• AMS, 2013: Rain. Glossary of Meteorology, Amer. Meteor. Soc., http://glossary.ametsoc.org/wiki/Rain.

  • Annamalai, H., P. Liu, and S. P. Xie, 2005: Southwest Indian Ocean SST variability: Its local effect and remote influence on Asian monsoons. J. Climate, 18, 41504167, https://doi.org/10.1175/JCLI3533.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Barnston, G. A., and Y. X. He, 1996: Skill of canonical correlation analysis forecasts of 3-month mean surface climate in Hawaii and Alaska. J. Climate, 9, 25792605, https://doi.org/10.1175/1520-0442(1996)009<2579:SOCCAF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bjerknes, J. A., 1969: Atmospheric teleconnections from the equatorial Pacific. Mon. Wea. Rev., 97, 163172, https://doi.org/10.1175/1520-0493(1969)097<0163:ATFTEP>2.3.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cheng, H. P., and X. J. Jia, 2014: Influence of sea surface temperature anomalies of Indian Ocean in winter on precipitation over China in spring. Plateau Meteor., 33, 733742, https://doi.org/10.7522/j.issn.1000-0534.2013.00024.

    • Search Google Scholar
    • Export Citation
  • Cho, H. K., K. P. Bowman, and G. R. North, 2004: A comparison of gamma and lognormal distributions for characterizing satellite rain rates from the Tropical Rainfall Measuring Mission. J. Appl. Meteor., 43, 15861597, https://doi.org/10.1175/JAM2165.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chung, P. H., C. H. Sui, and T. Li, 2011: Interannual relationships between the tropical sea surface temperature and summertime subtropical anticyclone over the western North Pacific. J. Geophys. Res. Atmos., 116, D13111, https://doi.org/10.1029/2010JD015554.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Du, Y., S.-P. Xie, G. Huang, and K. Hu, 2009: Role of air–sea interaction in the long persistence of El Niño–induced north Indian Ocean warming. J. Climate, 22, 20232038, https://doi.org/10.1175/2008JCLI2590.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fan, L., S. I. Shin, Q. Y. Liu, and Z. Y. Liu, 2013: Relative importance of tropical SST anomalies in forcing East Asian summer monsoon circulation. Geophys. Res. Lett., 40, 24712477, https://doi.org/10.1002/grl.50494.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gelfand, A. E., 2000: Gibbs sampling. J. Amer. Stat. Assoc., 95, 13001304, https://doi.org/10.1080/01621459.2000.10474335.

  • Gu, W. Z., H. S. Chen, and Z. B. Sun, 2006: Spring precipitation in North China and its relation to SST of Indian Ocean in the preceding winter. J. Nanjing Inst. Meteor., 4, 484490.

    • Search Google Scholar
    • Export Citation
  • Guo, Y., and J. P. Li, 2012: A time-scale decomposition statistical downscaling model: Case study of North China rainfall in rainy season. Chin. J. Atmos. Sci., 36, 385396, https://doi.org/10.3878/j.issn.1006-9895.2011.11045.

    • Search Google Scholar
    • Export Citation
  • He, Z., and R. Wu, 2014: Indo-Pacific remote forcing in summer rainfall variability over the South China Sea. Climate Dyn., 42, 23232337, https://doi.org/10.1007/s00382-014-2123-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hu, G. F., J. Zou, and X. Zhang, 2005: Influences of Nino3 SST rising in the second half year on East Asia spring general circulation and Shandong spring precipitation. J. Appl. Meteor. Sci., 6, 772778.

    • Search Google Scholar
    • Export Citation
  • Huang, B. Y., and Coauthors, 2017: NOAA Extended Reconstructed Sea Surface Temperature (ERSST), version 5. NOAA National Centers for Environmental Information. https://doi.org/10.7289/V5T72FNM.

