A Study of AR-, TS-, and MCS-Associated Precipitation and Extreme Precipitation in Present and Warmer Climates

Ming Zhao aGeophysical Fluid Dynamics Laboratory, Princeton, New Jersey

Search for other papers by Ming Zhao in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0003-4996-7821
Restricted access

Abstract

Atmospheric rivers (ARs), tropical storms (TSs), and mesoscale convective systems (MCSs) are important weather phenomena that often threaten society through heavy precipitation and strong winds. Despite their potentially vital role in global and regional hydrological cycles, their contributions to long-term mean and extreme precipitation have not been systematically explored at the global scale. Using observational and reanalysis data, and NOAA’s Geophysical Fluid Dynamics Laboratory’s new high-resolution global climate model, we quantify that despite their occasional (13%) occurrence globally, AR, TS, and MCS days together account for ∼55% of global mean precipitation and ∼75% of extreme precipitation with daily rates exceeding its local 99th percentile. The model reproduces well the observed percentage of mean and extreme precipitation associated with AR, TS, and MCS days. In an idealized global warming simulation with a homogeneous SST increase of 4 K, the modeled changes in global mean and regional distribution of precipitation correspond well with changes in AR/TS/MCS precipitation. Globally, the frequency of AR days increases and migrates toward higher latitudes while the frequency of TS days increases over the central Pacific and part of the south Indian Ocean with a decrease elsewhere. The frequency of MCS days tends to increase over parts of the equatorial western and eastern Pacific warm pools and high latitudes and decreases over most part of the tropics and subtropics. The AR/TS/MCS mean precipitation intensity increases by ∼5% K−1 due primarily to precipitation increases in the top 25% of AR/TS/MCS days with the heaviest precipitation, which are dominated by the thermodynamic component with the dynamic and microphysical components playing a secondary role.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Ming Zhao, Ming.Zhao@noaa.gov

Abstract

Atmospheric rivers (ARs), tropical storms (TSs), and mesoscale convective systems (MCSs) are important weather phenomena that often threaten society through heavy precipitation and strong winds. Despite their potentially vital role in global and regional hydrological cycles, their contributions to long-term mean and extreme precipitation have not been systematically explored at the global scale. Using observational and reanalysis data, and NOAA’s Geophysical Fluid Dynamics Laboratory’s new high-resolution global climate model, we quantify that despite their occasional (13%) occurrence globally, AR, TS, and MCS days together account for ∼55% of global mean precipitation and ∼75% of extreme precipitation with daily rates exceeding its local 99th percentile. The model reproduces well the observed percentage of mean and extreme precipitation associated with AR, TS, and MCS days. In an idealized global warming simulation with a homogeneous SST increase of 4 K, the modeled changes in global mean and regional distribution of precipitation correspond well with changes in AR/TS/MCS precipitation. Globally, the frequency of AR days increases and migrates toward higher latitudes while the frequency of TS days increases over the central Pacific and part of the south Indian Ocean with a decrease elsewhere. The frequency of MCS days tends to increase over parts of the equatorial western and eastern Pacific warm pools and high latitudes and decreases over most part of the tropics and subtropics. The AR/TS/MCS mean precipitation intensity increases by ∼5% K−1 due primarily to precipitation increases in the top 25% of AR/TS/MCS days with the heaviest precipitation, which are dominated by the thermodynamic component with the dynamic and microphysical components playing a secondary role.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Ming Zhao, Ming.Zhao@noaa.gov
Save
  • Beck, H. E., E. F. Wood, M. Pan, C. K. Fisher, D. M. Miralles, A. I. J. M. van Dijk, T. R. McVicar, and R. F. Adler, 2019: MSWEP V2 global 3-hourly 0.1° precipitation: Methodology and quantitative assessment. Bull. Amer. Meteor. Soc., 100, 473500, https://doi.org/10.1175/BAMS-D-17-0138.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bony, S., G. Bellon, D. Klocke, S. Sherwood, S. Fermepin, and S. Denvil, 2013: Robust direct effect of carbon dioxide on tropical circulation and regional precipitation. Nat. Geosci., 6, 447451, https://doi.org/10.1038/ngeo1799.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cheeks, H. M., S. Fueglistaler, and S. T. Garner, 2020: A satellite-based climatology of central and southeastern U.S. mesoscale convective systems. Mon. Wea. Rev., 148, 26072621, https://doi.org/10.1175/MWR-D-20-0027.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Delworth, T. L., and Coauthors, 2020: SPEAR: The next generation GFDL modeling system for seasonal to multidecadal prediction and projection. J. Adv. Model. Earth Syst., 12, e2019MS001895, https://doi.org/10.1029/2019MS001895.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dettinger, M. D., 2013: Atmospheric rivers as drought busters on the U.S. West Coast. J. Hydrometeor., 14, 17211732, https://doi.org/10.1175/JHM-D-13-02.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dong, W., M. Zhao, Y. Ming, and V. Ramaswamy, 2021: Representation of tropical mesoscale convective systems in a general circulation model: Climatology and response to global warming. J. Climate, 34, 56575671, https://doi.org/10.1175/JCLI-D-20-0535.1.

