Indo-Pacific Warming Induced by a Weakening of the Atlantic Meridional Overturning Circulation

Shantong Sun aEnvironmental Science and Engineering, California Institute of Technology, Pasadena, California

Search for other papers by Shantong Sun in
Current site
Google Scholar
PubMed
Close
,
Andrew F. Thompson aEnvironmental Science and Engineering, California Institute of Technology, Pasadena, California

Search for other papers by Andrew F. Thompson in
Current site
Google Scholar
PubMed
Close
,
Shang-Ping Xie bScripps Institution of Oceanography, University of California, San Diego, La Jolla, California

Search for other papers by Shang-Ping Xie in
Current site
Google Scholar
PubMed
Close
, and
Shang-Min Long cKey Laboratory of Marine Hazards Forecasting, Ministry of Natural Resources and College of Oceanography, Hohai University, Nanjing, China

Search for other papers by Shang-Min Long in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The reorganization of the Atlantic meridional overturning circulation (AMOC) is often associated with changes in Earth’s climate. These AMOC changes are communicated to the Indo-Pacific basins via wave processes and induce an overturning circulation anomaly that opposes the Atlantic changes on decadal to centennial time scales. We examine the role of this transient, interbasin overturning response, driven by an AMOC weakening, both in an ocean-only model with idealized geometry and in a coupled CO2 quadrupling experiment, in which the ocean warms on two distinct time scales: a fast decadal surface warming and a slow centennial subsurface warming. We show that the transient interbasin overturning produces a zonal heat redistribution between the Atlantic and Indo-Pacific basins. Following a weakened AMOC, an anomalous northward heat transport emerges in the Indo-Pacific, which substantially compensates for the Atlantic southward heat transport anomaly. This zonal heat redistribution manifests as a thermal interbasin seesaw between the high-latitude North Atlantic and the subsurface Indo-Pacific and helps to explain why Antarctic temperature records generally show more gradual changes than the Northern Hemisphere during the last glacial period. In the coupled CO2 quadrupling experiment, we find that the interbasin heat transport due to a weakened AMOC contributes substantially to the slow centennial subsurface warming in the Indo-Pacific, accounting for more than half of the heat content increase and sea level rise. Thus, our results suggest that the transient interbasin overturning circulation is a key component of the global ocean heat budget in a changing climate.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Shantong Sun, shantong@caltech.edu

Abstract

The reorganization of the Atlantic meridional overturning circulation (AMOC) is often associated with changes in Earth’s climate. These AMOC changes are communicated to the Indo-Pacific basins via wave processes and induce an overturning circulation anomaly that opposes the Atlantic changes on decadal to centennial time scales. We examine the role of this transient, interbasin overturning response, driven by an AMOC weakening, both in an ocean-only model with idealized geometry and in a coupled CO2 quadrupling experiment, in which the ocean warms on two distinct time scales: a fast decadal surface warming and a slow centennial subsurface warming. We show that the transient interbasin overturning produces a zonal heat redistribution between the Atlantic and Indo-Pacific basins. Following a weakened AMOC, an anomalous northward heat transport emerges in the Indo-Pacific, which substantially compensates for the Atlantic southward heat transport anomaly. This zonal heat redistribution manifests as a thermal interbasin seesaw between the high-latitude North Atlantic and the subsurface Indo-Pacific and helps to explain why Antarctic temperature records generally show more gradual changes than the Northern Hemisphere during the last glacial period. In the coupled CO2 quadrupling experiment, we find that the interbasin heat transport due to a weakened AMOC contributes substantially to the slow centennial subsurface warming in the Indo-Pacific, accounting for more than half of the heat content increase and sea level rise. Thus, our results suggest that the transient interbasin overturning circulation is a key component of the global ocean heat budget in a changing climate.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Shantong Sun, shantong@caltech.edu

