• Ali, H., H. J. Fowler, and V. Mishra, 2018: Global observational evidence of strong linkage between dew point temperature and precipitation extremes. Geophys. Res. Lett., 45, 12 32012 330, https://doi.org/10.1029/2018GL080557.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Allan, R. P., and B. J. Soden, 2008: Atmospheric warming and the amplification of precipitation extremes. Science, 321, 14811484, https://doi.org/10.1126/science.1160787.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bao, J., S. C. Sherwood, L. V. Alexander, and J. P. Evans, 2017: Future increases in extreme precipitation exceed observed scaling rates. Nat. Climate Change, 7, 128132, https://doi.org/10.1038/nclimate3201.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bao, J., S. C. Sherwood, L. V. Alexander, and J. P. Evans, 2018: Comments on “Temperature–extreme precipitation scaling: A two-way causality?”. Int. J. Climatol., 38, 46614663, https://doi.org/10.1002/joc.5665.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Barbero, R., S. Westra, G. Lenderink, and H. J. Fowler, 2018: Temperature–extreme precipitation scaling: A two-way causality? Int. J. Climatol., 38, e1274e1279, https://doi.org/10.1002/joc.5370.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Barros, A. P., and W. Hwu, 2002: A study of land–atmosphere interactions during summertime rainfall using a mesoscale model. J. Geophys. Res., 107, 4227, https://doi.org/10.1029/2000JD000254.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Berg, P., C. Moseley, and J. O. Haerter, 2013: Strong increase in convective precipitation in response to higher temperatures. Nat. Geosci., 6, 181185, https://doi.org/10.1038/ngeo1731.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brown, R., and C. Zhang, 1997: Variability of midtropospheric moisture and its effect on cloud-top height distribution during TOGA COARE. J. Atmos. Sci., 54, 27602774, https://doi.org/10.1175/1520-0469(1997)054<2760:VOMMAI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Byrne, M. P., and P. A. O’Gorman, 2018: Trends in continental temperature and humidity directly linked to ocean warming. Proc. Natl. Acad. Sci. USA, 115, 48634868, https://doi.org/10.1073/pnas.1722312115.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chan, S. C., E. J. Kendon, N. M. Roberts, H. J. Fowler, and S. Blenkinsop, 2016: Downturn in scaling of UK extreme rainfall with temperature for future hottest days. Nat. Geosci., 9, 2428, https://doi.org/10.1038/ngeo2596.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, G., Y. Ming, N. D. Singer, and J. Lu, 2011: Testing the Clausius-Clapeyron constraint on the aerosol-induced changes in mean and extreme precipitation. Geophys. Res. Lett., 38, L04807, https://doi.org/10.1029/2010GL046435.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dai, N., and Soden, B. J., 2020, Convective aggregation and the amplification of tropical precipitation extremes. AGU Adv., 1, e2020AV000201, https://doi.org/10.1029/2020AV000201.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Da Silva, N., S. Mailler, and P. Drobinski, 2020: Aerosol indirect effects on the temperature-precipitation scaling. Atmos. Chem. Phys., 20, 62076223, https://doi.org/10.5194/acp-20-6207-2020.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dee, D. P., and Coauthors, 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597, https://doi.org/10.1002/qj.828.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Derbyshire, S. H., I. Beau, P. Bechtold, J.-Y. Grandpeix, J.-M. Piriou, J.-L. Redelsperger, and P. M. M. Soares, 2004: Sensitivity of moist convection to environmental humidity. Quart. J. Roy. Meteor. Soc., 130, 30553079, https://doi.org/10.1256/qj.03.130.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Drobinski, P., B. Alonzo, S. Bastin, N. Da Silva, and C. J. Muller, 2016: Scaling of precipitation extremes with temperature in the French Mediterranean region: What explains the hook shape? J. Geophys. Res., 121, 31003119, https://doi.org/10.1002/2015JD023497.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Drobinski, P., and Coauthors, 2018: Scaling precipitation extremes with temperature in the Mediterranean: Past climate assessment and projection in anthropogenic scenarios. Climate Dyn., 51, 12371257, https://doi.org/10.1007/s00382-016-3083-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Easterling, D. R., and Coauthors, 2017: Precipitation change in the United States. Climate Science Special Report: Fourth National Climate Assessment, Vol. I, D. J. Wuebbles et al., Eds.. U.S. Global Change Research Program, 207–230, https://pubs.giss.nasa.gov/abs/ea02000c.html.

