• Adler, R. F., and Coauthors, 2003: The version-2 Global Precipitation Climatology Project (GPCP) monthly precipitation analysis (1979–present). J. Hydrometeor., 4, 11471167, https://doi.org/10.1175/1525-7541(2003)004<1147:TVGPCP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Adler, R. F., G. J. Gu, M. Sapiano, J. J. Wang, and G. J. Huffman, 2017: Global precipitation: Means, variations and trends during the satellite era (1979–2014). Surv. Geophys., 38, 679699, https://doi.org/10.1007/s10712-017-9416-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Allen, M. R., and W. J. Ingram, 2002: Constraints on future changes in climate and the hydrologic cycle. Nature, 419,228232, https://doi.org/10.1038/nature01092.

    • Crossref
    • Export Citation
  • Bayr, T., D. Dommenget, T. Martin, and S. B. Power, 2014: The eastward shift of the Walker circulation in response to global warming and its relationship to ENSO variability. Climate Dyn., 43, 27472763, https://doi.org/10.1007/s00382-014-2091-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bellenger, H., E. Guilyardi, J. Leloup, M. Lengaigne and J. Vialard, 2014: ENSO representation in climate models: From CMIP3 to CMIP5. Climate Dyn., 42, 19992018, https://doi.org/10.1007/s00382-013-1783-z.

    • Search Google Scholar
    • Export Citation
  • Boyer, T. P., S. Levitus, J. I. Antonov, R. A. Locarnini, and H. E. Garcia, 2005: Linear trends in salinity for the World Ocean, 1955–1998. Geophys. Res. Lett., 32, L01604, https://doi.org/10.1029/2004GL021791.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chadwick, R., I. Boutle, and G. Martin, 2013: Spatial patterns of precipitation change in CMIP5: Why the rich do not get richer in the tropics. J. Climate, 26, 38033822, https://doi.org/10.1175/JCLI-D-12-00543.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cheng, L., and Coauthors, 2020: Improved estimates of changes in upper ocean salinity and the hydrological cycle. J. Climate, 33, 10 35710 381, https://doi.org/10.1175/JCLI-D-20-0366.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Choi, J. W., I. G. Kim, J. Y. Kim, and C. H. Park, 2016: The recent strengthening of Walker circulation. Sci. Online Lett. Atmos., 12, 9699, https://doi.org/10.2151/sola.2016-022.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chou, C., and J. D. Neelin, 2004: Mechanisms of global warming impacts on regional tropical precipitation. J. Climate, 17, 26882701, https://doi.org/10.1175/1520-0442(2004)017<2688:MOGWIO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chou, C., J. D. Neelin, C.-A. Chen, and J.-Y. Tu, 2009: Evaluating the “rich-get-richer” mechanism in tropical precipitation change under global warming. J. Climate, 22, 19822005, https://doi.org/10.1175/2008JCLI2471.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Church, J. A., and N. J. White, 2006: A 20th century acceleration in global sea-level rise. Geophys. Res. Lett., 33, L01602, https://doi.org/10.1029/2005GL024826.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Church, J. A., N. J. White, R. Coleman, K. Lambeck, and J. X. Mitrovica, 2004: Estimates of the regional distribution of sea level rise over the 1950–2000 period. J. Climate, 17, 26092625, https://doi.org/10.1175/1520-0442(2004)017<2609:EOTRDO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Collins, M., B. B. B. Booth, G. R. Harris, J. M. Murphy, D. M. H. Sexton, and M. J. Webb, 2006: Towards quantifying uncertainty in transient climate change. Climate Dyn., 27, 127147, https://doi.org/10.1007/s00382-006-0121-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Diffenbaugh, N. S., J. S. Pal, R. J. Trapp, and F. Giorgi, 2005: Fine-scale processes regulate the response of extreme events to global climate change. Proc. Natl. Acad. Sci. USA, 102, 15 77415 778, https://doi.org/10.1073/pnas.0506042102.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • DiNezio, P. N., G. A. Vecchi, and A. C. Clement, 2013: Detectability of changes in the Walker circulation in response to global warming. J. Climate, 26, 40384048, https://doi.org/10.1175/JCLI-D-12-00531.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Du, Y., Y. H. Zhang, and J. C. Shi, 2019: Relationship between sea surface salinity and ocean circulation and climate change. Sci. China Earth Sci., 62, 771782, https://doi.org/10.1007/s11430-018-9276-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Durack, P. J., 2015: Ocean salinity and the global water cycle. Oceanography, 28, 2031, https://doi.org/10.5670/oceanog.2015.03.

