Dynamic Causes of ENSO Decay and Its Asymmetry

Xiaomeng Song aDepartment of Atmospheric and Oceanic Sciences, Fudan University, Shanghai, China

Search for other papers by Xiaomeng Song in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0001-7750-8679
,
Renhe Zhang aDepartment of Atmospheric and Oceanic Sciences, Fudan University, Shanghai, China
bInstitute of Atmospheric Sciences, Fudan University, Shanghai, China
cCMA-FDU Joint Laboratory of Marine Meteorology, Shanghai, China
dInnovation Center of Ocean and Atmosphere System, Zhuhai Fudan Innovation Research Institute, Zhuhai, China

Search for other papers by Renhe Zhang in
Current site
Google Scholar
PubMed
Close
, and
Xinyao Rong eState Key Laboratory of Severe Weather, Chinese Academy of Meteorological Sciences, Beijing, China

Search for other papers by Xinyao Rong in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

El Niño and La Niña exhibit asymmetric evolution characteristics during their decay phases. The decay speed of El Niño is significantly greater than that of La Niña. This study systematically and quantitatively investigates the relative contributions of the equatorial western Pacific (WP) and central-eastern Pacific (CEP) wind stress anomalies to ENSO decay and its asymmetry through data analysis, numerical experiments, and dynamic and thermodynamic diagnoses. It is demonstrated that the sea surface temperature anomalies (SSTAs) forced by the wind stress anomalies in the equatorial CEP play a dominant role in ENSO decay and contribute to ENSO decay asymmetry, while the forcing by the equatorial WP wind stress anomalies has a small contribution. Diagnoses of the oceanic mixed layer heat budget indicate that anomalous zonal advection term and vertical advection term forced by the wind stress anomalies in the equatorial CEP are the most important dynamic terms contributed to ENSO decay. Both terms in El Niño decay phase are much larger than in La Niña decay phase, resulting in a larger decay speed in El Niño than in La Niña. The contributions of these two terms do not depend on the equatorial WP wind field, confirming that the equatorial WP wind stress anomalies do not act as a pivotal part in ENSO asymmetric decay. Moreover, it is demonstrated that within the equatorial CEP, dominant contribution comes from the wind stress anomalies in the equatorial central Pacific, in which those in the equatorial southern central Pacific play a major role.

Significance Statement

Previous studies proposed why wind fields in the equatorial western Pacific (WP) or central-eastern Pacific (CEP) are asymmetric and how the asymmetric wind fields affect ENSO decay and decay asymmetry. By using an oceanic general circulation model, we quantitatively estimate the relative contributions of the wind stress anomalies over the equatorial WP and CEP. It is demonstrated that the wind stress anomalies over the equatorial CEP and the associated ocean response play a dominant role in the asymmetric decay. Additionally, it is further illustrated the predominant role comes from the wind stress anomalies in the equatorial southern central Pacific within the equatorial CEP. Our study provides a physical explanation on the ENSO decay and its asymmetry.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Renhe Zhang, rhzhang@fudan.edu.cn

Abstract

El Niño and La Niña exhibit asymmetric evolution characteristics during their decay phases. The decay speed of El Niño is significantly greater than that of La Niña. This study systematically and quantitatively investigates the relative contributions of the equatorial western Pacific (WP) and central-eastern Pacific (CEP) wind stress anomalies to ENSO decay and its asymmetry through data analysis, numerical experiments, and dynamic and thermodynamic diagnoses. It is demonstrated that the sea surface temperature anomalies (SSTAs) forced by the wind stress anomalies in the equatorial CEP play a dominant role in ENSO decay and contribute to ENSO decay asymmetry, while the forcing by the equatorial WP wind stress anomalies has a small contribution. Diagnoses of the oceanic mixed layer heat budget indicate that anomalous zonal advection term and vertical advection term forced by the wind stress anomalies in the equatorial CEP are the most important dynamic terms contributed to ENSO decay. Both terms in El Niño decay phase are much larger than in La Niña decay phase, resulting in a larger decay speed in El Niño than in La Niña. The contributions of these two terms do not depend on the equatorial WP wind field, confirming that the equatorial WP wind stress anomalies do not act as a pivotal part in ENSO asymmetric decay. Moreover, it is demonstrated that within the equatorial CEP, dominant contribution comes from the wind stress anomalies in the equatorial central Pacific, in which those in the equatorial southern central Pacific play a major role.

