• Anandhi, A., S. Hutchinson, J. Harrington, V. Rahmani, M. B. Kirkham, and C. W. Rice, 2016: Changes in spatial and temporal trends in wet, dry, warm and cold spell length or duration indices in Kansas, USA. Int. J. Climatol., 36, 40854101, https://doi.org/10.1002/joc.4619.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Andreadis, K. M., and D. P. Lettenmaier, 2006: Trends in 20th century drought over the continental United States. Geophys. Res. Lett., 33, L10403, https://doi.org/10.1029/2006GL025711.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Beck, H. E., A. I. J. M. van Dijk, V. Levizzani, J. Schellekens, D. G. Miralles, B. Martens, and A. de Roo, 2017: MSWEP: 3-hourly 0.25° global gridded precipitation (1979–2015) by merging gauge, satellite, and reanalysis data. Hydrol. Earth Syst. Sci., 21, 589615, https://doi.org/10.5194/hess-21-589-2017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Beck, H. E., N. E. Zimmermann, T. R. McVicar, N. Vergopolan, A. Berg, and E. F. Wood, 2018: Present and future Köppen-Geiger climate classification maps at 1-km resolution. Sci. Data, 5, 180214, https://doi.org/10.1038/sdata.2018.214.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brun, J., and A. P. Barros, 2014: Mapping the role of tropical cyclones on the hydroclimate of the southeast United States: 2002–2011. Int. J. Climatol., 34, 494517, https://doi.org/10.1002/joc.3703.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Byrne, M. P., and P. A. O’Gorman, 2015: The response of precipitation minus evapotranspiration to climate warming: Why the “wet-get-wetter, dry-get-drier” scaling does not hold over land. J. Climate, 28, 80788092, https://doi.org/10.1175/JCLI-D-15-0369.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chou, C., J. C. H. Chiang, C.-W. Lan, C.-H. Chung, Y.-C. Liao, and C.-J. Lee, 2013: Increase in the range between wet and dry season precipitation. Nat. Geosci., 6, 263267, https://doi.org/10.1038/ngeo1744.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chow, G. C., 1960: Tests of equality between sets of coefficients in two linear regressions. Econometrica, 28, 591605, https://doi.org/10.2307/1910133.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cook, B. I., T. R. Ault, and J. E. Smerdon, 2015: Unprecedented 21st century drought risk in the American Southwest and Central Plains. Sci. Adv., 1, e1400082, https://doi.org/10.1126/sciadv.1400082.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cook, B. I., R. Seager, A. P. Williams, M. J. Puma, S. McDermid, M. Kelley, and L. Nazarenko, 2019: Climate change amplification of natural drought variability: The historic mid-twentieth-century North American drought in a warmer world. J. Climate, 32, 54175436, https://doi.org/10.1175/JCLI-D-18-0832.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cook, B. I., J. S. Mankin, K. Marvel, A. P. Williams, J. E. Smerdon, and K. J. Anchukaitis, 2020: Twenty-first century drought projections in the CMIP6 forcing scenarios. Earths Future, 8, e2019EF001461, https://doi.org/10.1029/2019EF001461.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cook, E. R., R. Seager, R. R. Heim, R. S. Vose, C. Herweijer, and C. Woodhouse, 2010: Megadroughts in North America: Placing IPCC projections of hydroclimatic change in a long-term palaeoclimate context. J. Quat. Sci., 25, 4861, https://doi.org/10.1002/jqs.1303.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Coopersmith, E. J., B. S. Minsker, and M. Sivapalan, 2014: Patterns of regional hydroclimatic shifts: An analysis of changing hydrologic regimes. Water Resour. Res., 50, 19601983, https://doi.org/10.1002/2012WR013320.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dai, A., 2011: Drought under global warming: A review. Wiley Interdiscip. Rev.: Climate. Change, 2, 4565, https://doi.org/10.1002/wcc.81.