    • Search Google Scholar
    • Export Citation
  • Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77, 437471, https://doi.org/10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Klein, S. A., B. J. Soden, and N. C. Lau, 1999: Remote sea surface temperature variations during ENSO: Evidence for a tropical atmospheric bridge. J. Climate, 12, 917932, https://doi.org/10.1175/1520-0442(1999)012<0917:RSSTVD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, L. F., and W. H. Li, 2013: Southeastern United States summer rainfall framework and its implication for seasonal prediction. Environ. Res. Lett., 8, 044017, https://doi.org/10.1088/1748-9326/8/4/044017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, L. F., W. H. Li, Q. H. Tang, P. F. Zhang, and Y. M. Liu, 2015: Warm season heavy rainfall events over the Huaihe River Valley and their linkage with wintertime thermal condition of the tropical oceans. Climate Dyn., 46, 7182, https://doi.org/10.1007/s00382-015-2569-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, W. H., P. Zhang, J. Ye, L. Li, and P. A. Baker, 2011: Impact of the two different types of El Niño events on the Amazon climate and ecosystem productivity. J. Plant Ecol., 4, 9199, https://doi.org/10.1093/jpe/rtq039.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, W. J., 2012: Modern Climate Operation. China Meteorological Press, 512 pp.

  • Lin, T., J. C. Lee, and S. Y. Yen, 2007: Finite mixture modeling using the skew normal distribution. Stat. Sin., 17, 909927, https://doi.org/10.1007/s00440-006-0032-3.

    • Search Google Scholar
    • Export Citation
  • Liu, L., 2017: The influences of soil moisture over eastern China on Chinese climate. Ph.D. dissertation, Chinese Academy of Meteorological Sciences, 103 pp.

    • Search Google Scholar
    • Export Citation
  • Lu, R. Y., 2001: Atmospheric circulation anomaly associated with the spring rainfall anomaly in North China. Climate Environ. Res., 6, 400408.

    • Search Google Scholar
    • Export Citation
  • Lu, R. Y., Y. Li, and B. Dong, 2006: External and internal summer atmospheric variability in the western North Pacific and East Asia. J. Meteor. Soc. Japan, 84, 447462, https://doi.org/10.2151/jmsj.84.447.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McLachlan, G. J., and D. Peel, 2000: Finite Mixture Models. Wiley, 419 pp.

  • Melnykov, V., and R. Maitra, 2010: Finite mixture models and model-based clustering. Stat. Surv., 4, 80116, https://doi.org/10.1214/09-SS053.

  • Michaelsen, J., 1987: Cross-validation in statistical climate forecast models. J. Appl. Meteor., 26, 15891600, https://doi.org/10.1175/1520-0450(1987)026<1589:CVISCF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Namias, J., 1963: Interactions of circulation and weather between hemispheres. Mon. Wea. Rev., 91, 482486, https://doi.org/10.1175/1520-0493(1963)091<0482:IOCAWB>2.3.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Peng, P., A. Kumar, and B. Jha, 2014: Climate mean, variability and dominant patterns of the Northern Hemisphere wintertime mean atmospheric circulation in the NCEP CFSv2. Climate Dyn., 42, 27832799, https://doi.org/10.1007/s00382-014-2116-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Richardson, S., and P. J. Green, 1997: On Bayesian analysis of mixtures with an unknown number of components. J. Roy. Stat. Soc., 59B, 731792, https://doi.org/10.1111/1467-9868.00095.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rong, X. Y., R. H. Zhang, and T. Li, 2010: Impacts of Atlantic sea surface temperature anomalies on Indo-East Asian summer monsoon–ENSO relationship. Chin. Sci. Bull., 55, 24582468, https://doi.org/10.1007/s11434-010-3098-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Saha, S., and Coauthors, 2014: The NCEP Climate Forecast System version 2. J. Climate, 27, 21852208, https://doi.org/10.1175/JCLI-D-12-00823.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stephens, M., 2000: Dealing with label switching in mixture models. J. Roy. Stat. Soc., 62B, 795809, https://doi.org/10.1111/1467-9868.00265.