  • Durack, P. J., and S. E. Wijffels, 2010: Fifty-year trends in global ocean salinities and their relationship to broad-scale warming. J. Climate, 23, 43424362, https://doi.org/10.1175/2010JCLI3377.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Durack, P. J., S. E. Wijffels, and R. J. Matear, 2012: Ocean salinities reveal strong global water cycle intensification during 1950 to 2000. Science, 336, 455458, https://doi.org/10.1126/science.1212222.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Emori, S., and S. J. Brown, 2005: Dynamic and thermodynamic changes in mean and extreme precipitation under changed climate. Geophys. Res. Lett., 32, L1776, https://doi.org/10.1029/2005GL023272.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Eyring, V., S. Bony, G. A. Meehl, C. A. Senior, B. Stevens, R. J. Stouffer, and K. E. Taylor, 2016: Overview of the Coupled Model Intercomparison Project phase 6 (CMIP6) experimental design and organization. Geosci. Model Dev., 9, 19371958, https://doi.org/10.5194/gmd-9-1937-2016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gastineau, G., L. Li, and H. Le Treut, 2009: The Hadley and Walker circulation changes in global warming conditions described by idealized atmospheric simulations. J. Climate, 22, 39934013, https://doi.org/10.1175/2009JCLI2794.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • George, R., D. McFarlane, and B. Nulsen, 1997: Salinity threatens the viability of agriculture and ecosystems in Western Australia. Hydrogeol. J., 5, 621, https://doi.org/10.1007/s100400050103.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Good, S. A., M. J. Martin, and N. A. Rayner, 2013: EN4: Quality controlled ocean temperature and salinity profiles and monthly objective analyses with uncertainty estimates. J. Geophys. Res. Oceans, 118, 67046716, https://doi.org/10.1002/2013JC009067.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Han, Z. X., T. Su, B. C. Huang, T. C. Feng, S. L. Qu, and G. L. Feng, 2019: Changes in global monsoon precipitation and the related dynamic and thermodynamic mechanisms in recent decades. Int. J. Climatol., 39, 14901503, https://doi.org/10.1002/joc.5896.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Held, I. M., and B. J. Soden, 2006: Robust responses of the hydrological cycle to global warming. J. Climate, 19, 56865699, https://doi.org/10.1175/JCLI3990.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Helm, K. P., N. L. Bindoff, and J. A. Church, 2010: Changes in the global hydrological-cycle inferred from ocean salinity. Geophys. Res. Lett., 37, L18701, https://doi.org/10.1029/2010GL044222.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hosoda, S., T. Suga, N. Shikama, and K. Mizuno, 2009: Global surface layer salinity change detected by Argo and its implication for hydrological cycle intensification. J. Oceanogr., 65, 579586, https://doi.org/10.1007/s10872-009-0049-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huang, P., 2014: Regional response of annual-mean tropical rainfall to global warming. Atmos. Sci. Lett., 15, 103109, https://doi.org/10.1002/asl2.475.

    • Search Google Scholar
    • Export Citation
  • Huang, P., S.-P. Xie, K. M. Hu, G. Huang, and R. H. Huang, 2013: Patterns of the seasonal response of tropical rainfall to global warming. Nat. Geosci., 6, 357361, https://doi.org/10.1038/ngeo1792.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Joos, F., and Coauthors, 2013: Carbon dioxide and climate impulse response functions for the computation of greenhouse gas metrics: A multi-model analysis. Atmos. Chem. Phys., 13, 27932825, https://doi.org/10.5194/acp-13-2793-2013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77, 437471, https://doi.org/10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2.

