• Adler, R. F., and Coauthors, 2003: The version-2 Global Precipitation Climatology Project (GPCP) Monthly Precipitation Analysis (1979–present). J. Hydrometeor., 4, 11471167, https://doi.org/10.1175/1525-7541(2003)004<1147:TVGPCP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bretherton, C. S., and S. Park, 2009: A new moist turbulence parameterization in the Community Atmosphere Model. J. Climate, 22, 34223448, https://doi.org/10.1175/2008JCLI2556.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brown, J. R., A. F. Moise, and R. A. Colman, 2013: The South Pacific Convergence Zone in CMIP5 simulations of historical and future climate. Climate Dyn., 41, 21792197, https://doi.org/10.1007/s00382-012-1591-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brown, J. R., and Coauthors, 2020: South Pacific Convergence Zone dynamics, variability and impacts in a changing climate. Nat. Rev. Earth Environ., 1, 530543, https://doi.org/10.1038/s43017-020-0078-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Byrne, M. P., A. G. Pendergrass, A. D. Rapp, and K. R. Wodzicki, 2018: Response of the intertropical convergence zone to climate change: Location, width, and strength. Curr. Climate Change Rep., 4, 355370, https://doi.org/10.1007/s40641-018-0110-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cai, W., and Coauthors, 2019: Pantropical climate interactions. Science, 363, eaav4236, https://doi.org/10.1126/science.aav4236.

  • Cai, W., and Coauthors, 2021: Changing El Niño–Southern Oscillation in a warming climate. Nat. Rev. Earth Environ., 2, 628644, https://doi.org/10.1038/s43017-021-00199-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chadwick, R., I. Boutle, and G. Martin, 2013: Spatial patterns of precipitation change in CMIP5: Why the rich do not get richer in the tropics. J. Climate, 26, 38033822, https://doi.org/10.1175/JCLI-D-12-00543.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, F., and J. Dudhia, 2001: Coupling an advanced land surface–hydrology model with the Penn State–NCAR MM5 modeling system. Part I: Model implementation and sensitivity. Mon. Wea. Rev., 129, 569585, https://doi.org/10.1175/1520-0493(2001)129<0569:CAALSH>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chou, C., and J. D. Neelin, 2004: Mechanisms of global warming impacts on regional tropical precipitation. J. Climate, 17, 26882701, https://doi.org/10.1175/1520-0442(2004)017<2688:MOGWIO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chung, C. T. Y., S. B. Power, J. M. Arblaster, H. A. Rashid, and G. L. Roff, 2014: Nonlinear precipitation response to El Niño and global warming in the Indo-Pacific. Climate Dyn., 42, 18371856, https://doi.org/10.1007/s00382-013-1892-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chung, E.-S., A. Timmermann, B. J. Soden, K.-J. Ha, L. Shi, and V. O. John, 2019: Reconciling opposing Walker circulation trends in observations and model projections. Nat. Climate Change, 9, 405412, https://doi.org/10.1038/s41558-019-0446-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Coats, S., and K. B. Karnauskas, 2017: Are simulated and observed twentieth century tropical Pacific sea surface temperature trends significant relative to internal variability? Geophys. Res. Lett., 44, 99289937, https://doi.org/10.1002/2017GL074622.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Collins, W. D., and Coauthors, 2004: Description of the NCAR Community Atmosphere Model (CAM 3.0). Tech. Rep. NCAR/TN-464+STR, University Corporation for Atmospheric Research, 226 pp., https://doi.org/10.5065/D63N21CH.

    • Search Google Scholar
    • Export Citation
  • DiNezio, P. N., A. C. Clement, G. A. Vecchi, B. J. Soden, B. P. Kirtman, and S.-K. Lee, 2009: Climate response of the equatorial Pacific to global warming. J. Climate, 22, 48734892, https://doi.org/10.1175/2009JCLI2982.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Duncan, D., 2012: Freshwater Under Threat: Pacific Islands: Vulnerability Assessment of Freshwater Resources of Environmental Change. Secretariat of the Pacific Community, Applied Geoscience and Technology Division, and United Nations Environment Programme, UNEP, 66 pp.