Significance Statement

Previous studies proposed why wind fields in the equatorial western Pacific (WP) or central-eastern Pacific (CEP) are asymmetric and how the asymmetric wind fields affect ENSO decay and decay asymmetry. By using an oceanic general circulation model, we quantitatively estimate the relative contributions of the wind stress anomalies over the equatorial WP and CEP. It is demonstrated that the wind stress anomalies over the equatorial CEP and the associated ocean response play a dominant role in the asymmetric decay. Additionally, it is further illustrated the predominant role comes from the wind stress anomalies in the equatorial southern central Pacific within the equatorial CEP. Our study provides a physical explanation on the ENSO decay and its asymmetry.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Renhe Zhang, rhzhang@fudan.edu.cn
Save
  • Abellán, E., and S. McGregor, 2016: The role of the southward wind shift in both, the seasonal synchronization and duration of ENSO events. Climate Dyn., 47, 509527, https://doi.org/10.1007/s00382-015-2853-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • An, S.-I., 2008: Interannual variations of the tropical ocean instability wave and ENSO. J. Climate, 21, 36803686, https://doi.org/10.1175/2008JCLI1701.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • An, S.-I., and F.-F. Jin, 2004: Nonlinearity and asymmetry of ENSO. J. Climate, 17, 23992412, https://doi.org/10.1175/1520-0442(2004)017<2399:NAAOE>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • An, S.-I., and J. W. Kim, 2017: Role of nonlinear ocean dynamic response to wind on the asymmetrical transition of El Niño and La Niña. Geophys. Res. Lett., 44, 393400, https://doi.org/10.1002/2016GL071971.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • An, S.-I., and J. W. Kim, 2018: ENSO transition asymmetry: Internal and external causes and intermodel diversity. Geophys. Res. Lett., 45, 50955104, https://doi.org/10.1029/2018GL078476.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Battisti, D. S., 1988: Dynamics and thermodynamics of a warming event in a coupled tropical ocean–atmosphere model. J. Atmos. Sci., 45, 28892919, https://doi.org/10.1175/1520-0469(1988)045<2889:DATOAW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Battisti, D. S., and A. C. Hirst, 1989: Interannual variability in a tropical atmosphere–ocean model: Influence of the basic state, ocean geometry and nonlinearity. J. Atmos. Sci., 46, 16871712, https://doi.org/10.1175/1520-0469(1989)046<1687:IVIATA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bayr, T., A. Drews, M. Latif, and J. Lübbecke, 2021: The interplay of thermodynamics and ocean dynamics during ENSO growth phase. Climate Dyn., 56, 16811697, https://doi.org/10.1007/s00382-020-05552-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bellenger, H., E. Guilyardi, J. Leloup, M. Lengaigne, and J. Vialard, 2014: ENSO representation in climate models: From CMIP3 to CMIP5. Climate Dyn., 42, 19992018, https://doi.org/10.1007/s00382-013-1783-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Burgers, G., and D. B. Stephenson, 1999: The “normality” of El Niño. Geophys. Res. Lett., 26, 10271030, https://doi.org/10.1029/1999GL900161.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cai, W., and Coauthors, 2019: Pantropical climate interactions. Science, 363, eaav4236, https://doi.org/10.1126/science.aav4236.