    • Search Google Scholar
    • Export Citation
  • Dai, A., 2013: Increasing drought under global warming in observations and models. Nat. Climate Change, 3, 5258, https://doi.org/10.1038/nclimate1633.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dai, A., T. Zhao, and J. Chen, 2018: Climate change and drought: A precipitation and evaporation perspective. Curr. Climate. Change Rep., 4, 301312, https://doi.org/10.1007/s40641-018-0101-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dalton, M., P. Mote, and A. Snover, 2013: Climate Change in the Northwest: Implications for our Landscapes, Waters, and Communities. Island Press, 271 pp., https://cig.uw.edu/publications/climate-change-in-the-northwest-implications-for-our-landscapes-waters-and-communities/.

    • Search Google Scholar
    • Export Citation
  • Diffenbaugh, N. S., 2020: Verification of extreme event attribution: Using out-of-sample observations to assess changes in probabilities of unprecedented events. Sci. Adv., 6, eaay2368, https://doi.org/10.1126/sciadv.aay2368.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Distefano, V., V. Mameli, and I. Poli, 2020: Identifying spatial patterns with the Bootstrap ClustGeo technique. Spat. Stat., 38, 100441, https://doi.org/10.1016/j.spasta.2020.100441.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Durre, I., M. J. Menne, B. E. Gleason, T. G. Houston, and R. S. Vose, 2010: Comprehensive automated quality assurance of daily surface observations. J. Appl. Meteor. Climatol., 49, 16151633, https://doi.org/10.1175/2010JAMC2375.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fovell, R. G., 1997: Consensus clustering of U.S. temperature and precipitation data. J. Climate, 10, 14051427, https://doi.org/10.1175/1520-0442(1997)010<1405:CCOUST>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fovell, R. G., and M.-Y. C. Fovell, 1993: Climate zones of the conterminous United States defined using cluster analysis. J. Climate, 6, 21032135, https://doi.org/10.1175/1520-0442(1993)006<2103:CZOTCU>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ganguli, P., and A. R. Ganguly, 2016: Space–time trends in U.S. meteorological droughts. J. Hydrol. Reg. Stud., 8, 235259, https://doi.org/10.1016/j.ejrh.2016.09.004.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ge, Y., T. Apurv, and X. Cai, 2016: Spatial and temporal patterns of drought in the continental U.S. during the past century. Geophys. Res. Lett., 43, 62946303, https://doi.org/10.1002/2016GL069660.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Griffin, D., and K. J. Anchukaitis, 2014: How unusual is the 2012–2014 California drought? Geophys. Res. Lett., 41, 90179023, https://doi.org/10.1002/2014GL062433.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Guido, Z., and Coauthors, 2020: Farmer forecasts: Impacts of seasonal rainfall expectations on agricultural decision-making in sub-Saharan Africa. Climate. Risk Manage., 30, 100247, https://doi.org/10.1016/j.crm.2020.100247.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Guttman, N. B., 1999: Accepting the standardized precipitation index: A calculation algorithm. J. Amer. Water Resour. Assoc., 35, 311322, https://doi.org/10.1111/j.1752-1688.1999.tb03592.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Haslinger, K., F. Holawe, and G. Blöschl, 2019: Spatial characteristics of precipitation shortfalls in the Greater Alpine Region—A data-based analysis from observations. Theor. Appl. Climatol., 136, 717731, https://doi.org/10.1007/s00704-018-2506-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Heim, R. R., 2002: A review of twentieth-century drought indices used in the United States. Bull. Amer. Meteor. Soc., 83, 11491166, https://doi.org/10.1175/1520-0477-83.8.1149.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Heim, R. R., 2017: A comparison of the early twenty-first century drought in the United States to the 1930s and 1950s drought episodes. Bull. Amer. Meteor. Soc., 98, 25792592, https://doi.org/10.1175/BAMS-D-16-0080.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Helsel, D. R., R. M. Hirsch, K. R. Ryberg, S. Archfield, and E. J. Gilroy, 2020: Statistical methods in water resources: Techniques and methods 4-A3. U.S. Geological Survey, accessed 4 August 2021, https://doi.org/10.3133/tm4A3.