    • Search Google Scholar
    • Export Citation
  • Dunne, J. P., and Coauthors, 2020: The GFDL Earth System Model version 4.1 (GFDL-ESM4.1): Model description and simulation characteristics. J. Adv. Model. Earth Syst., 12, e2019MS002015, https://doi.org/10.1029/2019MS002015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ellingson, R. G., and R. R. Ferraro, 1983: An examination of a technique for estimating the longwave radiation budget from satellite radiance observations. J. Climate Appl. Meteor., 22, 14161423, https://doi.org/10.1175/1520-0450(1983)022<1416:AEOATF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Emanuel, K., 2018: 100 years of progress in tropical cyclone. A Century of Progress in Atmospheric and Related Sciences, Meteor. Monogr., No. 59, Amer. Meteor. Soc., 15.115.68, https://doi.org/10.1175/AMSMONOGRAPHS-D-18-0016.1.

    • Search Google Scholar
    • Export Citation
  • Espinoza, V., D. E. Waliser, B. Guan, D. A. Lavers, and F. M. Ralph, 2018: Global analysis of climate change projection effects on atmospheric rivers. Geophys. Res. Lett., 45, 42994308, https://doi.org/10.1029/2017GL076968.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Eyring, V., S. Bony, G. Meehl, C. A. Senior, B. Stevens, R. Stouffer, and K. E. Taylor, 2016: Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization. Geosci. Model Dev., 9, 19371958, https://doi.org/10.5194/gmd-9-1937-2016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Feng, Z., L. R. Leung, S. Hagos, R. A. Houze, C. D. Burleyson, and K. Balaguru, 2016: More frequent intense and long-lived storms dominate the springtime trend in central US rainfall. Nat. Commun., 7, 13429, https://doi.org/10.1038/ncomms13429.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Feng, Z., and Coauthors, 2021: A global high-resolution mesoscale convective system database using satellite-derived cloud tops, surface precipitation, and tracking. J. Geophys. Res. Atmos., 126, e2020JD034202, https://doi.org/10.1029/2020JD034202.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gao, Y., and L. R. Leung, 2016: Uncertainties in projecting future changes in atmospheric rivers and their impacts on heavy precipitation over Europe. J. Climate, 29, 67116726, https://doi.org/10.1175/JCLI-D-16-0088.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Guan, B., and D. E. Waliser, 2015: Detection of atmospheric rivers: Evaluation and application of an algorithm for global studies. J. Adv. Model. Earth Syst., 120, 1251412535, https://doi.org/10.1002/2015JD024257.

    • Search Google Scholar
    • Export Citation
  • Haarsma, R. J., and Coauthors, 2016: High Resolution Model Intercomparison Project (HighResMIP v1.0) for CMIP6. Geosci. Model Dev., 9, 41854208, https://doi.org/10.5194/gmd-9-4185-2016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hagos, S., L. R. Leung, J.-H. Yoon, J. Lu, and Y. Gao, 2016: A projection of changes in landfalling atmospheric river frequency and extreme precipitation over western North America from the large ensemble CESM simulations. Geophys. Res. Lett., 43, 13571363, https://doi.org/10.1002/2015GL067392.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Held, I. M., and B. J. Soden, 2006: Robust responses of the hydrological cycle to global warming. J. Climate, 19, 56865699, https://doi.org/10.1175/JCLI3990.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Held, I. M., and M. Zhao, 2011: The response of tropical cyclone statistics to an increase in CO2 with fixed sea surface temperatures. J. Climate, 24, 53535364, https://doi.org/10.1175/JCLI-D-11-00050.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Held, I. M., and Coauthors, 2019: Structure and performance of GFDL’s CM4.0 climate model. J. Adv. Model. Earth Syst., 11, 36913727, https://doi.org/10.1029/2019MS001829.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hodges, K. I., D. W. Chappell, G. J. Robinson, and G. Yang, 2000: An improved algorithm for generating global window brightness temperatures from multiple satellite infrared imagery. J. Atmos. Oceanic Technol., 17, 12961312, https://doi.org/10.1175/1520-0426(2000)017<1296:AIAFGG>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Horn, M., and Coauthors, 2014: Tracking scheme dependence of simulated tropical cyclone response to idealized climate simulations. J. Climate, 27, 91979213, https://doi.org/10.1175/JCLI-D-14-00200.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Houze, R. A., 2004: Mesoscale convective systems. Rev. Geophys., 42, 143, https://doi.org/10.1029/2004RG000150.

