• Baggett, C., and S. Lee, 2015: Arctic warming induced by tropically forced tapping of available potential energy and the role of the planetary-scale waves. J. Atmos. Sci., 72, 15621568, https://doi.org/10.1175/JAS-D-14-0334.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Baggett, C., and S. Lee, 2017: An identification of the mechanisms that lead to arctic warming during planetary-scale and synoptic-scale wave life cycles. J. Atmos. Sci., 74, 18591877, https://doi.org/10.1175/JAS-D-16-0156.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Barton, N. P., S. A. Klein, J. S. Boyle, and Y. Y. Zhang, 2012: Arctic synoptic regimes: Comparing domain-wide Arctic cloud observations with CAM4 and CAM5 during similar dynamics. J. Geophys. Res., 117, D15205, https://doi.org/10.1029/2012JD017589.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Blackport, R., J. A. Screen, K. van der Wiel, and R. Bintanja, 2019: Minimal influence of reduced Arctic sea ice on coincident cold winters in mid-latitudes. Nat. Climate Change, 9, 697704, https://doi.org/10.1038/s41558-019-0551-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Boer, G. J., 1982: Diagnostic equations in isobaric coordinates. Mon. Wea. Rev., 110, 18011820, https://doi.org/10.1175/1520-0493(1982)110<1801:DEIIC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bosilovich, M. G., and Coauthors, 2015: MERRA-2: Initial evaluation of the climate. NASA/TM-2015-104606/Vol. 43, 145 pp., https://gmao.gsfc.nasa.gov/pubs/docs/Bosilovich803.pdf.

    • Crossref
    • Export Citation
  • Burt, M. A., D. A. Randall, and M. D. Branson, 2016: Dark warming. J. Climate, 29, 705719, https://doi.org/10.1175/JCLI-D-15-0147.1.

  • Cardinale, C. J., B. E. J. Rose, A. L. Lang, and A. Donohoe, 2021: Stratospheric and tropospheric flux contributions to the polar cap energy budgets. J. Climate, 34, 42614278, https://doi.org/10.1175/JCLI-D-20-0722.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, X., D. Luo, S. B. Feldstein, and S. Lee, 2018: Impact of winter Ural blocking on Arctic sea ice: Short-time variability. J. Climate, 31, 22672282, https://doi.org/10.1175/JCLI-D-17-0194.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cohen, J., and Coauthors, 2014: Recent Arctic amplification and extreme mid-latitude weather. Nat. Geosci., 7, 627637, https://doi.org/10.1038/ngeo2234.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Deser, C., R. Tomas, M. Alexander, and D. Lawrence, 2010: The seasonal atmospheric response to projected Arctic sea ice loss in the late twenty-first century. J. Climate, 23, 333351, https://doi.org/10.1175/2009JCLI3053.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Doyle, J. G., G. Lesins, C. P. Thackray, C. Perro, G. J. Nott, T. J. Duck, R. Damoah, and J. R. Drummond, 2011: Water vapor intrusions into the high Arctic during winter. Geophys. Res. Lett., 38, L12806, https://doi.org/10.1029/2011GL047493.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Eirund, G., A. Possner, and U. Lohmann, 2020: The impact of warm and moist airmass perturbations on Arctic mixed-phase stratocumulus. J. Climate, 33, 96159628, https://doi.org/10.1175/JCLI-D-20-0163.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • GMAO, 2015: MERRA-2 inst3_3d_asm_Np: 3d,3-Hourly,Instantaneous,Pressure-Level, Assimilation, Assimilated Meteorological Fields V5.12.4. Goddard Earth Sciences Data and Information Services Center (GES DISC), Greenbelt, MD, accessed July 2017, https://doi.org/10.5067/QBZ6MG944HW0.