    • Search Google Scholar
    • Export Citation
  • Dutheil, C., and Coauthors, 2019: Impact of surface temperature biases on climate change projections of the South Pacific Convergence Zone. Climate Dyn., 53, 31973219, https://doi.org/10.1007/s00382-019-04692-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dutheil, C., and Coauthors, 2020: Impact of projected sea surface temperature biases on tropical cyclones projections in the South Pacific. Sci. Rep., 10, 4838, https://doi.org/10.1038/s41598-020-61570-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dutheil, C., C. Menkes, M. Lengaigne, J. Vialard, A. Peltier, M. Bador, and X. Petit, 2021: Fine-scale rainfall over New Caledonia under climate change. Climate Dyn., 56, 87108, https://doi.org/10.1007/s00382-020-05467-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Evans, J. P., K. Bormann, J. Katzfey, S. Dean, and R. Arritt, 2016: Regional climate model projections of the South Pacific Convergence Zone. Climate Dyn., 47, 817829, https://doi.org/10.1007/s00382-015-2873-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Falkland, T., 2002: Volume 2: A synopsis of information relating to the quality of freshwater and watershed management issues in the Pacific Islands region. SPERP, 98 pp.

    • Search Google Scholar
    • Export Citation
  • Flannaghan, T. J., S. Fueglistaler, I. M. Held, S. Po-Chedley, B. Wyman, and M. Zhao, 2014: Tropical temperature trends in Atmospheric General Circulation Model simulations and the impact of uncertainties in observed SSTs. J. Geophys. Res. Atmos., 119, 13 32713 337, https://doi.org/10.1002/2014JD022365.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fueglistaler, S., C. Radley, and I. M. Held, 2015: The distribution of precipitation and the spread in tropical upper tropospheric temperature trends in CMIP5/AMIP simulations. Geophys. Res. Lett., 42, 60006007, https://doi.org/10.1002/2015GL064966.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Graham, N. E., and T. P. Barnett, 1987: Sea surface temperature, surface wind divergence, and convection over tropical oceans. Science, 238, 657659, https://doi.org/10.1126/science.238.4827.657.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grose, M. R., and Coauthors, 2014: Assessment of the CMIP5 global climate model simulations of the western tropical Pacific climate system and comparison to CMIP3. Int. J. Climatol., 34, 33823399, https://doi.org/10.1002/joc.3916.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hall, A., P. Cox, C. Huntingford, and S. Klein, 2019: Progressing emergent constraints on future climate change. Nat. Climate Change, 9, 269278, https://doi.org/10.1038/s41558-019-0436-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • He, C., T. Li, and W. Zhou, 2020: Drier North American monsoon in contrast to Asian–African monsoon under global warming. J. Climate, 33, 98019816, https://doi.org/10.1175/JCLI-D-20-0189.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Held, I. M., and B. J. Soden, 2006: Robust responses of the hydrological cycle to global warming. J. Climate, 19, 56865699, https://doi.org/10.1175/JCLI3990.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Izumo, T., J. Vialard, M. Lengaigne, and I. Suresh, 2020: Relevance of relative sea surface temperature for tropical rainfall interannual variability. Geophys. Res. Lett., 47, e2019GL086182, https://doi.org/10.1029/2019GL086182.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Johnson, N. C., and S.-P. Xie, 2010: Changes in the sea surface temperature threshold for tropical convection. Nat. Geosci., 3, 842845, https://doi.org/10.1038/ngeo1008.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, G., and S.-P. Xie, 2014: Tropical biases in CMIP5 multimodel ensemble: The excessive equatorial Pacific cold tongue and double ITCZ problems. J. Climate, 27, 17651780, https://doi.org/10.1175/JCLI-D-13-00337.