Suppression of Arctic Sea Ice Growth in the Eurasian–Pacific Seas by Winter Clouds and Snowfall

Won-Il Lim aDepartment of Atmospheric Sciences, Pusan National University, Busan, South Korea

Search for other papers by Won-Il Lim in
Current site
Google Scholar
PubMed
Close
,
Hyo-Seok Park bDepartment of Ocean Science and Technology, Hanyang University, Ansan, South Korea

Search for other papers by Hyo-Seok Park in
Current site
Google Scholar
PubMed
Close
,
Andrew L. Stewart cDepartment of Atmospheric and Oceanic Sciences, University of California, Los Angeles, Los Angeles, California

Search for other papers by Andrew L. Stewart in
Current site
Google Scholar
PubMed
Close
, and
Kyong-Hwan Seo aDepartment of Atmospheric Sciences, Pusan National University, Busan, South Korea

Search for other papers by Kyong-Hwan Seo in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The ongoing Arctic warming has been pronounced in winter and has been associated with an increase in downward longwave radiation. While previous studies have demonstrated that poleward moisture flux into the Arctic strengthens downward longwave radiation, less attention has been given to the impact of the accompanying increase in snowfall. Here, utilizing state-of-the-art sea ice models, we show that typical winter snowfall (snow water equivalent) anomalies of around 1.0 cm, accompanied by positive downward longwave radiation anomalies of ∼5 W m−2, can cause basinwide sea ice thinning by around 5 cm in the following spring over the Arctic seas in the Eurasian–Pacific seas. In extreme cases, this is followed by a shrinking of summer ice extent. In the winter of 2016/17, anomalously strong warm, moist air transport combined with ∼2.5-cm increase in snowfall (snow water equivalent) decreased spring ice thickness by ∼10 cm and decreased the following summer sea ice extent by 5%–30%. This study suggests that small changes in the pattern and volume of winter snowfall can strongly impact the sea ice thickness and extent in the following seasons.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Hyo-Seok Park, hspark1@gmail.com

Abstract

The ongoing Arctic warming has been pronounced in winter and has been associated with an increase in downward longwave radiation. While previous studies have demonstrated that poleward moisture flux into the Arctic strengthens downward longwave radiation, less attention has been given to the impact of the accompanying increase in snowfall. Here, utilizing state-of-the-art sea ice models, we show that typical winter snowfall (snow water equivalent) anomalies of around 1.0 cm, accompanied by positive downward longwave radiation anomalies of ∼5 W m−2, can cause basinwide sea ice thinning by around 5 cm in the following spring over the Arctic seas in the Eurasian–Pacific seas. In extreme cases, this is followed by a shrinking of summer ice extent. In the winter of 2016/17, anomalously strong warm, moist air transport combined with ∼2.5-cm increase in snowfall (snow water equivalent) decreased spring ice thickness by ∼10 cm and decreased the following summer sea ice extent by 5%–30%. This study suggests that small changes in the pattern and volume of winter snowfall can strongly impact the sea ice thickness and extent in the following seasons.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Hyo-Seok Park, hspark1@gmail.com
Save
  • Barrett, A. P., J. C. Stroeve, and M. C. Serreze, 2020: Arctic Ocean precipitation from atmospheric reanalyses and comparisons with North Pole drifting station records. J. Geophys. Res. Oceans, 125, e2019JC015415, https://doi.org/10.1029/2019JC015415.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bintanja, R., and O. Andry, 2017: Towards a rain-dominated Arctic. Nat. Climate Change, 7, 263267, https://doi.org/10.1038/nclimate3240.

  • Bitz, C. M., M. M. Holland, E. C. Hunke, and R. E. Moritz, 2005: Maintenance of the sea-ice edge. J. Climate, 18, 29032921, https://doi.org/10.1175/JCLI3428.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Blanchard-Wrigglesworth, E., M. A. Webster, S. L. Farrell, and C. M. Bitz, 2018: Reconstruction of snow on Arctic sea ice. J. Geophys. Res. Oceans, 123, 35883602, https://doi.org/10.1002/2017JC013364.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Boisvert, L. N., M. A. Webster, A. A. Petty, T. Markus, D. H. Bromwich, and R. I. Cullather, 2018: Intercomparison of precipitation estimates over the Arctic Ocean and its peripheral seas from reanalyses. J. Climate, 31, 84418462, https://doi.org/10.1175/JCLI-D-18-0125.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Briegleb, B. P., and B. Light, 2007: A delta-Eddington multiple scattering parameterization for solar radiation in the sea ice component of the community climate system model. NCAR Tech. Note NCAR/TN-472+STR, 100 pp.