    • Crossref
    • Export Citation
  • Gong, T., and D. Luo, 2017: Ural blocking as an amplifier of the Arctic sea ice decline in winter. J. Climate, 30, 26392654, https://doi.org/10.1175/JCLI-D-16-0548.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gong, T., S. Feldstein, and S. Lee, 2017: The role of downward infrared radiation in the recent Arctic winter warming trend. J. Climate, 30, 49374949, https://doi.org/10.1175/JCLI-D-16-0180.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Graham, R. M., and Coauthors, 2019a: Evaluation of six atmospheric reanalyses over Arctic sea ice from winter to early summer. J. Climate, 32, 41214143, https://doi.org/10.1175/JCLI-D-18-0643.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Graham, R. M., and Coauthors, 2019b: Winter storms accelerate the demise of sea ice in the Atlantic sector of the Arctic Ocean. Sci. Rep., 9, 9222, https://doi.org/10.1038/s41598-019-45574-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Graversen, R. G., and M. Burtu, 2016: Arctic amplification enhanced by latent energy transport of atmospheric planetary waves. Quart. J. Roy. Meteor. Soc., 142, 20462054, https://doi.org/10.1002/qj.2802.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gulev, S. K., T. Jung, and E. Ruprecht, 2002: Climatology and interannual variability in the intensity of synoptic-scale processes in the North Atlantic from the NCEP–NCAR reanalysis data. J. Climate, 15, 809828, https://doi.org/10.1175/1520-0442(2002)015<0809:CAIVIT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hegyi, B. M., and P. C. Taylor, 2018: The unprecedented 2016–2017 Arctic sea ice growth season: The crucial role of atmospheric rivers and longwave fluxes. Geophys. Res. Lett., 45, 52045212, https://doi.org/10.1029/2017GL076717.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Henry, M., T. M. Merlis, N. J. Lutsko, and B. E. J. Rose, 2021: Decomposing the drivers of polar amplification with a single-column model. J. Climate, 34, 23552365, https://doi.org/10.1175/JCLI-D-20-0178.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Johansson, E., A. Devasthale, M. Tjernström, A. M. L. Ekman, and T. L’Ecuyer, 2017: Response of the lower troposphere to moisture intrusions into the Arctic. Geophys. Res. Lett., 44, 25272536, https://doi.org/10.1002/2017GL072687.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kayser, M., and Coauthors, 2017: Vertical thermodynamic structure of the troposphere during the Norwegian young sea ICE expedition (N-ICE2015). J. Geophys. Res., 122, 10 85510 872, https://doi.org/10.1002/2016JD026089.