• Alexander, M. A., I. Bladé, M. Newman, J. R. Lanzante, and N.-C. Lau, 2002: The atmospheric bridge: The influence of ENSO teleconnections on air–sea interaction over the global oceans. J. Climate, 15, 22052231, https://doi.org/10.1175/1520-0442(2002)015<2205:TABTIO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bai, H., and W. Dong, 2004: Climate features and formation causes of autumn rain over southwest China (in Chinese). Plateau Meteor., 23, 884889.

    • Search Google Scholar
    • Export Citation
  • Bretherton, C. S., M. Widmann, V. P. Dymnikov, J. M. Wallace, and I. Bladé, 1999: The effective number of spatial degrees of freedom of a time-varying field. J. Climate, 12, 19902009, https://doi.org/10.1175/1520-0442(1999)012<1990:TENOSD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cai, W., and Coauthors, 2019: Pantropical climate interactions. Science, 363, eaav4236, https://doi.org/10.1126/science.aav4236.

  • Chen, L., B. Zhang, and Y. Zhang, 2006: Progress in research on the East Asian monsoon (in Chinese). J. Appl. Meteor. Sci., 17, 711724.

    • Search Google Scholar
    • Export Citation
  • China Meteorological Administration, 2021: 2021 China Climate Bulletin, 62 pp.

  • Ding, Y., 2004: Seasonal march of the East-Asian summer monsoon. East Asian Monsoon, World Scientific, 353.

  • Ding, Y., and Z. Wang, 2008: A study of rainy seasons in China. Meteor. Atmos. Phys., 100, 121138, https://doi.org/10.1007/s00703-008-0299-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gao, Y., and Q. Guo, 1958: On the autumn raining area in China. Acta Meteor. Sin., 29, 264273.

  • Gill, A. E., 1980: Some simple solutions for heat-induced tropical circulation. Quart. J. Roy. Meteor. Soc., 106, 447462, https://doi.org/10.1002/qj.49710644905.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gong, D., and S. Wang, 1999: Impacts of ENSO on rainfall of global land and China. Chin. Sci. Bull., 44, 852857, https://doi.org/10.1007/BF02885036.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Harada, Y., and Coauthors, 2016: The JRA-55 reanalysis: Representation of atmospheric circulation and climate variability. J. Meteor. Soc. Japan, 94, 269302, https://doi.org/10.2151/jmsj.2016-015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • He, C., T. Zhou, A. Lin, B. Wu, D. Gu, C. Li, and B. Zheng, 2015: Enhanced or weakened Western North Pacific subtropical high under global warming? Sci. Rep., 5, 16771, https://doi.org/10.1038/srep16771.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • He, C., A. Lin, D. Gu, C. Li, B. Zheng, B. Wu, and T. Zhou, 2018: Using eddy geopotential height to measure the western North Pacific subtropical high in a warming climate. Theor. Appl. Climatol., 131, 681691, https://doi.org/10.1007/s00704-016-2001-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • He, C., W. Zhou, T. Li, T. Zhou, and Y. Wang, 2022: East Asian summer monsoon enhanced by COVID-19. Climate Dyn., https://doi.org/10.1007/s00382-022-06247-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • He, M., 1984: Distribution and long-term forecast of Chinese autumn rainfalls. Meteor. Mon., 10, 1013.

  • Hu, J., W. Wang, and Y. Tan, 2021: Contrasting impacts of three types of ENSO event on boreal autumn rainfall over Southwest China. J. Geosci. Environ. Prot., 9, 1427, https://doi.org/10.4236/gep.2021.910002.

    • Search Google Scholar
    • Export Citation
  • Huang, B., and Coauthors, 2021: Improvements of the daily optimum interpolation sea surface temperature (DOISST) version 2.1. J. Climate, 34, 29232939, https://doi.org/10.1175/JCLI-D-20-0166.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huang, Y., H. Wang, K. Fan, and Y. Gao, 2015: The western Pacific subtropical high after the 1970s: Westward or eastward shift? Climate Dyn., 44, 20352047, https://doi.org/10.1007/s00382-014-2194-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Klein, S. A., B. J. Soden, and N.-C. Lau, 1999: Remote sea surface temperature variations during ENSO: Evidence for a tropical atmospheric bridge. J. Climate, 12, 917932, https://doi.org/10.1175/1520-0442(1999)012<0917:RSSTVD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kobayashi, S., Y. Ota, and Y. Harada, 2015: The JRA-55 reanalysis: General specifications and basic characteristics. J. Meteor. Soc. Japan, 93, 548, https://doi.org/10.2151/jmsj.2015-001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kripalani, R., K. J. Ha, C. H. Ho, J. H. Oh, B. Preethi, M. Mujumdar, and A. Prabhu, 2022: Erratic Asian summer monsoon 2020: COVID-19 lockdown initiatives possible cause for these episodes? Climate Dyn., https://doi.org/10.1007/s00382-021-06042-x.