    • Search Google Scholar
    • Export Citation
  • Bromwich, D. H., A. B. Wilson, L.-S. Bai, G. W. K. Moore, and P. Bauer, 2016: A comparison of the regional Arctic system reanalysis and the global ERA-Interim reanalysis for the Arctic. Quart. J. Roy. Meteor. Soc., 142, 644658, https://doi.org/10.1002/qj.2527.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cabaj, A., P. J. Kushner, C. G. Fletcher, S. Howell, and A. A. Petty, 2020: Constraining reanalysis snowfall over the Arctic Ocean using CloudSat observations. Geophys. Res. Lett., 47, e2019GL086426, https://doi.org/10.1029/2019GL086426.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cohen, L., S. R. Hudson, V. P. Walden, R. M. Graham, and M. A. Granskog, 2017: Meteorological conditions in a thinner Arctic sea ice regime from winter to summer during the Norwegian Young Sea Ice expedition (N-ICE2015). J. Geophys. Res. Atmos., 122, 72357259, https://doi.org/10.1002/2016JD026034.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cole, S. T., M. L. Timmermans, J. M. Toole, R. A. Krishfield, and F. T. Thwaites, 2014: Ekman veering, internal waves, and turbulence observed under Arctic sea ice. J. Phys. Oceanogr., 44, 13061328, https://doi.org/10.1175/JPO-D-12-0191.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Collow, T. W., W. Wang, A. Kumar, and J. Zhang, 2015: Improving Arctic sea ice prediction using PIOMAS initial sea ice thickness in a coupled ocean–atmosphere model. Mon. Wea. Rev., 143, 46184630, https://doi.org/10.1175/MWR-D-15-0097.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Craig, T., and Coauthors, 2018: CICE-Consortium/CICE: CICE version 6.0.0, https://doi.org/10.5281/zenodo.1900639.

  • Danabasoglu, G., and Coauthors, 2020: The Community Earth System Model version 2 (CESM2). J. Adv. Model. Earth Syst., 12, e2019MS001916, https://doi.org/10.1029/2019MS001916.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dee, D. P., and Coauthors, 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597, https://doi.org/10.1002/qj.828.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Feltham, D. L., N. Untersteiner, J. S. Wettlaufer, and M. G. Worster, 2006: Sea ice is a mushy layer. Geophys. Res. Lett., 33, L14501, https://doi.org/10.1029/2006GL026290.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fetterer, F., K. Knowles, W. N. Meier, M. Savoie, and A. K. Windnagel, 2017: Sea ice index, version 3. National Snow and Ice Data Center, accessed 15 March 2020, https://doi.org/10.7265/N5K072F8.

    • Search Google Scholar
    • Export Citation
  • Flato, G. M., and W. D. Hibler, 1995: Ridging and strength in modeling the thickness distribution of Arctic sea ice. J. Geophys. Res., 100, 18  61118 626, https://doi.org/10.1029/95JC02091.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gelaro, R., and Coauthors, 2017: The Modern-Era Retrospective Analysis for Research and Applications, version 2 (MERRA-2). J. Climate, 30, 54195454, https://doi.org/10.1175/JCLI-D-16-0758.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Granskog, M. A., A. Rösel, P. A. Dodd, D. Divine, S. Gerland, T. Martma, and M. J. Leng, 2017: Snow contribution to first-year and second-year Arctic sea ice mass balance north of Svalbard. J. Geophys. Res. Oceans, 122, 25392549, https://doi.org/10.1002/2016JC012398.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hegyi, B. M., and P. C. Taylor, 2018: The unprecedented 2016–2017 Arctic sea ice growth season: The crucial role of atmospheric rivers and longwave fluxes. Geophys. Res. Lett., 45, 52045212, https://doi.org/10.1029/2017GL076717.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Herron, M. M., and C. C. Langway, 1980: Firn densification: An empirical model. J. Glaciol., 25, 373385, https://doi.org/10.1017/S0022143000015239.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hersbach, H., and Coauthors, 2020: The ERA5 global reanalysis. Quart. J. Roy. Meteor. Soc., 146, 19992049, https://doi.org/10.1002/qj.3803.