    • Crossref
    • Export Citation
  • Kouketsu, S., S. Osafune, Y. Kumamoto, and H. Uchida, 2017: Eastward salinity anomaly propagation in the intermediate layer of the North Pacific. J. Geophys. Res. Oceans, 122, 15901607, https://doi.org/10.1002/2016JC012118.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lago, V., S. E. Wijffels, P. J. Durack, J. A. Church, N. L. Bindoff, and S. J. Marsland, 2016: Simulating the role of surface forcing on observed multidecadal upper-ocean salinity changes. J. Climate, 29, 55755588, https://doi.org/10.1175/JCLI-D-15-0519.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • L’Heureux, M. L., S. Lee, and B. Lyon, 2013: Recent multidecadal strengthening of the Walker circulation across the tropical Pacific. Nat. Climate Change, 3, 571576, https://doi.org/10.1038/nclimate1840.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, G., and S.-P. Xie, 2014: Tropical biases in CMIP5 multimodel ensemble: The excessive equatorial Pacific cold tongue and double ITCZ problems. J. Climate, 27, 17651780, https://doi.org/10.1175/JCLI-D-13-00337.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, G., S.-P. Xie, Y. Du and Y. Luo, 2016: Effects of excessive equatorial cold tongue bias on the projections of tropical Pacific climate change. Part I: The warming pattern in CMIP5 multi-model ensemble. Climate Dyn., 47, 38173831, https://doi.org/10.1007/s00382-016-3043-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lin, J. L., 2007: The double-ITCZ problem in IPCC AR4 coupled GCMs: Ocean–atmosphere feedback analysis. J. Climate, 20, 44974525, https://doi.org/10.1175/JCLI4272.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, C., X. Liang, R. M. Ponte, N. Vinogradoya, and O. Wang, 2019: Vertical redistribution of salt and layered changes in global ocean salinity. Nat. Commun., 10, 3445, https://doi.org/10.1038/s41467-019-11436-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, Z. Y., S. Vavrus, F. He, N. Wen, and Y. F. Zhong, 2005: Rethinking tropical ocean response to global warming: The enhanced equatorial warming. J. Climate, 18, 46844700, https://doi.org/10.1175/JCLI3579.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Long, D. J., and M. Collins, 2013: Quantifying global climate feedbacks, responses and forcing under abrupt and gradual CO2 forcing. Climate Dyn., 41, 24712479, https://doi.org/10.1007/s00382-013-1677-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ma, J., S.-P. Xie, and Y. Kosaka, 2012: Mechanisms for tropical tropospheric circulation change in response to global warming. J. Climate, 25, 29792994, https://doi.org/10.1175/JCLI-D-11-00048.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ma, J., R. Chadwick, K.-H. Seo, C. Dong, G. Huang, G. R. Foltz, and J. H. Jiang, 2018: Responses of the tropical atmospheric circulation to climate change and connection to the hydrological cycle. Annu. Rev. Earth Planet. Sci., 46, 549580, https://doi.org/10.1146/annurev-earth-082517-010102.