    • Search Google Scholar
    • Export Citation
  • Kuang, X., and Y. Zhang, 2005: Seasonal variation of the East Asian subtropical westerly jet and its association with the heating field over East Asia. Adv. Atmos. Sci., 22, 831840, https://doi.org/10.1007/BF02918683.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, C., and T. Zhao, 2019: Seasonal responses of precipitation in China to El Niño and positive Indian Ocean dipole modes. Atmosphere, 10, 372, https://doi.org/10.3390/atmos10070372.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, H.-X., H.-P. Chen, and H.-J. Wang, 2017: Influence of North Pacific SST on heavy precipitation events in autumn over North China. Atmos. Oceanic Sci. Lett., 10, 2128, https://doi.org/10.1080/16742834.2017.1237256.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, T., B. Wang, B. Wu, T. Zhou, C.-P. Chang, and R. Zhang, 2017: Theories on formation of an anomalous anticyclone in western North Pacific during El Niño: A review. J. Meteor. Res., 31, 9871006, https://doi.org/10.1007/s13351-017-7147-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, Y., P. Liang, and Y. Sun, 2019: Characteristics of the western Pacific subtropical high and summer rainfall anomalies. The Asian Summer Monsoon, Y. Liu, P. Liang, and Y. Sun, Eds., Elsevier, 8595.

    • Search Google Scholar
    • Export Citation
  • Luo, X., D. Li, and H. Wang, 2013: New evolution features of autumn rainfall in west China and its responses to atmospheric circulation (in Chinese). Plateau Meteor., 32, 10191031.