    • Search Google Scholar
    • Export Citation
  • Herweijer, C., R. Seager, E. R. Cook, and J. Emile-Geay, 2007: North American droughts of the last millennium from a gridded network of tree-ring data. J. Climate, 20, 13531376, https://doi.org/10.1175/JCLI4042.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hoerling, M., J. Eischeid, J. Perlwitz, X. Quan, T. Zhang, and P. Pegion, 2012: On the increased frequency of Mediterranean drought. J. Climate, 25, 21462161, https://doi.org/10.1175/JCLI-D-11-00296.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hu, Q., and S. Feng, 2008: Variation of the North American summer monsoon regimes and the Atlantic multidecadal oscillation. J. Climate, 21, 23712383, https://doi.org/10.1175/2007JCLI2005.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hu, Z., X. Chen, D. Chen, J. Li, S. Wang, Q. Zhou, G. Yin, and M. Guo, 2019: “Dry gets drier, wet gets wetter”: A case study over the arid regions of central Asia. Int. J. Climatol., 39, 10721091, https://doi.org/10.1002/joc.5863.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kassambara, A., and F. Mundt, 2020: factoextra: Extract and visualize the results of multivariate data analyses. R package version 1.0.7, https://rdrr.io/cran/factoextra/.

    • Search Google Scholar
    • Export Citation
  • Lee, J., D. Waliser, H. Lee, P. Loikith, and K. E. Kunkel, 2019: Evaluation of CMIP5 ability to reproduce twentieth century regional trends in surface air temperature and precipitation over conus. Climate Dyn., 53, 54595480, https://doi.org/10.1007/s00382-019-04875-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lloyd-Hughes, B., 2014: The impracticality of a universal drought definition. Theor. Appl. Climatol., 117, 607611, https://doi.org/10.1007/s00704-013-1025-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lloyd-Hughes, B., and M. A. Saunders, 2002: A drought climatology for Europe. Int. J. Climatol., 22, 15711592, https://doi.org/10.1002/joc.846.

  • Mahlstein, I., and R. Knutti, 2010: Regional climate change patterns identified by cluster analysis. Climate Dyn., 35, 587600, https://doi.org/10.1007/s00382-009-0654-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mallakpour, I., and G. Villarini, 2016: A simulation study to examine the sensitivity of the Pettitt test to detect abrupt changes in mean. Hydrol. Sci. J., 61, 245254, https://doi.org/10.1080/02626667.2015.1008482.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mann, H. B., 1945: Nonparametric tests against trend. Econometrica, 13, 245259, https://doi.org/10.2307/1907187.

  • Marston, M. L., and A. W. Ellis, 2021: Delineating precipitation regions of the contiguous United States from cluster analyzed gridded data. Ann. Amer. Assoc. Geogr., 111, 17211739, https://doi.org/10.1080/24694452.2020.1828803.

    • Search Google Scholar
    • Export Citation
  • Marvel, K., B. I. Cook, C. Bonfils, J. E. Smerdon, A. P. Williams, and H. Liu, 2021: Projected changes to hydroclimate seasonality in the continental United States. Earth’s Future, 9, e2021EF002019, https://doi.org/10.1029/2021EF002019.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marx, B. D., and P. H. C. Eilers, 1998: Direct generalized additive modeling with penalized likelihood. Comput. Stat. Data Anal., 28, 193209, https://doi.org/10.1016/S0167-9473(98)00033-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McKee, T. B., N. J. Doesken, and J. Kleist, 1993: The relationship of drought frequency and duration to time scales. Eighth Conf. on Applied Climatology, Anaheim, CA, Amer. Meteor. Soc., 179184.

    • Search Google Scholar
    • Export Citation
  • Mishra, A. K., and V. P. Singh, 2010: A review of drought concepts. J. Hydrol., 391, 202216, https://doi.org/10.1016/j.jhydrol.2010.07.012.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mitra, S., and P. Srivastava, 2016: Spatiotemporal variability of meteorological droughts in southeastern USA. Nat. Hazards, 86, 10071038, https://doi.org/10.1007/s11069-016-2728-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Orlowsky, B., and S. I. Seneviratne, 2013: Elusive drought: Uncertainty in observed trends and short- and long-term CMIP5 projections. Hydrol. Earth Syst. Sci., 17, 17651781, https://doi.org/10.5194/hess-17-1765-2013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Palmer, W. C., 1965: Meteorological Drought. U.S. Department of Commerce, Weather Bureau, 68 pp.