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, G., Y. Du, H. Xu, and B. Ren, 2015: An intermodel approach to identify the source of excessive equatorial Pacific cold tongue in CMIP5 models and uncertainty in observational datasets. J. Climate, 28, 76307640, https://doi.org/10.1175/JCLI-D-15-0168.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, G., S.-P. Xie, Y. Du, and Y. Luo, 2016: Effects of excessive equatorial cold tongue bias on the projections of tropical Pacific climate change. Part I: The warming pattern in CMIP5 multi-model ensemble. Climate Dyn., 47, 38173831, https://doi.org/10.1007/s00382-016-3043-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, G., S.-P. Xie, C. He, and Z. Chen, 2017: Western Pacific emergent constraint lowers projected increase in Indian summer monsoon rainfall. Nat. Climate Change, 7, 708712, https://doi.org/10.1038/nclimate3387.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lin, J.-L., 2007: The double-ITCZ problem in IPCC AR4 coupled GCMs: Ocean–atmosphere feedback analysis. J. Climate, 20, 44974525, https://doi.org/10.1175/JCLI4272.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lin, Y.-L., R. D. Farley, and H. D. Orville, 1983: Bulk parameterization of the snow field in a cloud model. J. Climate Appl. Meteor., 22, 10651092, https://doi.org/10.1175/1520-0450(1983)022<1065:BPOTSF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lintner, B. R., B. Langenbrunner, J. D. Neelin, B. T. Anderson, M. J. Niznik, G. Li, and S.-P. Xie, 2016: Characterizing CMIP5 model spread in simulated rainfall in the Pacific Intertropical Convergence and South Pacific Convergence Zones. J. Geophys. Res. Atmos., 121, 11 59011 607, https://doi.org/10.1002/2016JD025284.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, Z., S. Vavrus, F. He, N. Wen, and Y. Zhong, 2005: Rethinking tropical ocean response to global warming: The enhanced equatorial warming. J. Climate, 18, 46844700, https://doi.org/10.1175/JCLI3579.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Luo, J.-J., G. Wang, and D. Dommenget, 2018: May common model biases reduce CMIP5’s ability to simulate the recent Pacific La Niña-like cooling? Climate Dyn., 50, 13351351, https://doi.org/10.1007/s00382-017-3688-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ma, J., and S.-P. Xie, 2013: Regional patterns of sea surface temperature change: A source of uncertainty in future projections of precipitation and atmospheric circulation. J. Climate, 26, 24822501, https://doi.org/10.1175/JCLI-D-12-00283.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McIver, L., and Coauthors, 2016: Health impacts of climate change in Pacific island countries: A regional assessment of vulnerabilities and adaptation priorities. Environ. Health Perspect., 124, 17071714, https://doi.org/10.1289/ehp.1509756.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Neelin, J. D., and I. M. Held, 1987: Modeling tropical convergence based on the moist static energy budget. Mon. Wea. Rev., 115, 312, https://doi.org/10.1175/1520-0493(1987)115<0003:MTCBOT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Power, S., and Coauthors, 2021: Decadal climate variability in the tropical Pacific: Characteristics, causes, predictability, and prospects. Science, 374, eaay9165, https://doi.org/10.1126/science.aay9165.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ramanathan, V., and W. Collins, 1991: Thermodynamic regulation of ocean warming by cirrus clouds deduced from observations of the 1987 El Niño. Nature, 351, 2732, https://doi.org/10.1038/351027a0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Samanta, D., K. B. Karnauskas, and N. F. Goodkin, 2019: Tropical Pacific SST and ITCZ biases in climate models: Double trouble for future rainfall projections? Geophys. Res. Lett., 46, 22422252, https://doi.org/10.1029/2018GL081363.