  • Ma, S. M., and T. J. Zhou, 2016: Robust strengthening and westward shift of the tropical Pacific Walker circulation during 1979–2012: A comparison of 7 sets of reanalysis data and 26 CMIP5 models. J. Climate, 29, 30973118, https://doi.org/10.1175/JCLI-D-15-0398.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marvel, K., and C. Bonfils, 2013: Identifying external influences on global precipitation. Proc. Natl. Acad. Sci. USA, 110, 19 30119 306, https://doi.org/10.1073/pnas.1314382110.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Meehl, G. A., and H. Y. Teng, 2014: Regional precipitation simulations for the mid-1970s shift and early-2000s hiatus. Geophys. Res. Lett., 41, 76587665, https://doi.org/10.1002/2014GL061778.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mignot, J., and C. Frankignoul, 2003: On the interannual variability of surface salinity in the Atlantic. Climate Dyn., 20, 555565, https://doi.org/10.1007/s00382-002-0294-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mignot, J., and C. Frankignoul, 2004: Interannual to interdecadal variability of sea surface salinity in the Atlantic and its link to the atmosphere in a coupled model. J. Geophys. Res. Oceans, 109, C04005, https://doi.org/10.1029/2003JC002005.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nielsen, D. L., M. A. Brock, G. N. Rees, and D. S. Baldwin, 2003: Effects of increasing salinity on freshwater ecosystems in Australia. Aust. J. Bot., 51, 655665, https://doi.org/10.1071/BT02115.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Norris, J., G. Chen, and J. D. Neelin, 2019: Thermodynamic versus dynamic controls on extreme precipitation in a warming climate from the Community Earth System Model large ensemble. J. Climate, 32, 10251045, https://doi.org/10.1175/JCLI-D-18-0302.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • O’Neill, B. C., and Coauthors, 2016: The Scenario Model Intercomparison Project (ScenarioMIP) for CMIP6. Geosci. Model Dev., 9, 34613482, https://doi.org/10.5194/gmd-9-3461-2016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ponte, R. M., and N. T. Vinogradova, 2016: An assessment of basic processes controlling mean surface salinity over the global ocean. Geophys. Res. Lett., 43, 70527058, https://doi.org/10.1002/2016GL069857.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Power, S. B. and G. Kociuba, 2011: What caused the observed twentieth-century weakening of the Walker circulation? J. Climate, 24, 65016514, https://doi.org/10.1175/2011JCLI4101.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Qu, T. D., S. Gao, and I. Fukumori, 2013: Formation of salinity maximum water and its contribution to the overturning circulation in the North Atlantic as revealed by a global general circulation model. J. Geophys. Res. Oceans, 118, 19821994, https://doi.org/10.1002/jgrc.20152.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ren, L., K. Speer, and E. P. Chassignet, 2011: The mixed layer salinity budget and sea ice in the Southern Ocean. J. Geophys. Res. Oceans, 116, C08031, https://doi.org/10.1029/2010JC006634.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reul, N., and Coauthors, 2014: Sea surface salinity observations from space with the SMOS satellite: A new means to monitor the marine branch of the water cycle. Surv. Geophys., 35, 681722, https://doi.org/10.1007/s10712-013-9244-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Richter, I., and S.-P. Xie, 2010: Moisture transport from the Atlantic to the Pacific basin and its response to North Atlantic cooling and global warming. Climate Dyn., 35, 551566, https://doi.org/10.1007/s00382-009-0708-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sarojini, B. B., P. A. Stott, and E. Black, 2016: Detection and attribution of human influence on regional precipitation. Nat. Climate Change, 6, 669675, https://doi.org/10.1038/nclimate2976.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schmitt, R. W., 1995: The ocean component of the global water cycle. Rev. Geophys., 33, 13951409, https://doi.org/10.1029/95RG00184.