  • Sui, C. H., P. H. Chung, and T. Li, 2007: Interannual and interdecadal variability of the summertime western North Pacific subtropical high. Geophys. Res. Lett., 34, L11701, https://doi.org/10.1029/2006GL029204.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, B., and Q. Zhang, 2002: Pacific–East Asian teleconnection. Part II: How the Philippine Sea anomalous anticyclone is established during El Niño development. J. Climate, 15, 32523265, https://doi.org/10.1175/1520-0442(2002)015<3252:PEATPI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, B., R. G. Wu, and X. H. Fu, 2000: Pacific–East Asian teleconnection: How does ENSO affect East Asian climate? J. Climate, 13, 15171536, https://doi.org/10.1175/1520-0442(2000)013<1517:PEATHD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, B., R. G. Wu, and T. Li, 2003: Atmosphere–warm ocean interaction and its impacts on Asian–Australian monsoon variation. J. Climate, 16, 11951211, https://doi.org/10.1175/1520-0442(2003)16<1195:AOIAII>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, B., J. Yang, T. Zhou, and B. Wang, 2008: Interdecadal changes in the major modes of Asian–Australian monsoon variability: Strengthening relationship with ENSO since the late 1970s. J. Climate, 21, 17711789, https://doi.org/10.1175/2007JCLI1981.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, Z. Y., Y. J. Liu, T. Ding, D. Li, and J. J. Hong, 2018: Features and possible causes of the climate anomalies in spring 2018. Meteor. Mon., 44, 13601369, https://doi.org/10.7519/j.issn.1000-0526.2018.10.013.

    • Search Google Scholar
    • Export Citation
  • WMO, 2006: Standardised Verification System (SVS) for Long-Range Forecasts (LRF): Attachment II-8 to the manual on the GDPFS (WMO-No. 485), Volume I, 17 pp., https://www.metoffice.gov.uk/binaries/content/assets/metofficegovuk/pdf/research/climate-science/climate-observations-projections-and-impacts/svslrf.pdf.

    • Search Google Scholar
    • Export Citation
  • Xie, P., M. Chen, S. Yang, A. Yatagai, T. Hayasaka, Y. Fukushima, and C. Liu, 2007: A gauge-based analysis of daily precipitation over East Asia. J. Hydrometeor., 8, 607626, https://doi.org/10.1175/JHM583.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xie, S.-P., H. Annamalai, F. A. Schott, and J. P. McCreary, 2002: Structure and mechanisms of south Indian Ocean climate variability. J. Climate, 15, 864878, https://doi.org/10.1175/1520-0442(2002)015<0864:SAMOSI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xie, S.-P., K. M. Hu, J. Hafner, H. Tokinaga, Y. Du, G. Huang, and T. Sampe, 2009: Indian Ocean capacitor effect on Indo-western Pacific climate during the summer following El Niño. J. Climate, 22, 730747, https://doi.org/10.1175/2008JCLI2544.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yu, J. Y., and H. Y. Kao, 2007: Decadal changes of ENSO persistence barrier in SST and ocean heat content indices: 1958–2001. J. Geophys. Res. Atmos., 112, D13106, https://doi.org/10.1029/2006JD007654.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, H., and L. P. Feng, 2010: Characteristics of spatio-temporal variation of precipitation in North China in recent 50 years. J. Nat. Resour., 2, 270279.

    • Search Google Scholar
    • Export Citation
  • Zhang, R., A. Sumi, and M. Kimoto, 1999: A diagnostic study of the impact of El Niño on the precipitation in China. Adv. Atmos. Sci., 16, 229241, https://doi.org/10.1007/BF02973084.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, X., L. Ma, L. Leng, Y. Li, F. Li, and W. H. Guo, 2016: Climatic characteristics and main weather conceptual model of spring rainstorm in Jining during the past 45 years. Torrential Rain Disasters, 35, 482488, https://doi.org/10.3696/j.issn.1004-9045.2016.05.010.

    • Search Google Scholar
    • Export Citation
  • Zhao, S. Y., and S. Yang, 2014: Dynamical prediction of the early-season rainfall over southern China by the NCEP Climate Forecast System. Wea. Forecasting, 29, 13911401, https://doi.org/10.1175/WAF-D-14-00012.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhao, S. Y., Y. Song, D. Yi, and Q. Li, 2015: Skills of yearly prediction of the early-season rainfall over southern China by the NCEP Climate Forecast System. Theor. Appl. Climatol., 122, 743754, https://doi.org/10.1007/s00704-014-1333-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zheng, F., and J. P. Li, 2012: Impact of preceding boreal winter Southern Hemisphere annular mode on spring precipitation over south China and related mechanism. Chin. J. Geophys., 55, 35423557, https://doi.org/10.6038/j.issn.0001-5733.2012.11.004.