  • Carton, J. A., and B. S. Giese, 2008: A reanalysis of ocean climate using Simple Ocean Data Assimilation (SODA). Mon. Wea. Rev., 136, 29993017, https://doi.org/10.1175/2007MWR1978.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Carton, J. A., B. S. Giese, and S. A. Grodsky, 2005: Sea level rise and the warming of the oceans in the Simple Ocean Data Assimilation (SODA) ocean reanalysis. J. Geophys. Res., 110, C09006, https://doi.org/10.1029/2004JC002817.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Carton, J. A., G. A. Chepurin, and L. Chen, 2018: SODA3: A new ocean climate reanalysis. J. Climate, 31, 69676983, https://doi.org/10.1175/JCLI-D-18-0149.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, M. C., T. Li, X. Y. Shen, and B. Wu, 2016: Relative roles of dynamic and thermodynamic processes in causing evolution asymmetry between El Niño and La Niña. J. Climate, 29, 22012220, https://doi.org/10.1175/JCLI-D-15-0547.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Choi, K.-Y., G. A. Vecchi, and A. T. Wittenberg, 2013: ENSO transition, duration, and amplitude asymmetries: Role of the nonlinear wind stress coupling in a conceptual model. J. Climate, 26, 94629476, https://doi.org/10.1175/JCLI-D-13-00045.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Da Silva, A. M., C. C. Young, and S. Levitus, 1994: Anomalies of Directly Observed Quantities., Vol. 2, Atlas of Surface Marine Data 1994, NOAA Atlas NESDIS 7, 416 pp.

    • Search Google Scholar
    • Export Citation
  • Dee, D. P., and Coauthors, 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597, https://doi.org/10.1002/qj.828.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • DiNezio, P. N., and C. Deser, 2014: Nonlinear controls on the persistence of La Niña. J. Climate, 27, 73357355, https://doi.org/10.1175/JCLI-D-14-00033.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dommenget, D., T. Bayr, and C. Frauen, 2013: Analysis of the non-linearity in the pattern and time evolution of El Niño Southern Oscillation. Climate Dyn., 40, 28252847, https://doi.org/10.1007/s00382-012-1475-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Frauen, C., and D. Dommenget, 2010: El Niño and La Niña amplitude asymmetry caused by atmospheric feedbacks. Geophys. Res. Lett., 37, L18801, https://doi.org/10.1029/2010GL044444.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Graham, N. R., and W. R. White, 1988: The El Niño cycle: A natural oscillator of the Pacific ocean–atmosphere system. Science, 240, 12931302, https://doi.org/10.1126/science.240.4857.1293.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Harrison, D. E., and G. A. Vecchi, 1999: On the termination of El Niño. Geophys. Res. Lett., 26, 15931596, https://doi.org/10.1029/1999GL900316.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hayashi, M., and M. Watanabe, 2017: ENSO complexity induced by state dependence of westerly wind events. J. Climate, 30, 34013420, https://doi.org/10.1175/JCLI-D-16-0406.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hong, C.-C., T. Li, LinHo, and J.-S. Kug, 2008: Asymmetry of the Indian Ocean dipole. Part I: Observational analysis. J. Climate, 21, 48344848, https://doi.org/10.1175/2008JCLI2222.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huang, R. H., R. H. Zhang, and B. L. Yan, 2001: Dynamical effect of the zonal wind anomalies over the tropical western Pacific on ENSO cycles. Sci. China, 44D, 10891098, https://doi.org/10.1007/BF02906865.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hudson, D., and Coauthors, 2017: ACCESS-S1: The new Bureau of Meteorology multi-week to seasonal prediction system. J. South. Hemisphere Earth Syst. Sci., 67, 132159, https://doi.org/10.22499/3.6703.001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Im, S.-H., S.-I. An, S. T. Kim, and F.-F. Jin, 2015: Feedback processes responsible for El Niño-La Niña amplitude asymmetry. Geophys. Res. Lett., 42, 55565563, https://doi.org/10.1002/2015GL064853.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kang, I.-S., and J.-S. Kug, 2002: El Niño and La Niña sea surface temperature anomalies: Asymmetry characteristics associated with their wind stress anomalies. J. Geophys. Res., 107, 4372, https://doi.org/10.1029/2001JD000393.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Karamperidou, C., F. F. Jin, and J. L. Conroy, 2017: The importance of ENSO nonlinearities in tropical pacific response to external forcing. Climate Dyn., 49, 26952704, https://doi.org/10.1007/s00382-016-3475-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kessler, W. S., 2002: Is ENSO a cycle or a series of events?. Geophys. Res. Lett., 29, 2125, https://doi.org/10.1029/2002GL015924.