  • Schmitt, R. W., 2008: Salinity and the global water cycle. Oceanography, 21, 1219, https://doi.org/10.5670/oceanog.2008.63.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Seager, R., N. Naik, and G. A. Vecchi, 2010: Thermodynamic and dynamic mechanisms for large-scale changes in the hydrological cycle in response to global warming. J. Climate, 23, 46514668, https://doi.org/10.1175/2010JCLI3655.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shindell, D. T., and Coauthors, 2013: Radiative forcing in the ACCMIP historical and future climate simulations. Atmos. Chem. Phys., 13, 29392974, https://doi.org/10.5194/acp-13-2939-2013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Skliris, N., R. Marsh, S. A. Josey, S. A. Good, C. L. Liu, and R. P. Allan, 2014: Salinity changes in the World Ocean since 1950 in relation to changing surface freshwater fluxes. Climate Dyn., 43, 709736, https://doi.org/10.1007/s00382-014-2131-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sun, Q., Y. Du, Y. Zhang, M. Feng, J. S. Chowdary, J. Chi, S. Qiu, and W. Yu, 2019: Evolution of sea surface salinity anomalies in the southwestern tropical Indian Ocean during 2010–2011 influenced by a negative IOD event. J. Geophys. Res. Oceans, 124, 34283445, https://doi.org/10.1029/2018JC014580.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sun, Q., Y. Du, S.-P. Xie, Y. Zhang, M. Wang, and Y. Kosaka, 2021: Sea surface salinity change since 1950: Internal variability versus anthropogenic forcing. J. Climate, 34, 13051319, https://doi.org/10.1175/JCLI-D-20-0331.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thompson, R. M., S. W. Payne, E. E. Recker, and R. J. Reed, 1979: Structure and properties of synoptic-scale wave disturbances in the intertropical convergence zone of the eastern Atlantic. J. Atmos. Sci., 36, 5372, https://doi.org/10.1175/1520-0469(1979)036<0053:SAPOSS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tokinaga, H., S.-P. Xie, C. Deser, Y. Kosaka, and Y. M. Okumura, 2012: Slowdown of the Walker circulation driven by tropical Indo-Pacific warming. Nature, 491, 439443, https://doi.org/10.1038/nature11576.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., 1976: Spatial and temporal variations of the Southern Oscillation. Quart. J. Roy. Meteor. Soc., 102, 639653, https://doi.org/10.1002/qj.49710243310.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Trott, C. B., B. Subrahmanyam, A. Chaigneau, and H. L. Roman-Stork, 2019: Eddy-induced temperature and salinity variability in the Arabian Sea. Geophys. Res. Lett., 46, 27342742, https://doi.org/10.1029/2018GL081605.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vecchi, G. A., and B. J. Soden, 2007: Global warming and the weakening of the tropical circulation. J. Climate, 20, 43164340, https://doi.org/10.1175/JCLI4258.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vecchi, G. A., B. J. Soden, A. T. Wittenberg, I. M. Held, A. Leetmaa, and M. J. Harrison, 2006: Weakening of tropical Pacific atmospheric circulation due to anthropogenic forcing. Nature, 441, 7376, https://doi.org/10.1038/nature04744.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vecchi, G. A., A. Clement, and B. J. Soden, 2008: Examining the tropical Pacific’s response to global warming. Eos, Trans. Amer. Geophys. Union, 89, 8183, https://doi.org/10.1029/2008EO090002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vincent, D. G., 1994: The South Pacific convergence zone (SPCZ)—A review. Mon. Wea. Rev., 122, 19491970, https://doi.org/10.1175/1520-0493(1994)122<1949:TSPCZA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vinogradova, N. T., and R. M. Ponte, 2017: In search of fingerprints of the recent intensification of the ocean water cycle. J. Climate, 30, 55135528, https://doi.org/10.1175/JCLI-D-16-0626.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, Z. H., N. E. Huang, J. M. Wallace, B. V. Smoliak, and X. Y. Chen, 2011: On the time-varying trend in global-mean surface temperature. Climate Dyn., 37, 759773, https://doi.org/10.1007/s00382-011-1128-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xie, S.-P., C. Deser, G. A. Vecchi, J. Ma, H. Teng, and A. T. Wittenberg, 2010: Global warming pattern formation: Sea surface temperature and rainfall. J. Climate, 23, 966986, https://doi.org/10.1175/2009JCLI3329.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xu, H. M., S. P. Xie, Y. Q. Wang, and R. J. Small, 2005: Effects of Central American mountains on the eastern Pacific winter ITCZ and moisture transport. J. Climate, 18, 38563873, https://doi.org/10.1175/JCLI3497.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yeh, S. W., Y. G. Ham, and J. Y. Lee, 2012: Changes in the tropical Pacific SST trend from CMIP3 to CMIP5 and its implication of ENSO. J. Climate, 25, 77647771, https://doi.org/10.1175/JCLI-D-12-00304.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yu, L. S., 2011: A global relationship between the ocean water cycle and near-surface salinity. J. Geophys. Res. Oceans, 116, C10025, https://doi.org/10.1029/2010JC006937.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yu, L. S., 2014: Coherent evidence from Aquarius and Argo for the existence of a shallow low-salinity convergence zone beneath the Pacific ITCZ. J. Geophys. Res. Oceans, 119, 76257644, https://doi.org/10.1002/2014JC010030.

    • Search Google Scholar
    • Export Citation
  • Yu, L. S., S. A. Josey, F. M. Bingham, and T. Lee, 2020: Intensification of the global water cycle and evidence from ocean salinity: A synthesis review. Ann. N. Y. Acad. Sci., 1472, 7694, https://doi.org/10.1111/nyas.14354.

    • Search Google Scholar
    • Export Citation
  • Zhang, Y. H., Y. Du, S. J. Zheng, Y. L. Yang, and X. H. Cheng, 2013: Impact of Indian Ocean dipole on the salinity budget in the equatorial Indian Ocean. J. Geophys. Res. Oceans, 118, 49114923, https://doi.org/10.1002/jgrc.20392.

    • Search Google Scholar
    • Export Citation
  • Zhang, Y. H., Y. Du, and M. Feng, 2018: Multiple time scale variability of the sea surface salinity dipole mode in the tropical Indian Ocean. J. Climate, 31, 283296, https://doi.org/10.1175/JCLI-D-17-0271.1.