Supplementary Materials

    • Supplemental Materials (PDF 239 KB)
Save
  • Armour, K. C., C. M. Bitz, and G. H. Roe, 2013: Time-varying climate sensitivity from regional feedbacks. J. Climate, 26, 45184534, https://doi.org/10.1175/JCLI-D-12-00544.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ballarotta, M., S. Drijfhout, T. Kuhlbrodt, and K. Döös, 2013: The residual circulation of the Southern Ocean: Which spatio-temporal scales are needed? Ocean Modell., 64, 4655, https://doi.org/10.1016/j.ocemod.2013.01.005.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Barker, S., P. Diz, M. J. Vautravers, J. Pike, G. Knorr, I. R. Hall, and W. S. Broecker, 2009: Interhemispheric Atlantic seesaw response during the last deglaciation. Nature, 457, 10971102, https://doi.org/10.1038/nature07770.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Blunier, T., and E. J. Brook, 2001: Timing of millennial-scale climate change in Antarctica and Greenland during the last glacial period. Science, 291, 109112, https://doi.org/10.1126/science.291.5501.109.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Broecker, W. S., D. M. Peteet, and D. Rind, 1985: Does the ocean–atmosphere system have more than one stable mode of operation? Nature, 315, 2126, https://doi.org/10.1038/315021a0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bronselaer, B., and L. Zanna, 2020: Heat and carbon coupling reveals ocean warming due to circulation changes. Nature, 584, 227233, https://doi.org/10.1038/s41586-020-2573-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bryan, K., and L. Lewis, 1979: A water mass model of the world ocean. J. Geophys. Res., 84, 25032517, https://doi.org/10.1029/JC084iC05p02503.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Buizert, C., and Coauthors, 2015: Precise interpolar phasing of abrupt climate change during the last ice age. Nature, 520, 661665, https://doi.org/10.1038/nature14401.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cessi, P., K. Bryan, and R. Zhang, 2004: Global seiching of thermocline waters between the Atlantic and the Indian-Pacific Ocean basins. Geophys. Res. Lett., 31, L04302, https://doi.org/10.1029/2003GL019091.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cheng, W., J. C. Chiang, and D. Zhang, 2013: Atlantic meridional overturning circulation (AMOC) in CMIP5 models: RCP and historical simulations. J. Climate, 26, 71877197, https://doi.org/10.1175/JCLI-D-12-00496.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Crowley, T. J., 1992: North Atlantic deep water cools the Southern Hemisphere. Paleoceanography, 7, 489497, https://doi.org/10.1029/92PA01058.

  • Dansgaard, W., and Coauthors, 1993: Evidence for general instability of past climate from a 250-kyr ice-core record. Nature, 364, 218220, https://doi.org/10.1038/364218a0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Forget, G., J.-M. Campin, P. Heimbach, C. Hill, R. Ponte, and C. Wunsch, 2015: ECCO version 4: An integrated framework for non-linear inverse modeling and global ocean state estimation. Geosci. Model Dev., 8, 30713104, https://doi.org/10.5194/gmd-8-3071-2015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Garuba, O. A., and B. A. Klinger, 2016: Ocean heat uptake and interbasin transport of the passive and redistributive components of surface heating. J. Climate, 29, 75077527, https://doi.org/10.1175/JCLI-D-16-0138.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gent, P. R., and Coauthors, 2011: The Community Climate System Model version 4. J. Climate, 24, 49734991, https://doi.org/10.1175/2011JCLI4083.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gordon, A. L., 1986: Interocean exchange of thermocline water. J. Geophys. Res., 91, 50375046, https://doi.org/10.1029/JC091iC04p05037.