  • Pettitt, A. N., 1979: A non-parametric approach to the change-point problem. J. Roy. Stat. Soc., 28C, 126135, https://doi.org/10.2307/2346729.

    • Search Google Scholar
    • Export Citation
  • Pryor, S. C., J. A. Howe, and K. E. Kunkel, 2009: How spatially coherent and statistically robust are temporal changes in extreme precipitation in the contiguous USA? Int. J. Climatol., 29, 3145, https://doi.org/10.1002/joc.1696.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rahmani, V., S. L. Hutchinson, J. A. H. Jr, J. M. S. Hutchinson, and A. Anandhi, 2015: Analysis of temporal and spatial distribution and change-points for annual precipitation in Kansas, USA. Int. J. Climatol., 35, 38793887, https://doi.org/10.1002/joc.4252.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Russo, S., A. Dosio, A. Sterl, P. Barbosa, and J. Vogt, 2013: Projection of occurrence of extreme dry-wet years and seasons in Europe with stationary and nonstationary standardized precipitation indices. J. Geophys. Res. Atmos., 118, 76287639, https://doi.org/10.1002/jgrd.50571.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sathiaraj, D., X. Huang, and J. Chen, 2019: Predicting climate types for the continental United States using unsupervised clustering techniques. Environmetrics, 30, e2524, https://doi.org/10.1002/env.2524.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Seager, R., A. Tzanova, and J. Nakamura, 2009: Drought in the southeastern United States: Causes, variability over the last millennium, and the potential for future hydroclimate change. J. Climate, 22, 50215045, https://doi.org/10.1175/2009JCLI2683.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Seager, R., T. J. Osborn, Y. Kushnir, I. R. Simpson, J. Nakamura, and H. Liu, 2019: Climate variability and change of Mediterranean-type climates. J. Climate, 32, 28872915, https://doi.org/10.1175/JCLI-D-18-0472.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Seneviratne, S. I., 2012: Historical drought trends revisited. Nature, 491, 338339, https://doi.org/10.1038/491338a.

  • Sheffield, J., E. F. Wood, and M. L. Roderick, 2012: Little change in global drought over the past 60 years. Nature, 491, 435438, https://doi.org/10.1038/nature11575.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Slater, L. J., and Coauthors, 2021: Nonstationary weather and water extremes: A review of methods for their detection, attribution, and management. Hydrol. Earth Syst. Sci., 25, 38973935, https://doi.org/10.5194/hess-25-3897-2021.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stagge, J. H., 2021: staggelab/spibayes: Pre-release version. Zenodo, https://doi.org/10.5281/zenodo.4927983.

  • Stagge, J. H., and K. Sung, 2022: A Non-Stationary Standardized Precipitation Index (NSPI) using Bayesian splines. J. Appl. Meteor. Climatol., 1, https://doi.org/10.1175/JAMC-D-21-0244.1.

    • Search Google Scholar
    • Export Citation
  • Stagge, J. H., L. M. Tallaksen, C. Y. Xu, and H. A. J. van Lanen, 2014: Standardized Precipitation-Evapotranspiration Index (SPEI): Sensitivity to potential evapotranspiration model and parameters. Hydrology in a Changing World: Environmental and Human Dimensions, H. A. J. van Lanen and T. Daniell, Eds., International Association of Hydrological Sciences, 367373, https://library.wur.nl/WebQuery/wurpubs/558281.

    • Search Google Scholar
    • Export Citation
  • Stagge, J. H., I. Kohn, L. M. Tallaksen, and K. Stahl, 2015a: Modeling drought impact occurrence based on meteorological drought indices in Europe. J. Hydrol., 530, 3750, https://doi.org/10.1016/j.jhydrol.2015.09.039.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stagge, J. H., L. M. Tallaksen, L. Gudmundsson, A. F. Van Loon, and K. Stahl, 2015b: Candidate distributions for climatological drought indices (SPI and SPEI). Int. J. Climatol., 35, 40274040, https://doi.org/10.1002/joc.4267.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stagge, J. H., D. G. Kingston, L. M. Tallaksen, and D. M. Hannah, 2017: Observed drought indices show increasing divergence across Europe. Sci. Rep., 7, 14045, https://doi.org/10.1038/s41598-017-14283-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stahle, D. W., 2020: Anthropogenic megadrought. Science, 368, 238239, https://doi.org/10.1126/science.abb6902.