    • Search Google Scholar
    • Export Citation
  • Emanuel, K. A., 1994: Atmospheric Convection. Oxford University Press, 580 pp.

  • Findell, K. L., and E. A. B. Eltahir, 2003: Atmospheric controls on soil moisture–boundary layer interactions. Part II: Feedbacks within the continental United States. J. Hydrometeor., 4, 570583, https://doi.org/10.1175/1525-7541(2003)004<0570:ACOSML>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fischer, E. M., and R. Kutti, 2016: Observed heavy precipitation increase confirms theory and early models. Nat. Climate Change, 6, 986991, https://doi.org/10.1038/nclimate3110.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fowler, H. J., and Coauthors, 2021: Anthropogenic intensification of short-duration rainfall extremes. Nat. Rev. Earth Environ., 2, 107122, https://doi.org/10.1038/s43017-020-00128-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hardwick Jones, R., S. Westra, and A. Sharma, 2010: Observed relationships between extreme sub-daily precipitation, surface temperature, and relative humidity. Geophys. Res. Lett., 37, L22805, https://doi.org/10.1029/2010GL045081.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hersbach, H., and Coauthors, 2020: The ERA5 global reanalysis. Quart. J. Roy. Meteor. Soc., 146, 19992049, https://doi.org/10.1002/qj.3803.

  • Houze, R. A., Jr., C. Cheng, C. A. Leary, and J. F. Gamache, 1980: Diagnosis of cloud mass and heat fluxes from radar and synoptic data. J. Atmos. Sci., 37, 754773, https://doi.org/10.1175/1520-0469(1980)037<0754:DOCMAH>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huffman, G. J., and Coauthors, 2007: The TRMM Multisatellite Precipitation Analysis (TMPA): Quasi-global, multiyear, combined-sensor precipitation estimates at fine scales. J. Hydrometeor., 8, 3855, https://doi.org/10.1175/JHM560.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huffman, G. J., E. F. Stocker, D. T. Bolvin, E. J. Nelkin, and J. Tan, 2019: GPM IMERG final precipitation L3 half hourly 0.1 degree × 0.1 degree V06. Goddard Earth Sciences Data and Information Services Center, accessed 1 September 2021, https://doi.org/10.5067/GPM/IMERG/3B-HH/06.

    • Search Google Scholar
    • Export Citation
  • Hurrell, J., J. Hack, D. Shea, J. Caron, and J. Rosinski, 2008: A new sea surface temperature and sea ice boundary data set for the Community Atmosphere Model. J. Climate, 21, 51455153, https://doi.org/10.1175/2008JCLI2292.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Khain, A. P., and Coauthors, 2015: Representation of microphysical processes in cloud resolving models: Spectral (bin) microphysics versus bulk parameterization. Rev. Geophys., 53, 247322, https://doi.org/10.1002/2014RG000468.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kharin, V. V., G. M. Flato, X. Zhang, N. P. Gillett, F. Zwier, and K. J. Anderson, 2018: Risks from climate extremes change differently from 1.5°C to 2.0°C depending on rarity. Earth’s Future, 6, 704715, https://doi.org/10.1002/2018EF000813.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kim, Y. J., and G. Wang, 2007: Impact of initial soil moisture anomalies on subsequent precipitation over North America in the coupled land–atmosphere model CAM3-CLM3. J. Hydrometeor., 8, 513533, https://doi.org/10.1175/JHM611.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Koster, R. D., and Coauthors, 2011: The second phase of the Global Land Atmosphere Coupling Experiment: Soil moisture contribution to subseasonal forecast skill. J. Hydrometeor., 12, 805822, https://doi.org/10.1175/2011JHM1365.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lenderink, G., and E. van Meijgaard, 2008: Increase in hourly precipitation extremes beyond expectations from temperature changes. Nat. Geosci., 1, 511514, https://doi.org/10.1038/ngeo262.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, C., and Coauthors, 2017: Continental-scale convection-permitting modeling of the current and future climate of North America. Climate Dyn., 49, 7195, https://doi.org/10.1007/s00382-016-3327-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Long, K., D. Wang, G. Wang, J. Zhu, S. Wang, and S. Xie, 2021: Higher temperature enhances spatiotemporal concentration of rainfall. J. Hydrometeor., 22, 31593169, https://doi.org/10.1175/JHM-D-21-0034.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Loriaux, J. M., G. Lenderink, S. R. De Roode, and A. P. Siebesma, 2013: Understanding convective extreme precipitation scaling using observations and an entraining plume model. J. Atmos. Sci., 70, 36413655, https://doi.org/10.1175/JAS-D-12-0317.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mazdiyasni, O., and A. AghaKouchak, 2015: Substantial increase in concurrent droughts and heatwaves in the United States. Proc. Natl. Acad. Sci. USA, 112, 11 48411 489, https://doi.org/10.1073/pnas.1422945112.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Meehl, G. A., and Coauthors, 2007: Global climate projections. Climate Change 2007: The Physical Science Basis, S. Solomon et al., Eds., Cambridge University Press, 747845, https://www.ipcc.ch/site/assets/uploads/2018/02/ar4-wg1-chapter10-1.pdf.