  • Gregory, J. M., 2000: Vertical heat transports in the ocean and their effect on time-dependent climate change. Climate Dyn., 16, 501515, https://doi.org/10.1007/s003820000059.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Griffies, S. M., and Coauthors, 2009: Coordinated Ocean-ice Reference Experiments (COREs). Ocean Modell., 26 (1–2), 146, https://doi.org/10.1016/j.ocemod.2008.08.007.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Haney, R. L., 1971: Surface thermal boundary condition for ocean circulation models. J. Phys. Oceanogr., 1, 241248, https://doi.org/10.1175/1520-0485(1971)001<0241:STBCFO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Held, I. M., M. Winton, K. Takahashi, T. Delworth, F. Zeng, and G. K. Vallis, 2010: Probing the fast and slow components of global warming by returning abruptly to preindustrial forcing. J. Climate, 23, 24182427, https://doi.org/10.1175/2009JCLI3466.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hu, S., S.-P. Xie, and W. Liu, 2020: Global pattern formation of net ocean surface heat flux response to greenhouse warming. J. Climate, 33, 75037522, https://doi.org/10.1175/JCLI-D-19-0642.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huang, R. X., M. A. Cane, N. Naik, and P. Goodman, 2000: Global adjustment of the thermocline in response to deepwater formation. Geophys. Res. Lett., 27, 759762, https://doi.org/10.1029/1999GL002365.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jackett, D. R., and T. J. Mcdougall, 1995: Minimal adjustment of hydrographic profiles to achieve static stability. J. Atmos. Oceanic Technol., 12, 381389, https://doi.org/10.1175/1520-0426(1995)012<0381:MAOHPT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jansen, M. F., L.-P. Nadeau, and T. M. Merlis, 2018: Transient versus equilibrium response of the ocean’s overturning circulation to warming. J. Climate, 31, 51475163, https://doi.org/10.1175/JCLI-D-17-0797.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Johnson, H. L., and D. P. Marshall, 2004: Global teleconnections of meridional overturning circulation anomalies. J. Phys. Oceanogr., 34, 17021722, https://doi.org/10.1175/1520-0485(2004)034<1702:GTOMOC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kang, S. M., S.-P. Xie, Y. Shin, H. Kim, Y.-T. Hwang, M. F. Stuecker, B. Xiang, and M. Hawcroft, 2020: Walker circulation response to extratropical radiative forcing. Sci. Adv., 6, eabd3021, https://doi.org/10.1126/sciadv.abd3021.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, W., A. V. Fedorov, S.-P. Xie, and S. Hu, 2020: Climate impacts of a weakened Atlantic meridional overturning circulation in a warming climate. Sci. Adv., 6, eaaz4876, https://doi.org/10.1126/sciadv.aaz4876.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, Z., and Coauthors, 2009: Transient simulation of last deglaciation with a new mechanism for Bølling-Allerød warming. Science, 325, 310314, https://doi.org/10.1126/science.1171041.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Long, S.-M., S.-P. Xie, X.-T. Zheng, and Q. Liu, 2014: Fast and slow responses to global warming: Sea surface temperature and precipitation patterns. J. Climate, 27, 285299, https://doi.org/10.1175/JCLI-D-13-00297.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Long, S.-M., S.-P. Xie, Y. Du, Q. Liu, X.-T. Zheng, G. Huang, K.-M. Hu, and J. Ying, 2020: Effects of ocean slow response under low warming targets. J. Climate, 33, 477496, https://doi.org/10.1175/JCLI-D-19-0213.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Markle, B. R., and Coauthors, 2017: Global atmospheric teleconnections during Dansgaard–Oeschger events. Nat. Geosci., 10, 3640, https://doi.org/10.1038/ngeo2848.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marshall, J., and K. Speer, 2012: Closure of the meridional overturning circulation through Southern Ocean upwelling. Nat. Geosci., 5, 171180, https://doi.org/10.1038/ngeo1391.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marshall, J., A. Adcroft, C. Hill, L. Perelman, and C. Heisey, 1997: A finite-volume, incompressible Navier Stokes model for studies of the ocean on parallel computers. J. Geophys. Res., 102, 57535766, https://doi.org/10.1029/96JC02775.