    • Search Google Scholar
    • Export Citation
  • Zheng, X. T., C. Hui, S.-P. Xie, W. J. Cai, and S. M. Long, 2019: Intensification of El Niño rainfall variability over the tropical Pacific in the slow oceanic response to global warming. Geophys. Res. Lett., 46, 22532260, https://doi.org/10.1029/2018GL081414.

    • Search Google Scholar
    • Export Citation
  • Zika, J. D., N. Skliris, A. T. Blaker, R. Marsh, A. J. G. Nurser, and S. A. Josey, 2018: Improved estimates of water cycle change from ocean salinity: The key role of ocean warming. Environ. Res. Lett., 13, 074036, https://doi.org/10.1088/1748-9326/aace42.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 507 500 21
Full Text Views 222 219 18
PDF Downloads 238 235 13

Sea Surface Salinity Changes in Response to El Niño–like SST Warming and Relevant Ocean Dynamics in the Tropical Pacific under the CMIP6 Abrupt-4XCO2 Scenario

Qiwei SunaSouthern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
bState Key Laboratory of Tropical Oceanography, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
cCollege of Marine Science, University of Chinese Academy of Sciences, Beijing, China

Search for other papers by Qiwei Sun in
Current site
Google Scholar
PubMed
Close
and
Yan DubState Key Laboratory of Tropical Oceanography, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
aSouthern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
cCollege of Marine Science, University of Chinese Academy of Sciences, Beijing, China

Search for other papers by Yan Du in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Based on the abrupt-4XCO2 scenario in phase 6 of the Coupled Model Intercomparison Project (CMIP6), this study investigates the response of the rainfall changes to El Niño–like SST warming and the role of ocean dynamical processes in the salinity changes in the tropical Pacific. The results show that the Walker circulation weakening and eastward shift, related to El Niño–like SST warming, dominates the zonal precipitation change. Precipitation decreases (increases) in the Maritime Continent (the equatorial Pacific), partly offsetting the effect of specific humidity. At the same time, the El Niño–like warming triggers convergence of meridional winds, which leads to a precipitation increase in the equatorial Pacific and a decrease in the intertropical convergence zone and the South Pacific convergence zone, following the “warmer-get-wetter” mechanism. Unlike the spatial pattern of precipitation changes, the sea surface salinity changes become fresher in the tropical western Pacific, related to the precipitation and the mean horizontal advection. The precipitation increase leads to negative salinity anomalies in the equatorial central Pacific. The westward climatological zonal currents transport the negative salinity anomalies westward. The meridional currents advect the salinity anomalies to both sides of the equator, partly offsetting the contribution of the freshwater flux on the salinity change. In addition, shallower mixed layer depth and weakening upwelling bring less high-salinity water to the surface and impact salinity redistribution through the vertical process in the equatorial regions.

© 2022 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Yan Du, duyan@scsio.ac.cn

Abstract

Based on the abrupt-4XCO2 scenario in phase 6 of the Coupled Model Intercomparison Project (CMIP6), this study investigates the response of the rainfall changes to El Niño–like SST warming and the role of ocean dynamical processes in the salinity changes in the tropical Pacific. The results show that the Walker circulation weakening and eastward shift, related to El Niño–like SST warming, dominates the zonal precipitation change. Precipitation decreases (increases) in the Maritime Continent (the equatorial Pacific), partly offsetting the effect of specific humidity. At the same time, the El Niño–like warming triggers convergence of meridional winds, which leads to a precipitation increase in the equatorial Pacific and a decrease in the intertropical convergence zone and the South Pacific convergence zone, following the “warmer-get-wetter” mechanism. Unlike the spatial pattern of precipitation changes, the sea surface salinity changes become fresher in the tropical western Pacific, related to the precipitation and the mean horizontal advection. The precipitation increase leads to negative salinity anomalies in the equatorial central Pacific. The westward climatological zonal currents transport the negative salinity anomalies westward. The meridional currents advect the salinity anomalies to both sides of the equator, partly offsetting the contribution of the freshwater flux on the salinity change. In addition, shallower mixed layer depth and weakening upwelling bring less high-salinity water to the surface and impact salinity redistribution through the vertical process in the equatorial regions.

© 2022 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Yan Du, duyan@scsio.ac.cn

Supplementary Materials

    • Supplemental Materials (PDF 1.99 MB)
Save