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • King, J., G. Spreen, S. Gerland, C. Haas, S. Hendricks, L. Kaleschke, and C. Wang, 2017: Sea-ice thickness from field measurements in the northwestern Barents Sea. J. Geophys. Res. Oceans, 122, 14971512, https://doi.org/10.1002/2016JC012199.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Komatsu, K. K., V. A. Alexeev, I. A. Repina, and Y. Tachibana, 2018: Poleward upgliding Siberian atmospheric rivers over sea ice heat up Arctic upper air. Sci. Rep., 8, 2872, https://doi.org/10.1038/s41598-018-21159-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lee, S., T. Gong, S. B. Feldstein, J. A. Screen, and I. Simmonds, 2017: Revisiting the cause of the 1989–2009 Arctic surface warming using the surface energy budget: Downward infrared radiation dominates the surface fluxes. Geophys. Res. Lett., 44, 102654102661, https://doi.org/10.1002/2017GL075375.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, Y., and J. R. Key, 2016: Assessment of Arctic cloud cover anomalies in atmospheric reanalysis products using satellite data. J. Climate, 29, 60656083, https://doi.org/10.1175/JCLI-D-15-0861.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, Y., J. R. Key, S. Vavrus, and C. Woods, 2018: Time evolution of the cloud response to moisture intrusions into the Arctic during winter. J. Climate, 31, 93899405, https://doi.org/10.1175/JCLI-D-17-0896.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Luo, B., D. Luo, L. Wu, L. Zhong, and I. Simmonds, 2017: Atmospheric circulation patterns which promote winter Arctic sea ice decline. Environ. Res. Lett., 12, 054017, https://doi.org/10.1088/1748-9326/aa69d0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Luo, B., L. Wu, D. Luo, A. Dai, and I. Simmonds, 2019: The winter midlatitude–Arctic interaction: Effects of North Atlantic SST and high-latitude blocking on Arctic sea ice and Eurasian cooling. Climate Dyn., 52, 29813004, https://doi.org/10.1007/s00382-018-4301-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Luo, D., Y. Xiao, Y. Yao, A. Dai, I. Simmonds, and C. L. E. Franzke, 2016: Impact of Ural blocking on winter warm Arctic–cold Eurasian anomalies. Part I: Blocking-induced amplification. J. Climate, 29, 39253947, https://doi.org/10.1175/JCLI-D-15-0611.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McCarty, W., L. Coy, R. Gelaro, A. Huang, D. Merkova, E. B. Smith, M. Seinkiewicz, and K. Wargan, 2016: MERRA-2 input observations: Summary and assessment. Tech. Rep. Series on Global Modeling and Data Assimilation. NASA/TM-2016-104606, Vol. 46, 64 pp., https://gmao.gsfc.nasa.gov/pubs/docs/McCarty885.pdf.