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Menary, M. B., and R. A. Wood, 2018: An anatomy of the projected North Atlantic warming hole in CMIP5 models. Climate Dyn., 50, 30633080, https://doi.org/10.1007/s00382-017-3793-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Menzel, M. E., and T. M. Merlis, 2019: Connecting direct effects of CO2 radiative forcing to ocean heat uptake and circulation. J. Adv. Model. Earth Syst., 11, 21632176, https://doi.org/10.1029/2018MS001544.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Molina, M. J., A. Hu, and G. A. Meehl, 2022: Response of global SSTs and ENSO to the Atlantic and Pacific meridional overturning circulations. J. Climate, 35, 4972, https://doi.org/10.1175/JCLI-D-21-0172.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Newsom, E. R., and A. F. Thompson, 2018: Reassessing the role of the Indo-Pacific in the ocean’s global overturning circulation. Geophys. Res. Lett., 45, 12 42212 431, https://doi.org/10.1029/2018GL080350.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Newsom, E. R., A. F. Thompson, J. F. Adkins, and E. D. Galbraith, 2021: A hemispheric asymmetry in poleward ocean heat transport across climates: Implications for overturning and polar warming. Earth Plan. Sci. Lett., 568, 117033, https://doi.org/10.1016/j.epsl.2021.117033.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nikurashin, M., and G. Vallis, 2012: A theory of the interhemispheric meridional overturning circulation and associated stratification. J. Phys. Oceanogr., 42, 16521667, https://doi.org/10.1175/JPO-D-11-0189.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nurser, A. G., and M.-M. Lee, 2004: Isopycnal averaging at constant height. Part I: The formulation and a case study. J. Phys. Oceanogr., 34, 27212739, https://doi.org/10.1175/JPO2649.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pedro, J. B., M. Jochum, C. Buizert, F. He, S. Barker, and S. O. Rasmussen, 2018: Beyond the bipolar seesaw: Toward a process understanding of interhemispheric coupling. Quat. Sci. Rev., 192, 2746, https://doi.org/10.1016/j.quascirev.2018.05.005.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Purkey, S. G., and G. C. Johnson, 2013: Antarctic bottom water warming and freshening: Contributions to sea level rise, ocean freshwater budgets, and global heat gain. J. Climate, 26, 61056122, https://doi.org/10.1175/JCLI-D-12-00834.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Redi, M. H., 1982: Oceanic isopycnal mixing by coordinate rotation. J. Phys. Oceanogr., 12, 11541158, https://doi.org/10.1175/1520-0485(1982)012<1154:OIMBCR>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rugenstein, M. A., J. M. Gregory, N. Schaller, J. Sedláček, and R. Knutti, 2016: Multiannual ocean–atmosphere adjustments to radiative forcing. J. Climate, 29, 56435659, https://doi.org/10.1175/JCLI-D-16-0312.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sen Gupta, A., S. McGregor, E. Van Sebille, A. Ganachaud, J. N. Brown, and A. Santoso, 2016: Future changes to the Indonesian Throughflow and Pacific circulation: The differing role of wind and deep circulation changes. Geophys. Res. Lett., 43, 16691678, https://doi.org/10.1002/2016GL067757.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shatwell, P., A. Czaja, and D. Ferreira, 2020: Ocean heat storage rate unaffected by MOC weakening in an idealized climate model. Geophys. Res. Lett., 47, e2020GL089849, https://doi.org/10.1029/2020GL089849.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shi, J.-R., S.-P. Xie, and L. D. Talley, 2018: Evolving relative importance of the Southern Ocean and North Atlantic in anthropogenic ocean heat uptake. J. Climate, 31, 74597479, https://doi.org/10.1175/JCLI-D-18-0170.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stocker, T. F., and S. J. Johnsen, 2003: A minimum thermodynamic model for the bipolar seesaw. Paleoceanography, 18, 1087, https://doi.org/10.1029/2003PA000920.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stommel, H., 1961: Thermohaline convection with two stable regimes of flow. Tellus, 13, 224230, https://doi.org/10.3402/tellusa.v13i2.9491.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stouffer, R. J., 2004: Time scales of climate response. J. Climate, 17, 209217, https://doi.org/10.1175/1520-0442(2004)017<0209:TSOCR>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sun, S., and A. F. Thompson, 2020: Centennial changes in the Indonesian Throughflow connected to the Atlantic Meridional Overturning Circulation: The ocean’s transient conveyor belt. Geophys. Res. Lett., 47, e2020GL090615, https://doi.org/10.1029/2020GL090615.