  • Tallaksen, L., and H. A. J. van Lanen, 2004: Hydrological Drought: Processes and Estimation Methods for Streamflow and Groundwater. Elsevier, 579 pp.

    • Search Google Scholar
    • Export Citation
  • Tibshirani, R., G. Walther, and T. Hastie, 2001: Estimating the number of clusters in a data set via the gap statistic. J. Roy. Stat. Soc., 63, 411423, https://doi.org/10.1111/1467-9868.00293.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., A. Dai, G. van der Schrier, P. D. Jones, J. Barichivich, K. R. Briffa, and J. Sheffield, 2014: Global warming and changes in drought. Nat. Climate Change, 4, 1722, https://doi.org/10.1038/nclimate2067.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ukkola, A. M., M. G. D. Kauwe, M. L. Roderick, G. Abramowitz, and A. J. Pitman, 2020: Robust future changes in meteorological drought in CMIP6 projections despite uncertainty in precipitation. Geophys. Res. Lett., 47, e2020GL087820, https://doi.org/10.1029/2020GL087820..

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Van Loon, A. F., S. W. Ploum, J. Parajka, A. K. Fleig, E. Garnier, G. Laaha, and H. J. Van Lanen, 2015: Hydrological drought types in cold climates: Quantitative analysis of causing factors and qualitative survey of impacts. Hydrol. Earth Syst. Sci., 19, 19932016, https://doi.org/10.5194/hess-19-1993-2015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Van Loon, A. F., and Coauthors, 2016: Drought in a human-modified world: Reframing drought definitions, understanding, and analysis approaches. Hydrol. Earth Syst. Sci., 20, 36313650, https://doi.org/10.5194/hess-20-3631-2016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vicente-Serrano, S. M., S. Beguería, and J. I. López-Moreno, 2010: A multiscalar drought index sensitive to global warming: The Standardized Precipitation Evapotranspiration Index. J. Climate, 23, 16961718, https://doi.org/10.1175/2009JCLI2909.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vicente-Serrano, S. M., and Coauthors, 2021: Long-term variability and trends in meteorological droughts in western Europe (1851–2018). Int. J. Climatol., 41, E690E717, https://doi.org/10.1002/joc.6719.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, X., and Coauthors, 2013: A stepwise cluster analysis approach for downscaled climate projection—A Canadian case study. Environ. Modell. Software, 49, 141151, https://doi.org/10.1016/j.envsoft.2013.08.006.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Williams, A. P., and Coauthors, 2020: Large contribution from anthropogenic warming to an emerging North American megadrought. Science, 368, 314318, https://doi.org/10.1126/science.aaz9600.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wood, S. N., 2004: Stable and efficient multiple smoothing parameter estimation for generalized additive models. J. Amer. Stat. Assoc., 99, 673686, https://doi.org/10.1198/016214504000000980.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wood, S. N., 2006: Low-rank scale-invariant tensor product smooths for generalized additive mixed models. Biometrics, 62, 10251036, https://doi.org/10.1111/j.1541-0420.2006.00574.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wood, S. N., 2011: Fast stable restricted maximum likelihood and marginal likelihood estimation of semiparametric generalized linear models. J. Roy. Stat. Soc., 73B, 336, https://doi.org/10.1111/j.1467-9868.2010.00749.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, J., X. Chen, H. Yao, L. Gao, Y. Chen, and M. Liu, 2017: Non-linear relationship of hydrological drought responding to meteorological drought and impact of a large reservoir. J. Hydrol., 551, 495507, https://doi.org/10.1016/j.jhydrol.2017.06.029.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 515 515 26
Full Text Views 141 141 6
PDF Downloads 159 159 6

Nonlinear Seasonal and Long-Term Trends in a Twentieth-Century Meteorological Drought Index across the Continental United States