  • Larkin, N. K., and D. E. Harrison, 2002: ENSO warm (El Niño) and cold (La Niña) event life cycles: Ocean surface anomaly patterns, their symmetries, asymmetries, and implications. J. Climate, 15, 11181140, https://doi.org/10.1175/1520-0442(2002)015<1118:EWENOA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lengaigne, M., J.-P. Boulanger, C. Menkes, and H. Spencer, 2006: Influence of the seasonal cycle on the termination of El Niño events in a coupled general circulation model. J. Climate, 19, 18501868, https://doi.org/10.1175/JCLI3706.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Levine, A., F. F. Jin, and M. J. McPhaden, 2016: Extreme noise-extreme El Niño: How state-dependent noise forcing creates El Niño–La Niña asymmetry. J. Climate, 29, 54835499, https://doi.org/10.1175/JCLI-D-16-0091.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Levitus, S., 1982: Climatological Atlas of the World Ocean. NOAA Prof. Paper 13, 173 pp. and 17 microfiche

  • Li, T., B. Wang, B. Wu, T. Zhou, C.-P. Chang, and R. Zhang, 2017: Theories on formation of an anomalous anticyclone in western North Pacific during El Niño: A review. J. Meteor. Res., 31, 9871006, https://doi.org/10.1007/s13351-017-7147-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, Y., R. Lu, and B. Dong, 2007: The ENSO–Asian monsoon interaction in a coupled ocean–atmosphere GCM. J. Climate, 20, 51645177, https://doi.org/10.1175/JCLI4289.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lloyd, J., E. Guilyardi, H. Weller, and J. Slingo, 2009: The role of atmosphere feedbacks during ENSO in the CMIP3 models. Atmos. Sci. Lett., 10, 170176, https://doi.org/10.1002/asl.227.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lloyd, J., E. Guilyardi, and H. Weller, 2011: The role of atmosphere feedbacks during ENSO in the CMIP3 models. Part II: Using AMIP runs to understand the heat flux feedback mechanisms. Climate Dyn., 37, 12711292, https://doi.org/10.1007/s00382-010-0895-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lloyd, J., E. Guilyardi, and H. Weller, 2012: The role of atmosphere feedbacks during ENSO in the CMIP3 models. Part III: The shortwave flux feedback. J. Climate, 25, 42754293, https://doi.org/10.1175/JCLI-D-11-00178.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lübbecke, J. F., and M. J. McPhaden, 2017: Symmetry of the Atlantic Niño mode. Geophys. Res. Lett., 44, 965973, https://doi.org/10.1002/2016GL071829.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McGregor, S., A. Timmermann, N. Schneider, M. F. Stuecker, and M. H. England, 2012: The effect of the South Pacific convergence zone on the termination of El Niño events and the meridional asymmetry of ENSO. J. Climate, 25, 55665586, https://doi.org/10.1175/JCLI-D-11-00332.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McGregor, S., N. Ramesh, P. Spence, M. H. England, M. J. McPhaden, and A. Santoso, 2013: Meridional movement of wind anomalies during ENSO events and their role in event termination. Geophys. Res. Lett., 40, 749754, https://doi.org/10.1002/grl.50136.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McPhaden, M. J., and X. B. Zhang, 2009: Asymmetry in zonal phase propagation of ENSO sea surface temperature anomalies. Geophys. Res. Lett., 36, L13703, https://doi.org/10.1029/2009GL038774.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Meinen, C. S., C. S. Meinen, and M. J. McPhaden, 2000: Observations of warm water volume changes in the equatorial Pacific and their relationship to El Niño and La Niña. J. Climate, 13, 35513559, https://doi.org/10.1175/1520-0442(2000)013<3551:OOWWVC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Min, Q., J. Su, R. Zhang, and X. Rong, 2015: What hindered the El Niño pattern in 2014?. Geophys. Res. Lett., 42, 67626770, https://doi.org/10.1002/2015GL064899.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ohba, M., and H. Ueda, 2007: An impact of SST anomalies in the Indian Ocean in acceleration of the El Niño to La Niña transition. J. Meteor. Soc. Japan, 85, 335348, https://doi.org/10.2151/jmsj.85.335.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ohba, M., and H. Ueda, 2009: Role of nonlinear atmospheric response to SST on the asymmetric transition process of ENSO. J. Climate, 22, 177192, https://doi.org/10.1175/2008JCLI2334.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ohba, M., and M. Watanabe, 2012: Role of the Indo-Pacific interbasin coupling in predicting asymmetric ENSO transition and duration. J. Climate, 25, 33213335, https://doi.org/10.1175/JCLI-D-11-00409.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Okumura, Y. M., and C. Deser, 2010: Asymmetry in the duration of El Niño and La Niña. J. Climate, 23, 58265843, https://doi.org/10.1175/2010JCLI3592.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Okumura, Y. M., M. Ohba, C. Deser, and H. Ueda, 2011: A proposed mechanism for the asymmetric duration of El Niño and La Niña. J. Climate, 24, 38223829, https://doi.org/10.1175/2011JCLI3999.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pacanowski, R. C., and S. M. Griffies, 1999: MOM 3.0 manual. NOAA/Geophysical Fluid Dynamics Laboratory, 668 pp.