  • Houze, R. A., 2018: 100 years of research on mesoscale convective systems. A Century of Progress in Atmospheric and Related Sciences, Meteor. Monogr., No. 59, Amer. Meteor. Soc., 17.117.54, https://doi.org/10.1175/AMSMONOGRAPHS-D-18-0001.1.

    • Search Google Scholar
    • Export Citation
  • Huang, X. M., C. Q. Hu, X. Huang, Y. Chu, Y. H. Tseng, G. J. Zhang, and Y. L. Lin, 2018: A long-term tropical mesoscale convective systems dataset based on a novel objective automatic tracking algorithm. Climate Dyn., 51, 31453159, https://doi.org/10.1007/s00382-018-4071-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jiang, H., and E. Zipser, 2010: Contribution of tropical cyclones to the global precipitation from eight seasons of TRMM data: Regional, seasonal, and interannual variations. J. Climate, 23, 15261543, https://doi.org/10.1175/2009JCLI3303.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Knapp, K. R., M. C. Kruk, D. H. Levinson, H. J. Diamond, and C. J. Neumann, 2010: The International Best Track Archive for Climate Stewardship (IBTrACS). Bull. Amer. Meteor. Soc., 91, 363376, https://doi.org/10.1175/2009BAMS2755.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Knutson, T., and Coauthors, 2010: Tropical cyclones and climate change. Nat. Geosci., 3, 157163, https://doi.org/10.1038/ngeo779.