Kyungmin SungaDepartment of Civil, Environmental and Geodetic Engineering, The Ohio State University, Columbus, Ohio

Search for other papers by Kyungmin Sung in
Current site
Google Scholar
PubMed
Close
and
James H. StaggeaDepartment of Civil, Environmental and Geodetic Engineering, The Ohio State University, Columbus, Ohio

Search for other papers by James H. Stagge in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Analyzing gradual trends in meteorological drought has become increasingly important as anthropogenic climate change and natural climate variability interact to complicate measurement of drought severity. Complex seasonality and long-term trends pose a limitation in understanding spatial trends in nonstationary changes of meteorological drought in the United States. This study seeks to address this issue by simultaneously analyzing recurring seasonal patterns (stationary component) and long-term drought trends (nonstationary component), with a unique focus on nonlinear trends and common regional patterns. We analyzed 696 instrumental precipitation gauges with long historical records in the continental United States, using a novel spline-based model to disaggregate a 3-month meteorological drought index (SPI) into its seasonal and long-term components. The disaggregated components for each gauge were then clustered into subregions with similar seasonality and groupings with similar long-term trends using a two-step process. Our results identify clearly defined regions based on precipitation seasonality, while long-term trends are not spatially coherent with the seasonality. Instead, these findings support prior findings of an increasingly drier western United States and an increasingly wetter eastern United States over the last century, but with more nuanced spatial and temporal patterns. The new clustering analysis based on nonstationary meteorological drought trends can contribute to informing and adapting current water management strategies to long-term drought trends.

Significance Statement

This study considered 656 precipitation gauges across the continental United States to find regions with similar precipitation seasonality and then to group records with similar long-term climate trends. The study focused on 3-month average precipitation, a key indicator for drought monitoring. We identified eight regions across the United States with similar precipitation seasonality. From 1920 to the present, we found continuous drying trends throughout the western United States, continuously wetter trends in the northern plains, and an overall wetter trend interrupted by a midcentury dry period (1930–50) for much of the central Plains and Midwest. This study’s use of splines, or fitted curves, allowed these nonlinear patterns, which we believe better capture the nuances and intensification of climate change effects on precipitation.

© 2022 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: James H. Stagge, stagge.11@osu.edu

Abstract

Analyzing gradual trends in meteorological drought has become increasingly important as anthropogenic climate change and natural climate variability interact to complicate measurement of drought severity. Complex seasonality and long-term trends pose a limitation in understanding spatial trends in nonstationary changes of meteorological drought in the United States. This study seeks to address this issue by simultaneously analyzing recurring seasonal patterns (stationary component) and long-term drought trends (nonstationary component), with a unique focus on nonlinear trends and common regional patterns. We analyzed 696 instrumental precipitation gauges with long historical records in the continental United States, using a novel spline-based model to disaggregate a 3-month meteorological drought index (SPI) into its seasonal and long-term components. The disaggregated components for each gauge were then clustered into subregions with similar seasonality and groupings with similar long-term trends using a two-step process. Our results identify clearly defined regions based on precipitation seasonality, while long-term trends are not spatially coherent with the seasonality. Instead, these findings support prior findings of an increasingly drier western United States and an increasingly wetter eastern United States over the last century, but with more nuanced spatial and temporal patterns. The new clustering analysis based on nonstationary meteorological drought trends can contribute to informing and adapting current water management strategies to long-term drought trends.

Significance Statement

This study considered 656 precipitation gauges across the continental United States to find regions with similar precipitation seasonality and then to group records with similar long-term climate trends. The study focused on 3-month average precipitation, a key indicator for drought monitoring. We identified eight regions across the United States with similar precipitation seasonality. From 1920 to the present, we found continuous drying trends throughout the western United States, continuously wetter trends in the northern plains, and an overall wetter trend interrupted by a midcentury dry period (1930–50) for much of the central Plains and Midwest. This study’s use of splines, or fitted curves, allowed these nonlinear patterns, which we believe better capture the nuances and intensification of climate change effects on precipitation.

© 2022 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: James H. Stagge, stagge.11@osu.edu
Save