    • Search Google Scholar
    • Export Citation
  • Qian, W., Y. Zhu, A. Xie, and Q. Ye, 1998: Seasonal and interannual variations of upper tropospheric water vapor band brightness temperature over the global monsoon regions. Adv. Atmos. Sci., 15, 337345, https://doi.org/10.1007/s00376-998-0005-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Qian, W., H. S. Kang, and D. K. Lee, 2002: Distribution of seasonal rainfall in the East Asian monsoon region. Theor. Appl. Climatol., 73, 151168, https://doi.org/10.1007/s00704-002-0679-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Qin, M., D. Li, A. Dai, W. Hua, and H. Ma, 2018: The influence of the Pacific decadal oscillation on North Central China precipitation during boreal autumn. Int. J. Climatol., 38, e821e831, https://doi.org/10.1002/joc.5410.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Qiu, Y., W. Cai, X. Guo, and B. Ng, 2014: The asymmetric influence of the positive and negative IOD events on China’s rainfall. Sci. Rep., 4, 4943, https://doi.org/10.1038/srep04943.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reynolds, R. W., T. M. Smith, C. Y. Liu, D. B. Chelton, K. S. Casey, and M. G. Schlax, 2007: Daily high-resolution-blended analyses for sea surface temperature. J. Climate, 20, 54735496, https://doi.org/10.1175/2007JCLI1824.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Takaya, K., and H. Nakamura, 2001: A formulation of a phase-independent wave-activity flux for stationary and migratory quasigeostrophic eddies on a zonally varying basic flow. J. Atmos. Sci., 58, 608627, https://doi.org/10.1175/1520-0469(2001)058<0608:AFOAPI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, B., and LinHo, 2002: Rainy season of the Asian–Pacific summer monsoon. J. Climate, 15, 386398, https://doi.org/10.1175/1520-0442(2002)015<0386:RSOTAP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, B., and Q. Ding, 2008: Global monsoon: Dominant mode of annual variation in the tropics. Dyn. Atmos. Oceans, 44, 165183, https://doi.org/10.1016/j.dynatmoce.2007.05.002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, B., Q. Ding, X. Fu, I.-S. Kang, K. Jin, J. Shukla, and F. Doblas-Reyes, 2005: Fundamental challenge in simulation and prediction of summer monsoon rainfall. Geophys. Res. Lett., 32, L15711, https://doi.org/10.1029/2005GL022734.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, B., B. Xiang, and J.-Y. Lee, 2013: Subtropical high predictability establishes a promising way for monsoon and tropical storm predictions. Proc. Natl. Acad. Sci. USA, 110, 27182722, https://doi.org/10.1073/pnas.1214626110.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, B., X. Luo, and J. Liu, 2020: How robust is the Asian precipitation–ENSO relationship during the industrial warming period (1901–2017)? J. Climate, 33, 27792792, https://doi.org/10.1175/JCLI-D-19-0630.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, C., 2019: Three-ocean interactions and climate variability: A review and perspective. Climate Dyn., 53, 51195136, https://doi.org/10.1007/s00382-019-04930-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, Z., and B. Zhou, 2019: Observed decadal transition in trend of autumn rainfall over central China in the late 1990s. J. Climate, 32, 13951409, https://doi.org/10.1175/JCLI-D-18-0112.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, Z., J. Mu, M. Yang, and X. Yu, 2020: Reexamining the mechanisms of East Asian summer monsoon changes in response to non–East Asian anthropogenic aerosol forcing. J. Climate, 33, 29292944, https://doi.org/10.1175/JCLI-D-19-0550.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Watanabe, M., and M. Kimoto, 2000: Atmosphere–ocean thermal coupling in the North Atlantic: A positive feedback. Quart. J. Roy. Meteor. Soc., 126, 33433369, https://doi.org/10.1002/qj.49712657017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Worley, P. H., and J. B. Drake, 2005: Performance portability in the physical parameterizations of the Community Atmospheric Model. Int. J. High Perform. Comput. Appl., 19, 187201, https://doi.org/10.1177/1094342005056095.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xie, S.-P., Y. Kosaka, Y. Du, K. Hu, J. S. Chowdary, and G. Huang, 2016: Indo-Western Pacific Ocean capacitor and coherent climate anomalies in post-ENSO summer: A review. Adv. Atmos. Sci., 33, 411432, https://doi.org/10.1007/s00376-015-5192-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xu, H.-L., J. Feng, and C. Sun, 2013: Impact of preceding summer North Atlantic Oscillation on early autumn precipitation over central China. Atmos. Oceanic Sci. Lett., 6, 417422, https://doi.org/10.1080/16742834.2013.11447118.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yang, Q., Z. Ma, and B. Xu, 2016: Modulation of monthly precipitation patterns over East China by the Pacific decadal oscillation. Climatic Change, 144, 405417, https://doi.org/10.1007/s10584-016-1662-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yeh, T.-C., S.-Y. Tao, and M.-T. Li, 1958: The abrupt change of circulation over the Northern Hemisphere during June and October (in Chinese). Acta Meteor. Sin., 29, 249263.

    • Search Google Scholar
    • Export Citation
  • Zeng, X., and E. Lu, 2004: Globally unified monsoon onset and retreat indexes. J. Climate, 17, 22412248, https://doi.org/10.1175/1520-0442(2004)017<2241:GUMOAR>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, S., and B. Wang, 2008: Global summer monsoon rainy seasons. Int. J. Climatol., 28, 15631578, https://doi.org/10.1002/joc.1659.

  • Zhang, Y., and H. Chen, 2016: Comparing CAM5 and superparameterized CAM5 simulations of summer precipitation characteristics over continental East Asia: Mean state, frequency–intensity relationship, diurnal cycle, and influencing factors. J. Climate, 29, 10671089, https://doi.org/10.1175/JCLI-D-15-0342.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, Y., X. Kuang, W. Guo, and T. Zhou, 2006: Seasonal evolution of the upper-tropospheric westerly jet core over East Asia. Geophys. Res. Lett., 33, L11708, https://doi.org/10.1029/2006GL026377.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhou, B., and Z. Wang, 2019: Enlightenment from heavy autumn rain of West China in 2017: Synergic role of atmospheric circulation at mid-high latitudes and oceanic background. Theor. Appl. Climatol., 138, 263274, https://doi.org/10.1007/s00704-019-02809-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhu, C., W.-S. Lee, H. Kang, and C.-K. Park, 2005: A proper monsoon index for seasonal and interannual variations of the East Asian monsoon. Geophys. Res. Lett., 32, L02811, https://doi.org/10.1029/2004GL021295.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhu, Z., R. Lu, H. Yan, W. Li, T. Li, and J. He, 2020: Dynamic origin of the interannual variability of West China autumn rainfall. J. Climate, 33, 96439652, https://doi.org/10.1175/JCLI-D-20-0097.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 527 527 34
Full Text Views 209 209 13
PDF Downloads 288 288 13