    • Search Google Scholar
    • Export Citation
  • Mei, R., and G. Wang, 2011: Impact of sea surface temperature and soil moisture on summer precipitation in the United States based on observational data. J. Hydrometeor., 12, 10861099, https://doi.org/10.1175/2011JHM1312.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mishra, V., J. M. Wallace, and D. P. Lettenmaier, 2012: Relationship between hourly extreme precipitation and local air temperature in the United States. Geophys. Res. Lett., 39, L16403, https://doi.org/10.1029/2012GL052790.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Muller, C., 2013: Impact of convective organization on the response of tropical precipitation extremes to warming. J. Climate, 26, 50285043, https://doi.org/10.1175/JCLI-D-12-00655.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Neale, R. B., and Coauthors, 2012: Description of the NCAR Community Atmosphere Model (CAM 5.0). NCAR Tech. Rep. NCAR/TN-486+STR, 274 pp., https://www.cesm.ucar.edu/models/cesm1.0/cam/docs/description/cam5_desc.pdf.

    • Search Google Scholar
    • Export Citation
  • O’Gorman, P. A., 2015: Precipitation extremes under climate change. Curr. Climate Change Rep., 1, 4959, https://doi.org/10.1007/s40641-015-0009-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • O’Gorman, P. A., and T. Schneider, 2009: The physical basis for increases in precipitation extremes in simulations of 21st-century climate change. Proc. Natl. Acad. Sci. USA, 106, 14 77314 777, https://doi.org/10.1073/pnas.0907610106.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Oleson, K. W., and Coauthors, 2013: Technical description of version 4.5 of the Community Land Model (CLM). NCAR Tech. Note NCAR/TN-503+STR, 420 pp., https://www.cesm.ucar.edu/models/cesm1.2/clm/CLM45_Tech_Note.pdf.

    • Search Google Scholar
    • Export Citation
  • Prein, A. F., R. M. Rasmussen, K. Ikeda, C. Liu, M. P. Clark, and G. J. Holland, 2017: The future intensification of hourly precipitation extremes. Nat. Climate Change, 7, 4852, https://doi.org/10.1038/nclimate3168.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rasmussen, R., and C. Liu: 2017. High resolution WRF simulations of the current and future climate of North America. Research Data Archive at the National Center for Atmospheric Research, Computational and Information Systems Laboratory, accessed 15 March 2018, https://doi.org/10.5065/D6V40SXP.

    • Search Google Scholar
    • Export Citation
  • Redelsperger, J., D. Parsons, and F. Guichard, 2002: Recovery processes and factors limiting cloud-top height following the arrival of a dry intrusion observed during TOGA COARE. J. Atmos. Sci., 59, 24382457, https://doi.org/10.1175/1520-0469(2002)059<2438:RPAFLC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Roderick, T. P., C. Wasko, and A. Sharma, 2019: Atmospheric moisture measurements explain increases in tropical rainfall extremes. Geophys. Res. Lett., 46, 13751382, https://doi.org/10.1029/2018GL080833.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Romps, D. M., 2010: A direct measurement of entrainment. J. Atmos. Sci., 67, 19081927, https://doi.org/10.1175/2010JAS3371.1.

  • Rosenfeld, D., and Coauthors, 2014: Global observations of aerosol–cloud–precipitation–climate interactions. Rev. Geophys., 52, 750808, https://doi.org/10.1002/2013RG000441.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sherwood, S. C., and Q. Fu, 2014: A drier future? Science, 343, 737739, https://doi.org/10.1126/science.1247620.

  • Singh, M. S., and P. A. O’Gorman, 2014: Influence of microphysics on the scaling of precipitation extremes with temperature. Geophys. Res. Lett., 41, 60376044, https://doi.org/10.1002/2014GL061222.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Skamarock, W. C., and Coauthors, 2008: A description of the Advanced Research WRF version 3. NCAR Tech. Note NCAR/TN-475+STR, 113 pp., https://doi.org/10.5065/D68S4MVH.