    • Crossref
    • Export Citation
  • Overland, J. E., and Coauthors, 2021: How do intermittency and simultaneous processes obfuscate the Arctic influence on midlatitude winter extreme weather events? Environ. Res. Lett., 16, 043002, https://doi.org/10.1088/1748-9326/abdb5d.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Park, D.-S. R., S. Lee, and S. B. Feldstein, 2015: Attribution of the recent winter sea ice decline over the Atlantic sector of the Arctic Ocean. J. Climate, 28, 40274033, https://doi.org/10.1175/JCLI-D-15-0042.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Park, H.-S., S. Lee, S.-W. Son, S. B. Feldstein, and Y. Kosaka, 2015: The impact of poleward moisture and sensible heat flux on Arctic winter sea ice variability. J. Climate, 28, 50305040, https://doi.org/10.1175/JCLI-D-15-0074.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Peings, Y., 2019: Ural blocking as a driver of early-winter stratospheric warmings. Geophys. Res. Lett., 46, 54605468, https://doi.org/10.1029/2019GL082097.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pithan, F., and T. Mauritsen, 2014: Arctic amplification dominated by temperature feedbacks in contemporary climate models. Nat. Geosci., 7, 181184, https://doi.org/10.1038/ngeo2071.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rinke, A., M. Maturilli, R. M. Graham, H. Matthes, D. Handorf, L. Cohen, S. R. Hudson, and J. C. Moore, 2017: Extreme cyclone events in the Arctic: Wintertime variability and trends. Environ. Res. Lett., 12, 094006, https://doi.org/10.1088/1748-9326/aa7def.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Screen, J. A., and I. Simmonds, 2010a: The central role of diminishing sea ice in recent arctic temperature amplification. Nature, 464, 13341337, https://doi.org/10.1038/nature09051.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Screen, J. A., and I. Simmonds, 2010b: Increasing fall–winter energy loss from the Arctic Ocean and its role in Arctic temperature amplification. Geophys. Res. Lett., 37, L16707, https://doi.org/10.1029/2010GL044136.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sokolowsky, G. A., and Coauthors, 2020: Contributions to the surface downwelling longwave irradiance during Arctic winter at Utqiaġvik (Barrow), Alaska. J. Climate, 33, 45554577, https://doi.org/10.1175/JCLI-D-18-0876.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Solomon, A., M. D. Shupe, P. O. G. Persson, and H. Morrison, 2011: Moisture and dynamical interactions maintaining decoupled Arctic mixed-phase stratocumulus in the presence of a humidity inversion. Atmos. Chem. Phys., 11, 10 12710 148, https://doi.org/10.5194/acp-11-10127-2011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Solomon, A., M. D. Shupe, O. Persson, H. Morrison, T. Yamaguchi, P. M. Caldwell, and G. de Boer, 2014: The sensitivity of springtime Arctic mixed-phase stratocumulus clouds to surface-layer and cloud-top inversion-layer moisture sources. J. Atmos. Sci., 71, 574595, https://doi.org/10.1175/JAS-D-13-0179.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stroeve, J. C., M. Serreze, M. Holland, J. Kay, J. Malanik, and A. Barrett, 2012: The Arctic’s rapidly shrinking sea ice cover: A research synthesis. Climatic Change, 110, 10051027, https://doi.org/10.1007/s10584-011-0101-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stroeve, J. C., D. Schroder, M. Tsamados, and D. Feltham, 2018: Warm winter, thin ice? Cryosphere, 12, 17911809, https://doi.org/10.5194/tc-12-1791-2018.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Taylor, P. C., S. Kato, K.-M. Xu, and M. Cai, 2015: Covariance between Arctic sea ice and clouds within atmospheric state regimes at the satellite footprint level. J. Geophys. Res., 120, 12 65612 678, https://doi.org/10.1002/2015JD023520.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Taylor, P. C., B. M. Hegyi, R. C. Boeke, and L. N. Boisvert, 2018: On the increasing importance of air–sea exchanges in a thawing Arctic: A review. Atmosphere, 9, 41, https://doi.org/10.3390/atmos9020041.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tyrlis, E., E. Manzini, J. Bader, J. Ukita, H. Nakamura, and D. Matei, 2019: Ural blocking driving extreme Arctic sea ice loss, cold Eurasia, and stratospheric vortex weakening in autumn and early winter 2016–2017. J. Geophys. Res., 124, 112313112329, https://doi.org/10.1029/2019JD031085.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Valkonen, E., J. Cassano, and E. Cassano, 2021: Arctic cyclones and their interactions with the declining sea ice: A recent climatology. J. Geophys. Res. Atmos., 126, e2020JD034366, https://doi.org/10.1029/2020JD034366.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vargas Zeppetello, L. R., A. Donohoe, and D. S. Battisti, 2019: Does surface temperature respond to or determine downwelling longwave radiation? Geophys. Res. Lett., 46, 27812789, https://doi.org/10.1029/2019GL082220.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vihma, T., 2014: Effects of Arctic sea ice decline on weather and climate: A review. Surv. Geophys., 35, 11751214, https://doi.org/10.1007/s10712-014-9284-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Woods, C., and R. Caballero, 2016: The role of moist intrusions in winter Arctic warming and sea ice decline. J. Climate, 29, 44734485, https://doi.org/10.1175/JCLI-D-15-0773.1.