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Seager, R., N. Naik, and G. A. Vecchi, 2010: Thermodynamic and dynamic mechanisms for large-scale changes in the hydrological cycle in response to global warming. J. Climate, 23, 46514668, https://doi.org/10.1175/2010JCLI3655.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Seager, R., M. Cane, N. Henderson, D.-E. Lee, R. Abernathey, and H. Zhang, 2019: Strengthening tropical Pacific zonal sea surface temperature gradient consistent with rising greenhouse gases. Nat. Climate Change, 9, 517522, https://doi.org/10.1038/s41558-019-0505-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sobel, A. H., I. M. Held, and C. S. Bretherton, 2002: The ENSO signal in tropical tropospheric temperature. J. Climate, 15, 27022706, https://doi.org/10.1175/1520-0442(2002)015<2702:TESITT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Taylor, K. E., R. J. Stouffer, and G. A. Meehl, 2012: An overview of CMIP5 and the experiment design. Bull. Amer. Meteor. Soc., 93, 485498, https://doi.org/10.1175/BAMS-D-11-00094.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • van der Wiel, K., A. J. Matthews, M. M. Joshi, and D. P. Stevens, 2016: Why the South Pacific Convergence Zone is diagonal. Climate Dyn., 46, 16831698, https://doi.org/10.1007/s00382-015-2668-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Watanabe, M., J.-L. Dufresne, Y. Kosaka, T. Mauritsen, and H. Tatebe, 2021: Enhanced warming constrained by past trends in equatorial Pacific sea surface temperature gradient. Nat. Climate Change, 11, 3337, https://doi.org/10.1038/s41558-020-00933-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Widlansky, M. J., A. Timmermann, K. Stein, S. McGregor, N. Schneider, M. H. England, M. Lengaigne, and W. Cai, 2013: Changes in South Pacific rainfall bands in a warming climate. Nat. Climate Change, 3, 417423, https://doi.org/10.1038/nclimate1726.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xie, P., and P. A. Arkin, 1997: Global precipitation: A 17-year monthly analysis based on gauge observations, satellite estimates, and numerical model outputs. Bull. Amer. Meteor. Soc., 78, 25392558, https://doi.org/10.1175/1520-0477(1997)078<2539:GPAYMA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xie, S.-P., C. Deser, G. A. Vecchi, J. Ma, H. Teng, and A. T. Wittenberg, 2010: Global warming pattern formation: Sea surface temperature and rainfall. J. Climate, 23, 966986, https://doi.org/10.1175/2009JCLI3329.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xie, S.-P., and Coauthors, 2015: Towards predictive understanding of regional climate change. Nat. Climate Change, 5, 921930, https://doi.org/10.1038/nclimate2689.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ying, J., P. Huang, T. Lian, and H. Tan, 2019: Understanding the effect of an excessive cold tongue bias on projecting the tropical Pacific SST warming pattern in CMIP5 models. Climate Dyn., 52, 18051818, https://doi.org/10.1007/s00382-018-4219-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zebiak, S. E., 1986: Atmospheric convergence feedback in a simple model for El Niño. Mon. Wea. Rev., 114, 12631271, https://doi.org/10.1175/1520-0493(1986)114<1263:ACFIAS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, G. J., and N. A. McFarlane, 1995: Sensitivity of climate simulations to the parameterization of cumulus convection in the Canadian Climate Centre general circulation model. Atmos.–Ocean, 33, 407446, https://doi.org/10.1080/07055900.1995.9649539.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhou, Z.-Q., and S.-P. Xie, 2015: Effects of climatological model biases on the projection of tropical climate change. J. Climate, 28, 99099917, https://doi.org/10.1175/JCLI-D-15-0243.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 362 362 39
Full Text Views 144 144 10
PDF Downloads 190 190 16