    • Search Google Scholar
    • Export Citation
  • Stevens, B., and G. Feingold, 2009: Untangling aerosol effects on clouds and precipitation in a buffered system. Nature, 461, 607613, https://doi.org/10.1038/nature08281.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sugiyama, M., H. Shiogama, and S. Emori, 2009: Precipitation extreme changes exceeding moisture content increases in MIROC and IPCC climate models. Proc. Natl. Acad. Sci. USA, 107, 571575, https://doi.org/10.1073/pnas.0903186107.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Takayabu, Y. N., S. Shige, W.-K. Tao, and N. Hirota, 2010: Shallow and deep latent heating modes over tropical oceans observed with TRMM spectral latent heating data. J. Climate, 23, 20302046, https://doi.org/10.1175/2009JCLI3110.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tao, W.-K., J.-P. Chen, Z. Li, C. Wang, and C. Zhang, 2012: Impact of aerosols on convective clouds and precipitation. Rev. Geophys., 50, RG2001, https://doi.org/10.1029/2011RG000369.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Taylor, C. M., R. A. M. de Jeu, F. Guichard, P. P. Harris, and W. A. Dorigo, 2012: Afternoon rain more likely over drier soils. Nature, 489, 423426, https://doi.org/10.1038/nature11377.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., 1999: Conceptual framework for changes of extremes of the hydrologic cycle with climate change. Climatic Change, 42, 327339, https://doi.org/10.1023/A:1005488920935.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., and D. J. Shea, 2005: Relationships between precipitation and surface temperature. Geophys. Res. Lett., 32, L14703, https://doi.org/10.1029/2005GL022760.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Utsumi, N., S. Seto, S. Kanae, E. E. Maeda, and T. Oki, 2011: Does higher surface temperature intensify extreme precipitation? Geophys. Res. Lett., 38, L16708, https://doi.org/10.1029/2011GL048426.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Visser, J. B., C. Wasko, A. Sharma, and R. Nathan, 2021: Eliminating the “hook” in precipitation–temperature scaling. J. Climate, 34, 95359549, https://doi.org/10.1175/JCLI-D-21-0292.1.

    • Search Google Scholar
    • Export Citation
  • Wang, G., and X. Sun, 2022: Monotonic increase of extreme precipitation intensity with temperature when controlled for saturation deficit. Geophys. Res. Lett., 49, e2022GL097881, https://doi.org/10.1029/2022GL097881.

    • Search Google Scholar
    • Export Citation
  • Wang, G., D. Wang, K. E. Trenberth, A. Erfanian, M. Yu, M. G. Bosilovich, and D. T. Parr, 2017: The peak structure and future changes of the relationships between extreme precipitation and temperature. Nat. Climate Change, 7, 268274, https://doi.org/10.1038/nclimate3239.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, G., C. J. Kirchhoff, A. Seth, J. T. Abatzoglou, B. Livneh, D. W. Pierce, L. Fomenko, and T. Ding, 2020: Projected changes of precipitation characteristics depend on downscaling method and the training data: LOCA vs. MACA using the U.S. Northeast as an example. J. Hydrometeor., 21, 27392758, https://doi.org/10.1175/JHM-D-19-0275.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wasko, C., A. Sharma, and F. Johnson, 2015: Does storm duration modulate the extreme precipitation temperature scaling relationship? Geophys. Res. Lett., 42, 87838790, https://doi.org/10.1002/2015GL066274.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, G. J., and N. A. McFarlane, 1995: Sensitivity of climate simulations to the parameterization of cumulus convection in the Canadian climate center general-circulation model. Atmos.–Ocean, 33, 407446, https://doi.org/10.1080/07055900.1995.9649539.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, K., R. Fu, M. J. Shaikh, S. Ghan, M. Wang, L. R. Leung, R. E. Dickinson, and J. Marengo, 2017: Influence of super-parameterization and a higher-order turbulence closure on rainfall bias over Amazonia in Community Atmosphere Model version 5 (CAM5). J. Geophys. Res., 122, 98799902, https://doi.org/10.1002/2017JD026576.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zscheischler, J., and S. I. Seneviratne, 2017: Dependence of drivers affects risks associated with compound events. Sci. Adv., 3, e1700263, https://doi.org/10.1126/sciadv.1700263.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 961 961 46
Full Text Views 575 575 43
PDF Downloads 643 643 54

Causes for the Negative Scaling of Extreme Precipitation at High Temperatures

Xiaoming SunaDepartment of Civil and Environmental Engineering and Center for Environmental Sciences and Engineering, University of Connecticut, Storrs, Connecticut