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sun, S., I. Eisenman, and A. L. Stewart, 2018: Does Southern Ocean surface forcing shape the global ocean overturning circulation? Geophys. Res. Lett., 45, 24132423, https://doi.org/10.1002/2017GL076437.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sun, S., I. Eisenman, L. Zanna, and A. L. Stewart, 2020a: Surface constraints on the depth of the Atlantic meridional overturning circulation: Southern Ocean versus North Atlantic. J. Climate, 33, 31253149, https://doi.org/10.1175/JCLI-D-19-0546.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sun, S., A. F. Thompson, and I. Eisenman, 2020b: Transient overturning compensation between Atlantic and Indo-Pacific basins. J. Phys. Oceanogr., 50, 21512172, https://doi.org/10.1175/JPO-D-20-0060.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Talley, L. D., 2013: Closure of the global overturning circulation through the Indian, Pacific, and Southern Oceans: Schematics and transports. Oceanography, 26, 8097, https://doi.org/10.5670/oceanog.2013.07.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Taylor, K. E., R. J. Stouffer, and G. A. Meehl, 2012: An overview of CMIP5 and the experiment design. Bull. Amer. Meteor. Soc., 93, 485498, https://doi.org/10.1175/BAMS-D-11-00094.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thompson, A. F., A. L. Stewart, and T. Bischoff, 2016: A multibasin residual-mean model for the global overturning circulation. J. Phys. Oceanogr., 46, 25832604, https://doi.org/10.1175/JPO-D-15-0204.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thompson, A. F., S. K. Hines, and J. F. Adkins, 2019: A Southern Ocean mechanism for the interhemispheric coupling and phasing of the bipolar seesaw. J. Climate, 32, 43474365, https://doi.org/10.1175/JCLI-D-18-0621.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Viebahn, J., and C. Eden, 2012: Standing eddies in the meridional overturning circulation. J. Phys. Oceanogr., 42, 14861508, https://doi.org/10.1175/JPO-D-11-087.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Walczak, M. H., and Coauthors, 2020: Phasing of millennial-scale climate variability in the Pacific and Atlantic Oceans. Science, 370, 716720, https://doi.org/10.1126/science.aba7096.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, G., S.-P. Xie, R. X. Huang, and C. Chen, 2015: Robust warming pattern of global subtropical oceans and its mechanism. J. Climate, 28, 85748584, https://doi.org/10.1175/JCLI-D-14-00809.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Weijer, W., W. Cheng, O. Garuba, A. Hu, and B. Nadiga, 2020: CMIP6 models predict significant 21st century decline of the Atlantic meridional overturning circulation. Geophys. Res. Lett., 47, e2019GL086075, https://doi.org/10.1029/2019GL086075.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Winton, M., S. M. Griffies, B. L. Samuels, J. L. Sarmiento, and T. L. Frölicher, 2013: Connecting changing ocean circulation with changing climate. J. Climate, 26, 22682278, https://doi.org/10.1175/JCLI-D-12-00296.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wolfe, C. L., and P. Cessi, 2011: The adiabatic pole-to-pole overturning circulation. J. Phys. Oceanogr., 41, 17951810, https://doi.org/10.1175/2011JPO4570.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xie, P., and G. K. Vallis, 2012: The passive and active nature of ocean heat uptake in idealized climate change experiments. Climate Dyn., 38, 667684, https://doi.org/10.1007/s00382-011-1063-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xie, S.-P., C. Deser, G. A. Vecchi, J. Ma, H. Teng, and A. T. Wittenberg, 2010: Global warming pattern formation: Sea surface temperature and rainfall. J. Climate, 23, 966986, https://doi.org/10.1175/2009JCLI3329.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Young, W. R., 2012: An exact thickness-weighted average formulation of the Boussinesq equations. J. Phys. Oceanogr., 42, 692707, https://doi.org/10.1175/JPO-D-11-0102.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 777 0 0
Full Text Views 933 532 31
PDF Downloads 819 347 29