Combined Effects of Tropical Indo-Pacific–Atlantic SST Anomalies on Record-Breaking Floods over Central-North China in September 2021

Boqi LiuaState Key Laboratory of Severe Weather and Institute of Climate System, Chinese Academy of Meteorological Sciences, Beijing, China

Search for other papers by Boqi Liu in
Current site
Google Scholar
PubMed
Close
,
Congwen ZhuaState Key Laboratory of Severe Weather and Institute of Climate System, Chinese Academy of Meteorological Sciences, Beijing, China

Search for other papers by Congwen Zhu in
Current site
Google Scholar
PubMed
Close
,
Shuangmei MaaState Key Laboratory of Severe Weather and Institute of Climate System, Chinese Academy of Meteorological Sciences, Beijing, China

Search for other papers by Shuangmei Ma in
Current site
Google Scholar
PubMed
Close
, and
Yuhan YanaState Key Laboratory of Severe Weather and Institute of Climate System, Chinese Academy of Meteorological Sciences, Beijing, China

Search for other papers by Yuhan Yan in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The rainy season typically terminates over the area of central northern China (CNC) in late August with the rapid retreat of the East Asian summer monsoon (EASM). However, the CNC suffered continuous heavy rainfall in September 2021. The monthly accumulative precipitation amount broke its historical record since 1961 and caused severe floods. The present study ascribes this extreme rainfall event to the westward inland intrusion of the western North Pacific subtropical high (WNPSH). Both case study and statistical analysis indicate that westward extension of the WNPSH is significantly positively correlated with convection over the Maritime Continent (MC) and northern Indian Peninsula (NIP) under the influence of sea surface temperature anomalies (SSTAs). Atmospheric general circulation model (AGCM) experiments validate the individual and combined effects of SSTAs in the tropical Indo-Pacific–Atlantic Oceans on WNPSH and CNC rainfall. In particular, the warm SSTAs in the Indo-Pacific warm pool increase the probability of extremely westward extension of the WNPSH and above-normal rainfall over the CNC. The cold SSTAs in the equatorial central-eastern Pacific enlarge the zonal SSTA gradient, strengthen the anomalous convection over the MC and NIP, and intensify the WNPSH and CNC rainfall anomalies. Meanwhile, the warmer tropical Atlantic anchors the anomalous WNPSH and CNC rainfall in their observed positions. A statistical model based on the tropical SSTAs in August can skillfully predict the westward extension of the WNPSH in September 2021, suggesting that the combined effects of tropical Indo-Pacific–Atlantic SSTAs in late summer possibly tend to prolong rainy season of the EASM until early autumn.

© 2022 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Boqi Liu, liubq@cma.gov.cn

Abstract

The rainy season typically terminates over the area of central northern China (CNC) in late August with the rapid retreat of the East Asian summer monsoon (EASM). However, the CNC suffered continuous heavy rainfall in September 2021. The monthly accumulative precipitation amount broke its historical record since 1961 and caused severe floods. The present study ascribes this extreme rainfall event to the westward inland intrusion of the western North Pacific subtropical high (WNPSH). Both case study and statistical analysis indicate that westward extension of the WNPSH is significantly positively correlated with convection over the Maritime Continent (MC) and northern Indian Peninsula (NIP) under the influence of sea surface temperature anomalies (SSTAs). Atmospheric general circulation model (AGCM) experiments validate the individual and combined effects of SSTAs in the tropical Indo-Pacific–Atlantic Oceans on WNPSH and CNC rainfall. In particular, the warm SSTAs in the Indo-Pacific warm pool increase the probability of extremely westward extension of the WNPSH and above-normal rainfall over the CNC. The cold SSTAs in the equatorial central-eastern Pacific enlarge the zonal SSTA gradient, strengthen the anomalous convection over the MC and NIP, and intensify the WNPSH and CNC rainfall anomalies. Meanwhile, the warmer tropical Atlantic anchors the anomalous WNPSH and CNC rainfall in their observed positions. A statistical model based on the tropical SSTAs in August can skillfully predict the westward extension of the WNPSH in September 2021, suggesting that the combined effects of tropical Indo-Pacific–Atlantic SSTAs in late summer possibly tend to prolong rainy season of the EASM until early autumn.

© 2022 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Boqi Liu, liubq@cma.gov.cn
Save