Search for other papers by Xiaoming Sun in
Current site
Google Scholar
PubMed
Close
and
Guiling WangaDepartment of Civil and Environmental Engineering and Center for Environmental Sciences and Engineering, University of Connecticut, Storrs, Connecticut

Search for other papers by Guiling Wang in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Although the intensity of extreme precipitation is predicted to increase with climate warming, at the weather scale precipitation extremes over most of the globe decrease when temperature exceeds a certain threshold, and the spatial extent of this negative scaling is projected to increase as the climate warms. The nature and cause of the negative scaling at high temperature and its implications remain poorly understood. Based on subdaily data from observations, a reanalysis product, and output from a coarse-resolution (∼200 km) global model and a fine-resolution (4 km) convection-permitting regional model, we show that the negative scaling is primarily a reflection of high temperature suppressing precipitation over land and storm-induced temperature variations over the ocean. We further identify the high temperature–induced increase of saturation deficit as a critical condition for the negative scaling of extreme precipitation over land. A large saturation deficit reduces precipitation intensity by slowing down the convective updraft condensation rate and accelerating condensate evaporation. The heat-induced suppression of precipitation, both for its mean and extremes, provides one mechanism for the co-occurrence of drought and heatwaves. As the saturation deficit over land is expected to increase in a warmer climate, our results imply a growing prevalence of negative scaling, potentially increasing the frequency of compound drought and heat events. Understanding the physical mechanisms underlying the negative scaling of precipitation at high temperature is, therefore, essential for assessing future risks of extreme events, including not only flood due to extreme precipitation but also drought and heatwaves.

Significance Statement

Negative scaling, a decrease of extreme precipitation at high local temperature, is a poorly understood phenomenon. It was suggested that the negative scaling may be a reflection of precipitation’s influence on temperature. Here we show based on observational data, a reanalysis product, and climate models that the negative scaling results primarily from the impact of the high temperature–induced saturation deficit on precipitation over land and from storm-induced temperature variations over the ocean. In hot weather when moisture is limited (as is over land), a large saturation deficit reduces precipitation intensity by slowing down the convective updraft condensation rate and accelerating condensate evaporation, leading to a negative scaling. The same mechanism can also contribute to increased compound drought and heat events.

© 2022 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Dr. Guiling Wang, guiling.wang@uconn.edu

Abstract

Although the intensity of extreme precipitation is predicted to increase with climate warming, at the weather scale precipitation extremes over most of the globe decrease when temperature exceeds a certain threshold, and the spatial extent of this negative scaling is projected to increase as the climate warms. The nature and cause of the negative scaling at high temperature and its implications remain poorly understood. Based on subdaily data from observations, a reanalysis product, and output from a coarse-resolution (∼200 km) global model and a fine-resolution (4 km) convection-permitting regional model, we show that the negative scaling is primarily a reflection of high temperature suppressing precipitation over land and storm-induced temperature variations over the ocean. We further identify the high temperature–induced increase of saturation deficit as a critical condition for the negative scaling of extreme precipitation over land. A large saturation deficit reduces precipitation intensity by slowing down the convective updraft condensation rate and accelerating condensate evaporation. The heat-induced suppression of precipitation, both for its mean and extremes, provides one mechanism for the co-occurrence of drought and heatwaves. As the saturation deficit over land is expected to increase in a warmer climate, our results imply a growing prevalence of negative scaling, potentially increasing the frequency of compound drought and heat events. Understanding the physical mechanisms underlying the negative scaling of precipitation at high temperature is, therefore, essential for assessing future risks of extreme events, including not only flood due to extreme precipitation but also drought and heatwaves.

Significance Statement

Negative scaling, a decrease of extreme precipitation at high local temperature, is a poorly understood phenomenon. It was suggested that the negative scaling may be a reflection of precipitation’s influence on temperature. Here we show based on observational data, a reanalysis product, and climate models that the negative scaling results primarily from the impact of the high temperature–induced saturation deficit on precipitation over land and from storm-induced temperature variations over the ocean. In hot weather when moisture is limited (as is over land), a large saturation deficit reduces precipitation intensity by slowing down the convective updraft condensation rate and accelerating condensate evaporation, leading to a negative scaling. The same mechanism can also contribute to increased compound drought and heat events.

© 2022 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Dr. Guiling Wang, guiling.wang@uconn.edu

Supplementary Materials

    • Supplemental Materials (PDF 6.70 MB)
Save