  • Hezel, P. J., X. Zhang, C. M. Bitz, B. P. Kelly, and F. Massonnet, 2012: Projected decline in spring snow depth on Arctic sea ice caused by progressively later autumn open ocean freeze-up this century. Geophys. Res. Lett., 39, L17505, https://doi.org/10.1029/2012GL052794.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hunke, E. C., W. H. Lipscomb, A. K. Turner, N. Jeffery, and S. Elliott, 2015: CICE: The Los Alamos Sea Ice Model documentation and software user’s manual version 5.1. Los Alamos National Laboratory Doc. LA-CC-06-012, 116 pp.

    • Search Google Scholar
    • Export Citation
  • Jakobson, L., T. Vihma, and E. Jakobson, 2019: Relationships between sea ice concentration and wind speed over the Arctic Ocean during 1979–2015. J. Climate, 32, 77837796, https://doi.org/10.1175/JCLI-D-19-0271.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kim, K. Y., J. Y. Kim, J. Kim, S. Yeo, H. Na, B. D. Hamlington, and R. R. Leben, 2019: Vertical feedback mechanism of winter Arctic amplification and sea ice loss. Sci. Rep., 9, 1184, https://doi.org/10.1038/s41598-018-38109-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kobayashi, S., and Coauthors, 2015: The JRA-55 reanalysis: General specifications and basic characteristics. J. Meteor. Soc. Japan, 93, 548, https://doi.org/10.2151/jmsj.2015-001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kwok, R., S. Kacimi, M. A. Webster, N. T. Kurtz, and A. A. Petty, 2020: Arctic snow depth and sea ice thickness from ICESat-2 and CryoSat-2 freeboards: A first examination. J. Geophys. Res. Oceans, 125, https://doi.org/10.1029/2019JC016008.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Letterly, A., J. Key, and Y. Liu, 2016: The influence of winter cloud on summer sea ice in the Arctic, 1983–2013. J. Geophys. Res. Atmos., 121, 21782187, https://doi.org/10.1002/2015JD024316.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lindsay, R., and A. Schweiger, 2015: Arctic sea ice thickness loss determined using subsurface, aircraft, and satellite observations. Cryosphere, 9, 269283, https://doi.org/10.5194/tc-9-269-2015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lindsay, R., M. Wensnahan, A. Schweiger, and J. Zhang, 2014: Evaluation of seven different atmospheric reanalysis products in the Arctic. J. Climate, 27, 25882606, https://doi.org/10.1175/JCLI-D-13-00014.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, Y., and J. R. Key, 2014: Less winter cloud aids summer 2013 Arctic sea ice return from 2012 minimum. Environ. Res. Lett., 9, 044002, https://doi.org/10.1088/1748-9326/9/4/044002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Maykut, G. A., 1978: Energy exchange over young sea ice in the central Arctic. J. Geophys. Res., 83, 3646, https://doi.org/10.1029/JC083iC07p03646.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Maykut, G. A., 1982: Large-scale heat exchange and ice production in the central Arctic. J. Geophys. Res., 87, 79717984, https://doi.org/10.1029/JC087iC10p07971.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Merkouriadi, I., B. Cheng, R. M. Graham, A. Rösel, and M. A. Granskog, 2017: Critical role of snow on sea ice growth in the Atlantic sector of the Arctic Ocean. Geophys. Res. Lett., 44, 10 47910 485, https://doi.org/10.1002/2017GL075494.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Merkouriadi, I., G. E. Liston, R. M. Graham, and M. A. Granskog, 2020: Quantifying the potential for snow-ice formation in the Arctic Ocean. Geophys. Res. Lett., 47, e2019GL085020, https://doi.org/10.1029/2019GL085020.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Park, H.