    • Search Google Scholar
    • Export Citation
  • Woods, C., R. Caballero, and G. Svensson, 2013: Large-scale circulation associated with moisture intrusions into the Arctic during winter. Geophys. Res. Lett., 40, 47174721, https://doi.org/10.1002/grl.50912.

    • Search Google Scholar
    • Export Citation
  • Yoo, C., S. Lee, and S. Feldstein, 2012: Mechanisms of Arctic surface air temperature change in response to the Madden–Julian oscillation. J. Climate, 25, 57775790, https://doi.org/10.1175/JCLI-D-11-00566.1.

    • Search Google Scholar
    • Export Citation
  • You, C., M. Tjernström, and A. Devasthale, 2021: Warm-air advection over melting sea-ice: A Lagrangian case study. Bound.-Layer Meteor., 179, 99116, https://doi.org/10.1007/s10546-020-00590-1.

    • Search Google Scholar
    • Export Citation
  • Yu, Y., P. C. Taylor, and M. Cai, 2019: Seasonal variations of Arctic low-level clouds and its linkage to sea ice seasonal variations. J. Geophys. Res., 124, 12 20612 226, https://doi.org/10.1029/2019JD031014.

    • Search Google Scholar
    • Export Citation
  • Zhong, L., L. Hua, and D. Luo, 2018: Local and external moisture sources for the Arctic warming over the Barents–Kara Seas. J. Climate, 31, 19631982, https://doi.org/10.1175/JCLI-D-17-0203.1.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 709 696 16
Full Text Views 189 188 7
PDF Downloads 228 227 5

The Arctic Surface Heating Efficiency of Tropospheric Energy Flux Events

Christopher J. CardinaleaDepartment of Atmospheric and Environmental Sciences, University at Albany, State University of New York, Albany, New York

Search for other papers by Christopher J. Cardinale in
Current site
Google Scholar
PubMed
Close
and
Brian E. J. RoseaDepartment of Atmospheric and Environmental Sciences, University at Albany, State University of New York, Albany, New York

Search for other papers by Brian E. J. Rose in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

This paper examines the processes that drive Arctic anomalous surface warming and sea ice loss during winter-season tropospheric energy flux events, synoptic periods of increased tropospheric energy flux convergence (Ftrop), using the NASA MERRA-2 reanalysis. During an event, a poleward anomaly in Ftrop initially increases the sensible and latent energy of the Arctic troposphere; as the warm and moist troposphere loses heat, the anomalous energy source is balanced by a flux upward across the tropopause and a downward net surface flux. A new metric for the Arctic surface heating efficiency (Etrop) is defined, which measures the fraction of the energy source that reaches the surface. Composites of high-, medium-, and low-efficiency events help identify key physical factors, including the vertical structure of Ftrop and Arctic surface preconditioning. In high-efficiency events (Etrop ≥ 0.63), a bottom-heavy poleward Ftrop occurs in the presence of an anomalously warm and unstratified Arctic—a consequence of decreased sea ice—resulting in increased vertical mixing, enhanced near-surface warming and moistening, and further sea ice loss. Smaller Etrop, and thus weaker surface impacts, are found in events with anomalously large initial sea ice extent and more vertically uniform Ftrop. These differences in Etrop are manifested primarily through turbulent heat fluxes rather than downward longwave radiation. The frequency of high-efficiency events has increased from the period 1980–99 to the period 2000–19, contributing to Arctic surface warming and sea ice decline.

© 2022 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Christopher J. Cardinale, ccardinale@albany.edu

Abstract

This paper examines the processes that drive Arctic anomalous surface warming and sea ice loss during winter-season tropospheric energy flux events, synoptic periods of increased tropospheric energy flux convergence (Ftrop), using the NASA MERRA-2 reanalysis. During an event, a poleward anomaly in Ftrop initially increases the sensible and latent energy of the Arctic troposphere; as the warm and moist troposphere loses heat, the anomalous energy source is balanced by a flux upward across the tropopause and a downward net surface flux. A new metric for the Arctic surface heating efficiency (Etrop) is defined, which measures the fraction of the energy source that reaches the surface. Composites of high-, medium-, and low-efficiency events help identify key physical factors, including the vertical structure of Ftrop and Arctic surface preconditioning. In high-efficiency events (Etrop ≥ 0.63), a bottom-heavy poleward Ftrop occurs in the presence of an anomalously warm and unstratified Arctic—a consequence of decreased sea ice—resulting in increased vertical mixing, enhanced near-surface warming and moistening, and further sea ice loss. Smaller Etrop, and thus weaker surface impacts, are found in events with anomalously large initial sea ice extent and more vertically uniform Ftrop. These differences in Etrop are manifested primarily through turbulent heat fluxes rather than downward longwave radiation. The frequency of high-efficiency events has increased from the period 1980–99 to the period 2000–19, contributing to Arctic surface warming and sea ice decline.

© 2022 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Christopher J. Cardinale, ccardinale@albany.edu
Save