over the tropical Pacific are closely linked with the impacts of AMO on the background flow and moisture condition over the central tropical Pacific. The results of coupled model sensitivity experiments and preindustrial simulations of phase 6 of the Coupled Model Intercomparison Project (CMIP6) support the observational findings.

© 2022 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Pang-Chi Hsu, pangchi@nuist.edu.cn
Save