  • Knutson, T., and Coauthors, 2019: Tropical cyclones and climate change assessment: Part I. Detection and attribution. Bull. Amer. Meteor. Soc., 100, 19872007, https://doi.org/10.1175/BAMS-D-18-0189.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Knutson, T., and Coauthors, 2020: Tropical cyclones and climate change assessment: Part II. Projected response to anthropogenic warming. Bull. Amer. Meteor. Soc., 101, E303E322, https://doi.org/10.1175/BAMS-D-18-0194.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lavers, D. A., and G. Villarini, 2013: The nexus between atmospheric rivers and extreme precipitation across Europe. Geophys. Res. Lett., 40, 32593264, https://doi.org/10.1002/grl.50636.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lavers, D. A., and G. Villarini, 2015: The contribution of atmospheric rivers to precipitation in Europe and the United States. J. Hydrol., 522, 382390, https://doi.org/10.1016/j.jhydrol.2014.12.010.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, M., G. A. Vecchi, J. A. Smith, and T. R. Knutson, 2019: Causes of large projected increases in hurricane precipitation rates with global warming. npj Climate Atmos. Sci., 2, 38, https://doi.org/10.1038/s41612-019-0095-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Muller, C. J., and Y. Takayabu, 2020: Response of precipitation extremes to warming: What have we learned from theory and idealized cloud-resolving simulations, and what remains to be learned?. Environ. Res. Lett., 15, 035001, https://doi.org/10.1088/1748-9326/ab7130.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Murakami, H., T. L. Delworth, W. F. Cooke, M. Zhao, B. Xiang, and P. Hsu, 2020: Detected climatic change in global distribution of tropical cyclones. Proc. Natl. Acad. Sci. USA, 117, 1070610714, https://doi.org/10.1073/pnas.1922500117.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nayak, M. A., and G. Villarini, 2017: A long-term perspective of the hydroclimatological impacts of atmospheric rivers over the central United States. Water Resour. Res., 53, 11441166, https://doi.org/10.1002/2016WR019033.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ohring, G., A. Gruber, and R. Ellingson, 1984: Satellite determinations of the relationship between total longwave radiation flux and infrared window radiance. J. Climate Appl. Meteor., 23, 416425, https://doi.org/10.1175/1520-0450(1984)023<0416:SDOTRB>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Prat, O. P., and B. R. Nelson, 2013: Precipitation contribution of tropical cyclones in the southeastern United States from 1998 to 2009 using TRMM satellite data. J. Climate, 26, 10471062, https://doi.org/10.1175/JCLI-D-11-00736.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Prat, O. P., and B. R. Nelson, 2016: On the link between tropical cyclones and daily rainfall extremes derived from global satellite observations. J. Climate, 29, 61276135, https://doi.org/10.1175/JCLI-D-16-0289.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ralph, F. M., P. J. Neiman, G. A. Wick, S. I. Gutman, M. D. Dettinger, D. R. Cayan, and A. B. White, 2006: Flooding on California’s Russian River: Role of atmospheric rivers. Geophys. Res. Lett., 33, L13801, https://doi.org/10.1029/2006GL026689.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ralph, F. M., J. J. Rutz, J. M. Cordeira, M. Dettinger, M. Anderson, D. Reynolds, L. J. Schick, and C. Smallcomb, 2019: A scale to characterize the strength and impacts of atmospheric rivers. Bull. Amer. Meteor. Soc., 100, 269289, https://doi.org/10.1175/BAMS-D-18-0023.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Scoccimarro, E., S. Gualdi, G. Villarini, G. A. Vecchi, and M. Zhao, 2014: Intense precipitation events associated with landfalling tropical cyclones in response to a warmer climate and increased CO2. J. Climate, 27, 46424654, https://doi.org/10.1175/JCLI-D-14-00065.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shaevitz, D., and Coauthors, 2014: Characteristics of tropical cyclones in high-resolution models in the present climate. J. Adv. Model. Earth Syst., 6, 11541172, https://doi.org/10.1002/2014MS000372.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shields, C. A., and J. T. Kiehl, 2016: Atmospheric river landfall-latitude changes in future climate simulations. Geophys. Res. Lett., 43, 87758782, https://doi.org/10.1002/2016GL070470.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shields, C. A., and Coauthors, 2018: Atmospheric River Tracking Method Intercomparison Project (ARTMIP): Project goals and experimental design. Geosci. Model Dev., 11, 24552474, https://doi.org/10.5194/gmd-11-2455-2018.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Slinskey, E. A., P. C. Loikith, D. E. Waliser, B. Guan, and A. Martin, 2020: A climatology of atmospheric rivers and associated precipitation for the seven U.S. National Climate Assessment regions. J. Hydrometeor., 21, 24392456, https://doi.org/10.1175/JHM-D-20-0039.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Villarini, G., and G. A. Vecchi, 2012: Twenty-first-century projections of North Atlantic tropical storms from CMIP5 models. Nat. Climate Change, 2, 604607, https://doi.org/10.1038/nclimate1530.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhao, M., and Coauthors, 2018a: The GFDL global atmosphere and land model AM4.0/LM4.0: 1. Simulation characteristics with prescribed SSTs. J. Adv. Model. Earth Syst., 10, 691734, https://doi.org/10.1002/2017MS001208.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhao, M., and Coauthors, 2018b: The GFDL global atmosphere and land model AM4.0/LM4.0: 2. Model description, sensitivity studies, and tuning strategies. J. Adv. Model. Earth Syst., 10, 735769, https://doi.org/10.1002/2017MS001209.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhao, M., 2020: Simulations of atmospheric rivers, their variability, and response to global warming using GFDL’s new high-resolution general circulation model. J. Climate, 33, 1028710303, https://doi.org/10.1175/JCLI-D-20-0241.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhao, M., and I. M. Held, 2012: TC-permitting GCM simulations of hurricane frequency response to sea surface temperature anomalies projected for the late 21st century. J. Climate, 25, 29953009, https://doi.org/10.1175/JCLI-D-11-00313.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhao, M., I. M. Held, S.-J. Lin, and G. A. Vecchi, 2009: Simulations of global hurricane climatology, interannual variability, and response to global warming using a 50-km resolution GCM. J. Climate, 22, 66536678, https://doi.org/10.1175/2009JCLI3049.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhao, M., I. M. Held, and G. A. Vecchi, 2010: Retrospective forecasts of the hurricane season using a global atmospheric model assuming persistence of SST anomalies. Mon. Wea. Rev., 138, 38583868, https://doi.org/10.1175/2010MWR3366.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhao, M., I. M. Held, and S.-J. Lin, 2012: Some counterintuitive dependencies of tropical cyclone frequency on parameters in a GCM. J. Atmos. Sci., 69, 22722283, https://doi.org/10.1175/JAS-D-11-0238.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhu, Y., and R. E. Newell, 1994: Atmospheric rivers and bombs. Geophys. Res. Lett., 21, 19992002, https://doi.org/10.1029/94GL01710.

All Time Past Year Past 30 Days
Abstract Views 1101 0 0
Full Text Views 1567 713 53
PDF Downloads 1166 493 28