  • Picaut, J., M. Ioualalen, C. Menkes, T. Delcroix, and M. J. McPhaden, 1996: Mechanism of the zonal displacements of the Pacific warm pool: Implications for ENSO. Science, 274, 14861489, https://doi.org/10.1126/science.274.5292.1486.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rayner, N. A., D. E. Parker, E. B. Horton, C. K. Folland, L. V. Alexander, D. P. Rowell, E. C. Kent, and A. Kaplan, 2003: Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J. Geophys. Res., 108, 4407, https://doi.org/10.1029/2002JD002670.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rong, X. Y., R. H. Zhang, T. Li, and J. Z. Su, 2011: Upscale feedback of high-frequency winds to ENSO. Quart. J. Roy. Meteor. Soc., 137, 894907, https://doi.org/10.1002/qj.804.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Saha, S. S., and Coauthors, 2006: The NCEP Climate Forecast System. J. Climate, 19, 34833517, https://doi.org/10.1175/JCLI3812.1.

  • Song, X., R. Zhang, and X. Rong, 2019: Influence of intraseasonal oscillation on the asymmetric decays of El Niño and La Niña. Adv. Atmos. Sci., 36, 779792, https://doi.org/10.1007/s00376-019-9029-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Su, J., R. H. Zhang, T. Li, X. Y. Rong, J.-S. Kug, and C.-C. Hong, 2010: Causes of the El Niño and La Niña amplitude asymmetry in the equatorial eastern Pacific. J. Climate, 23, 605617, https://doi.org/10.1175/2009JCLI2894.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Su, J., B. Xiang, B. Wang, and T. Li, 2014: Abrupt termination of the 2012 Pacific warming and its implication on ENSO prediction. Geophys. Res. Lett., 41, 90589064, https://doi.org/10.1002/2014GL062380.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Suarez, M. J., and P. S. Schopf, 1988: A delayed action oscillator for ENSO. J. Atmos. Sci., 45, 32833287, https://doi.org/10.1175/1520-0469(1988)045<3283:ADAOFE>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tao, W. C., G. Huang, R. G. Wu, K. M. Hu, P. F. Wang, and D. Chen, 2017: Asymmetry in summertime atmospheric circulation anomalies over the northwest Pacific during decaying phase of El Niño and La Niña. Climate Dyn., 49, 20072023, https://doi.org/10.1007/s00382-016-3432-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Timmermann, A., and F. F. Jin, 2002: A nonlinear mechanism for decadal El Niño amplitude changes. Geophys. Res. Lett., 29, 1003, https://doi.org/10.1029/2001GL013369.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vecchi, G. A., and D. E. Harrison, 2003: On the termination of the 2002–03 El Niño event. Geophys. Res. Lett., 30, 1964, https://doi.org/10.1029/2003GL017564.