    • Search Google Scholar
    • Export Citation
  • Zuo, Z. Y., and R. H. Zhang, 2007: Relationship between summer precipitation and spring soil moisture in Eastern China (in Chinese). Chin. Sci. Bull., 52, 17221724.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zuo, Z. Y., and R. H. Zhang, 2012: The anomalies of spring rainfall in eastern China and its relation with tropical Pacific SST and Eurasian snow. Chin. J. Atmos. Sci., 36, 185194, https://xueshu.baidu.com/usercenter/paper/show?paperid=ab5405aebfa5fe1fa0899aeff1d2acee&site=xueshu_se.

    • Search Google Scholar
    • Export Citation
  • Zuo, Z. Y., and R. H. Zhang, 2016: Influence of soil moisture in Eastern China on the East Asian summer monsoon. Adv. Atmos. Sci., 33, 151163, https://doi.org/10.1007/s00376-015-5024-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 195 195 11
Full Text Views 101 101 2
PDF Downloads 123 123 4

North China Spring Rainfall and Its Linkage with SST and Atmospheric Circulation

Lin ShangaKey Laboratory for Meteorological Disaster Prevention and Mitigation of Shandong, Jinan, China
bEarth and Climate Sciences, Nicholas School of Environment Sciences, Duke University, Durham, North Carolina
cShandong Climate Center, Jinan, China

Search for other papers by Lin Shang in
Current site
Google Scholar
PubMed
Close
and
Wenhong LibEarth and Climate Sciences, Nicholas School of Environment Sciences, Duke University, Durham, North Carolina

Search for other papers by Wenhong Li in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Spring rainfall is important for agriculture and economics in North China (NC). Thus, there is an imperative need for accurate seasonal prediction of the spring precipitation. This study implements a novel rainfall framework to improve understanding of NC spring rainfall. The framework is built based on a three-cluster normal mixture model. Distribution parameters are sampled using Bayesian inference and a Markov chain Monte Carlo algorithm. The probability behaviors of light, moderate, and heavy rainfall events can be reflected by the three rainfall clusters, respectively. Analysis of 61-yr data indicates that moderate rainfall makes the largest contribution (67%) to the total rainfall amount. The moderate rainfall intensity is mainly influenced by the sea surface temperature anomaly (SSTA) in the previous season over the equatorial eastern Pacific, and rainfall frequency is influenced by geopotential height anomaly in the mid- to high latitudes in spring. It is also found that more extreme precipitation events can be observed in the spring following an eastern Pacific El Niño event in the previous autumn and winter. Based on these relationships, we develop a multiple linear regression model. Hindcasts for spring precipitation using the model indicates that its anomaly correlation is 0.48, significant at the 99% confidence level. The result suggests that the newly developed model can well predict spring rainfall amount in NC.

© 2022 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Wenhong Li, wenhong.li@duke.edu

Abstract

Spring rainfall is important for agriculture and economics in North China (NC). Thus, there is an imperative need for accurate seasonal prediction of the spring precipitation. This study implements a novel rainfall framework to improve understanding of NC spring rainfall. The framework is built based on a three-cluster normal mixture model. Distribution parameters are sampled using Bayesian inference and a Markov chain Monte Carlo algorithm. The probability behaviors of light, moderate, and heavy rainfall events can be reflected by the three rainfall clusters, respectively. Analysis of 61-yr data indicates that moderate rainfall makes the largest contribution (67%) to the total rainfall amount. The moderate rainfall intensity is mainly influenced by the sea surface temperature anomaly (SSTA) in the previous season over the equatorial eastern Pacific, and rainfall frequency is influenced by geopotential height anomaly in the mid- to high latitudes in spring. It is also found that more extreme precipitation events can be observed in the spring following an eastern Pacific El Niño event in the previous autumn and winter. Based on these relationships, we develop a multiple linear regression model. Hindcasts for spring precipitation using the model indicates that its anomaly correlation is 0.48, significant at the 99% confidence level. The result suggests that the newly developed model can well predict spring rainfall amount in NC.

© 2022 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Wenhong Li, wenhong.li@duke.edu

Supplementary Materials

    • Supplemental Materials (PDF 293 KB)
Save