Western and Central Tropical Pacific Rainfall Response to Climate Change: Sensitivity to Projected Sea Surface Temperature Patterns

C. DutheilaDepartment of Physical Oceanography and Instrumentation, Leibniz Institute for Baltic Sea Research Warnemünde, Rostock, Germany

Search for other papers by C. Dutheil in
Current site
Google Scholar
PubMed
Close
,
M. LengaignebMARBEC, University of Montpellier, CNRS, IFREMER, IRD, Sète, France

Search for other papers by M. Lengaigne in
Current site
Google Scholar
PubMed
Close
,
J. VialardcLOCEAN-IPSL, Sorbonne Université, CNRS, IRD, MNHN, Paris, France

Search for other papers by J. Vialard in
Current site
Google Scholar
PubMed
Close
,
S. JulliendIFREMER, University of Brest, CNRS, IRD, Laboratoire d’Océanographie Physique et Spatiale (LOPS), IUEM, Plouzané, France

Search for other papers by S. Jullien in
Current site
Google Scholar
PubMed
Close
, and
C. MenkeseENTROPIE, IRD, Univ. de la Nouvelle Calédonie, Univ. de la Réunion, CNRS, Ifremer, Nouméa, Nouvelle-Calédonie

Search for other papers by C. Menkes in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Rainfall projections from the Coupled Model Intercomparison Project (CMIP) models are strongly tied to projected sea surface temperature (SST) spatial patterns through the “warmer-gets-wetter” mechanism. While these models consistently project an enhanced equatorial warming, they, however, indicate much more uncertain changes in zonal SST gradients. That translates into large uncertainties on rainfall projections. Here, we force an atmospheric model with synthetic SSTs whose zonal SST gradient changes span the range of CMIP5 uncertainties in the presence and in the absence of the robust equatorially enhanced warming. Our results confirm that projected rainfall changes are dominated by the effect of circulation changes, which are tied to SST through the “warmer-gets-wetter” mechanism. We show that SPCZ rainfall changes are entirely driven by the uncertain zonal SST gradient changes. The western equatorial Pacific rainfall increase is largely controlled by the robust enhanced equatorial warming for modest zonal SST gradient changes. However, for larger values, the effect of the zonal SST gradient change on rainfall projections becomes dominant due to nonlinear interactions with the enhanced equatorial warming. Overall, our study demonstrates that uncertainties in the zonal SST gradient changes strongly contribute to uncertainties in rainfall projections over both the South Pacific convergence zone and western equatorial Pacific. It is thus critical to reduce these uncertainties to produce more robust precipitation estimates.

© 2022 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Publisher's Note: This article was revised on 8 November 2022 to correct the affiliations of authors Jullien and Menkes, which were inadvertently switched when originally published.

Corresponding author: Cyril Dutheil, cyril.dutheil@io-warnemuende.de

Abstract

Rainfall projections from the Coupled Model Intercomparison Project (CMIP) models are strongly tied to projected sea surface temperature (SST) spatial patterns through the “warmer-gets-wetter” mechanism. While these models consistently project an enhanced equatorial warming, they, however, indicate much more uncertain changes in zonal SST gradients. That translates into large uncertainties on rainfall projections. Here, we force an atmospheric model with synthetic SSTs whose zonal SST gradient changes span the range of CMIP5 uncertainties in the presence and in the absence of the robust equatorially enhanced warming. Our results confirm that projected rainfall changes are dominated by the effect of circulation changes, which are tied to SST through the “warmer-gets-wetter” mechanism. We show that SPCZ rainfall changes are entirely driven by the uncertain zonal SST gradient changes. The western equatorial Pacific rainfall increase is largely controlled by the robust enhanced equatorial warming for modest zonal SST gradient changes. However, for larger values, the effect of the zonal SST gradient change on rainfall projections becomes dominant due to nonlinear interactions with the enhanced equatorial warming. Overall, our study demonstrates that uncertainties in the zonal SST gradient changes strongly contribute to uncertainties in rainfall projections over both the South Pacific convergence zone and western equatorial Pacific. It is thus critical to reduce these uncertainties to produce more robust precipitation estimates.

© 2022 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Publisher's Note: This article was revised on 8 November 2022 to correct the affiliations of authors Jullien and Menkes, which were inadvertently switched when originally published.

Corresponding author: Cyril Dutheil, cyril.dutheil@io-warnemuende.de
Save