    • Search Google Scholar
    • Export Citation
  • Wang, B., R. G. Wu, and X. H. Fu, 2000: Pacific–East Asian teleconnection: How does ENSO affect East Asian climate?. J. Climate, 13, 15171536, https://doi.org/10.1175/1520-0442(2000)013<1517:PEATHD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, C. Z., R. H. Weisberg, and J. I. Virmani, 1999: Western Pacific interannual variability associated with the El Niño–Southern Oscillation. J. Geophys. Res., 104, 51315149, https://doi.org/10.1029/1998JC900090.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Weisberg, R. H., and C. Wang, 1997: A western Pacific oscillator paradigm for the El Niño–Southern Oscillation. Geophys. Res. Lett., 24, 779782, https://doi.org/10.1029/97GL00689.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wengel, C., M. Latif, W. Park, J. Harlaß, and T. Bayr, 2018: Seasonal ENSO phase locking in the Kiel Climate Model: The importance of the equatorial cold sea surface temperature bias. Climate Dyn., 50, 901919, https://doi.org/10.1007/s00382-017-3648-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, B., T. Li, and T. J. Zhou, 2010: Asymmetry of atmospheric circulation anomalies over the western North Pacific between El Niño and La Niña. J. Climate, 23, 48074822, https://doi.org/10.1175/2010JCLI3222.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, R. H., and R. H. Huang, 1998: Dynamical roles of zonal wind stresses over the tropical Pacific on the occurring and vanishing of El Niño. Part I: Diagnostic and theoretical analyses (in Chinese). Chinese J. Atmos. Sci., 22, 587599.

    • Search Google Scholar
    • Export Citation
  • Zhang, R. H., and A. Sumi, 2002: Moisture circulation over East Asia during El Niño episode in northern winter, spring and autumn. J. Meteor. Soc. Japan, 80, 213227, https://doi.org/10.2151/jmsj.80.213.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, R. H., and Y. K. Tan, 2003: El Nino and interannual variation of the sea surface temperature in the tropical Indian Ocean. Proc. SPIE, 4899, 1117, https://doi.org/10.1117/12.466694.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, R. H., A. Sumi, and M. Kimoto, 1996: Impact of El Niño on the East Asian monsoon: A diagnostic study of the ‘86/87 and ’91/92 events. J. Meteor. Soc. Japan, 74, 4962, https://doi.org/10.2151/jmsj1965.74.1_49.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, R. H., A. Sumi, and M. Kimoto, 1999: A diagnostic study of the impact of El Niño on the precipitation in China. Adv. Atmos. Sci., 16, 229241, https://doi.org/10.1007/BF02973084.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, R. H., T. R. Li, M. Wen, and L. K. Liu, 2015: Role of intraseasonal oscillation in asymmetric impacts of El Niño and La Niña on the rainfall over southern China in boreal winter. Climate Dyn., 45, 559567, https://doi.org/10.1007/s00382-014-2207-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, R. H., Q. Min, and J. Su, 2017: Impact of El Niño on atmospheric circulations over East Asia and rainfall in China: Role of the anomalous western North Pacific anticyclone. Sci. China Earth Sci., 60, 11241132, https://doi.org/10.1007/s11430-016-9026-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhao, X., D. Yuan, G. Yang, J. Wang, H. Liu, R. Zhang, and W. Han, 2019: Interannual variability and dynamics of intraseasonal wind rectification in the equatorial Pacific Ocean. Climate Dyn., 52, 43514369, https://doi.org/10.1007/s00382-018-4383-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 672 0 0
Full Text Views 853 392 23
PDF Downloads 711 285 19