-S., and A. L. Stewart, 2018: Dynamic and thermodynamic impacts of the winter Arctic Oscillation on summer sea ice extent. J. Climate, 31, 14831497, https://doi.org/10.1175/JCLI-D-17-0067.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Park, H.-S., S. Lee, Y. Kosaka, S.-W. Son, and S.-W. Kim, 2015: The impact of Arctic winter infrared radiation on early summer sea ice. J. Climate, 28, 62816296, https://doi.org/10.1175/JCLI-D-14-00773.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Peralta-Ferriz, C., and R. A. Woodgate, 2015: Seasonal and interannual variability of pan-Arctic surface mixed layer properties from 1979 to 2012 from hydrographic data, and the dominance of stratification for multiyear mixed layer depth shoaling. Prog. Oceanogr., 134, 1953, https://doi.org/10.1016/j.pocean.2014.12.005.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Persson, P. O. G., M. D. Shupe, D. K. Perovich, and A. Solomon, 2017: Linking atmospheric synoptic transport, cloud phase, surface energy fluxes, and sea-ice growth: Observations of midwinter SHEBA conditions. Climate Dyn., 49, 13411364, https://doi.org/10.1007/s00382-016-3383-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Petty, A. A., D. L. Feltham, and P. R. Holland, 2013: Impact of atmospheric forcing on Antarctic continental shelf water masses. J. Phys. Oceanogr., 43, 920940, https://doi.org/10.1175/JPO-D-12-0172.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Petty, A. A., M. M. Holland, D. A. Bailey, and N. T. Kurtz, 2018a: Warm Arctic, increased winter sea ice growth? Geophys. Res. Lett., 45, 12 92212 930, https://doi.org/10.1029/2018GL079223.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Petty, A. A., M. Webster, L. Boisvert, and T. Markus, 2018b: The NASA Eulerian Snow on Sea Ice Model (NESOSIM) v1.0: Initial model development and analysis. Geosci. Model Dev., 11, 45774602, https://doi.org/10.5194/gmd-11-4577-2018.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pomeroy, J. W., and L. Li, 2000: Prairie and Arctic areal snow cover mass balance using a blowing snow model. J. Geophys. Res., 105, 26 61926 634, https://doi.org/10.1029/2000JD900149.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pomeroy, J. W., P. Marsh, and D. M. Gray, 1997: Application of a distributed blowing snow model to the Arctic. Hydrol. Process., 11, 14511464, https://doi.org/10.1002/(SICI)1099-1085(199709)11:11<1451::AID-HYP449>3.0.CO;2-Q.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ricker, R., S. Hendricks, F. Girard-Ardhuin, L. Kaleschke, C. Lique, X. Tian-Kunze, M. Nicolaus, and T. Krumpen, 2017: Satellite-observed drop of Arctic sea ice growth in winter 2015–2016. Geophys. Res. Lett., 44, 32363245, https://doi.org/10.1002/2016GL072244.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Roberts, A. F., E. C. Hunke, S. M. Kamal, W. H. Lipscomb, C. Horvat, and W. Maslowski, 2019: A variational method for sea ice ridging in Earth system models. J. Adv. Model. Earth Syst., 11, 771805, https://doi.org/10.1029/2018MS001395.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Saha, S., and Coauthors, 2014: The NCEP Climate Forecast System version 2. J. Climate, 27, 21852208, https://doi.org/10.1175/JCLI-D-12-00823.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Semtner, A. J., 1976: A model for the thermodynamic growth of sea ice in numerical investigations of climate. J. Phys. Oceanogr., 6, 379389, https://doi.org/10.1175/1520-0485(1976)006<0379:AMFTTG>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smith, R., and Coauthors, 2010: The Parallel Ocean Program (POP) reference manual. Los Alamos National Laboratory Tech. Rep. LAUR-10-01853, 140 pp.

    • Search Google Scholar
    • Export Citation
  • Steele, M., R. Morley, and W. Ermold, 2001: PHC: A global ocean hydrography with a high-quality Arctic Ocean. J. Climate, 14, 20792087, https://doi.org/10.1175/1520-0442(2001)014<2079:PAGOHW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Storto, A., and S. Masina, 2016: C-GLORSv5: An improved multipurpose global ocean eddy-permitting physical reanalysis. Earth Syst. Sci. Data, 8, 679696, https://doi.org/10.5194/essd-8-679-2016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stroeve, J. C., D. Schroder, M. Tsamados, and D. Feltham, 2018: Warm winter, thin ice? Cryosphere, 12, 17911809, https://doi.org/10.5194/tc-12-1791-2018.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sturm, M., and S. Stuefer, 2013: Wind-blown flux rates derived from drifts at Arctic snow fences. J. Glaciol., 59, 2134, https://doi.org/10.3189/2013JoG12J110.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sturm, M., H. Jon, and D. K. Perovich, 2002: Winter snow cover on the sea ice of the Arctic Ocean at the Surface Heat Budget of the Arctic Ocean (SHEBA): Temporal evolution and spatial variability. J. Geophys. Res., 107, 8047, https://doi.org/10.1029/2000JC000400.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tsamados, M., D. L. Feltham, and A. V. Wilchinsky, 2013: Impact of a new anisotropic rheology on simulations of Arctic sea ice. J. Geophys. Res. Oceans, 118, 91107, https://doi.org/10.1029/2012JC007990.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tsujino, H., and Coauthors, 2018: JRA-55 based surface dataset for driving ocean–sea-ice models (JRA55-do). Ocean Modell., 130, 79139, https://doi.org/10.1016/j.ocemod.2018.07.002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Turner, A. K., E. C. Hunke, and C. M. Bitz, 2013: Two modes of sea-ice gravity drainage: A parameterization for large-scale modeling. J. Geophys. Res. Oceans, 118, 22792294, https://doi.org/10.1002/jgrc.20171.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vihma, T., and Coauthors, 2016: The atmospheric role in the Arctic water cycle: A review on processes, past and future changes, and their impacts. J. Geophys. Res. Biogeosci., 121, 586620, https://doi.org/10.1002/2015JG003132.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Warren, S., I. Rigor, N. Untersteiner, V. F. Radionov, N. N. Bryazgin, Y. I. Aleksandrov, and R. Colony, 1999: Snow depth on Arctic sea ice. J. Climate, 12, 18141829, https://doi.org/10.1175/1520-0442(1999)012<1814:SDOASI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Webster, M. A., and Coauthors, 2018: Snow in the changing sea-ice systems. Nat. Climate Change, 8, 946953, https://doi.org/10.1038/s41558-018-0286-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Webster, M. A., C. Parker, L. Boisvert, and R. Kwok, 2019: The role of cyclone activity in snow accumulation on Arctic sea ice. Nat. Commun., 10, 5285, https://doi.org/10.1038/s41467-019-13299-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Webster, M. A., A. K. DuVivier, M. M. Holland, and D. A. Bailey, 2021: Snow on Arctic sea ice in a warming climate as simulated in CESM. J. Geophys. Res. Ocean, 126, e2020JC016308, https://doi.org/10.1029/2020JC016308.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wilchinsky, A. V., and D. L. Feltham, 2006: Modelling the rheology of sea ice as a collection of diamond-shaped floes. J. Non-Newtonian Fluid Mech., 138, 2232, https://doi.org/10.1016/j.jnnfm.2006.05.001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Williams, J., B. Tremblay, R. Newton, and R. Allard, 2016: Dynamic preconditioning of the minimum September sea-ice extent. J. Climate, 29, 58795891, https://doi.org/10.1175/JCLI-D-15-0515.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Woods, C., and R. Caballero, 2016: The role of moist intrusions in winter Arctic warming and sea ice decline. J. Climate, 29, 44734485, https://doi.org/10.1175/JCLI-D-15-0773.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Woods, C., R. Caballero, and G. Svensson, 2013: Large-scale circulation associated with moisture intrusions into the Arctic during winter. Geophys. Res. Lett., 40, 47174721, https://doi.org/10.1002/grl.50912.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, J., and D. A. Rothrock, 2003: Modeling global sea ice with a thickness and enthalpy distribution model in generalized curvilinear coordinates. Mon. Wea. Rev., 131, 845861, https://doi.org/10.1175/1520-0493(2003)131<0845:MGSIWA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zib, B. J., X. Dong, B. Xi, A. Kennedy, B. J. Zib, X. Dong, B. Xi, and A. Kennedy, 2012: Evaluation and intercomparison of cloud fraction and radiative fluxes in recent reanalyses over the Arctic using BSRN surface observations. J. Climate, 25, 22912305, https://doi.org/10.1175/JCLI-D-11-00147.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 651 0 0
Full Text Views 532 254 26
PDF Downloads 481 188 19