An Interdecadal Change in the Influence of ENSO on the Spring Tibetan Plateau Snow-Cover Variability in the Early 2000s

Zhibiao Wang aCenter for Monsoon System Research, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China

Search for other papers by Zhibiao Wang in
Current site
Google Scholar
PubMed
Close
,
Renguang Wu bSchool of Earth Sciences, Zhejiang University, Hangzhou, China
aCenter for Monsoon System Research, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China
cSouthern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China

Search for other papers by Renguang Wu in
Current site
Google Scholar
PubMed
Close
,
Song Yang dSchool of Atmospheric Sciences, Sun Yat-sen University, Guangzhou, China
cSouthern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China
eGuangdong Province Key Laboratory for Climate Change and Natural Disaster Studies, Guangdong, China

Search for other papers by Song Yang in
Current site
Google Scholar
PubMed
Close
, and
Mengmeng Lu fInstitute of Climate System, Chinese Academy of Meteorological Sciences, Beijing, China
cSouthern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China

Search for other papers by Mengmeng Lu in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

El Niño–Southern Oscillation (ENSO) and the Tibetan Plateau snow cover are important factors in interannual climate variability. The relationship between ENSO and the Tibetan Plateau snow variation is still undetermined. While some studies suggested that ENSO is a key factor of changes in snow cover over the Tibetan Plateau, other studies noted independence between the two. The present study revealed a prominent interdecadal change in the relationship between ENSO and the spring Tibetan Plateau snow-cover variation in the early 2000s. There is a significant positive correlation between ENSO and the spring Tibetan Plateau snow-cover variation in the period 1988–2003, but an obvious negative relationship is detected in the period 2004–19. The interdecadal change in the ENSO–snow relationship is related to the distinct pathway of ENSO influence on the spring Tibetan Plateau snow-cover variation during the two periods. In the period 1988–2003, ENSO induces anomalous convection over the tropical western North Pacific that in turn causes atmospheric circulation and moisture anomalies over the Tibetan Plateau. The resultant winter snow anomalies over the central-eastern Tibetan Plateau persist to the following spring. In the period 2004–19, ENSO induces North Atlantic sea surface temperature (SST) anomalies in winter that are maintained to the following spring. The North Atlantic SST anomalies then stimulate the atmospheric circulation anomalies extending to the Tibetan Plateau that induce snow-cover anomalies there in spring. The different processes of ENSO influence lead to opposite anomalies of spring snow cover over the Tibetan Plateau in the two periods.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Renguang Wu, renguang@zju.edu.cn

Abstract

El Niño–Southern Oscillation (ENSO) and the Tibetan Plateau snow cover are important factors in interannual climate variability. The relationship between ENSO and the Tibetan Plateau snow variation is still undetermined. While some studies suggested that ENSO is a key factor of changes in snow cover over the Tibetan Plateau, other studies noted independence between the two. The present study revealed a prominent interdecadal change in the relationship between ENSO and the spring Tibetan Plateau snow-cover variation in the early 2000s. There is a significant positive correlation between ENSO and the spring Tibetan Plateau snow-cover variation in the period 1988–2003, but an obvious negative relationship is detected in the period 2004–19. The interdecadal change in the ENSO–snow relationship is related to the distinct pathway of ENSO influence on the spring Tibetan Plateau snow-cover variation during the two periods. In the period 1988–2003, ENSO induces anomalous convection over the tropical western North Pacific that in turn causes atmospheric circulation and moisture anomalies over the Tibetan Plateau. The resultant winter snow anomalies over the central-eastern Tibetan Plateau persist to the following spring. In the period 2004–19, ENSO induces North Atlantic sea surface temperature (SST) anomalies in winter that are maintained to the following spring. The North Atlantic SST anomalies then stimulate the atmospheric circulation anomalies extending to the Tibetan Plateau that induce snow-cover anomalies there in spring. The different processes of ENSO influence lead to opposite anomalies of spring snow cover over the Tibetan Plateau in the two periods.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Renguang Wu, renguang@zju.edu.cn
Save
  • Abid, M. A., F. Kucharski, F. Molteni, I. S. Kang, A. M. Tompkins, and M. Almazroui, 2021: Separating the Indian and Pacific Ocean impacts on the Euro-Atlantic response to ENSO and its transition from early to late winter. J. Climate, 34, 15311548, https://doi.org/10.1175/JCLI-D-20-0075.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Alexander, M., and J. Scott, 2002: The influence of ENSO on air-sea interaction in the Atlantic. Geophys. Res. Lett., 29, 1701, https://doi.org/10.1029/2001GL014347.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Barnett, T. P., L. Dümenil, U. Schlese, E. Roeckner, and M. Latif, 1989: The effect of Eurasian snow cover on regional and global climate variations. J. Atmos. Sci., 46, 661686, https://doi.org/10.1175/1520-0469(1989)046<0661:TEOESC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bjerknes, J., 1969: Atmospheric teleconnections from the equatorial Pacific. Mon. Wea. Rev., 97, 163172, https://doi.org/10.1175/1520-0493(1969)097<0163:ATFTEP>2.3.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brodzik, M., and R. Armstrong, 2013: Northern Hemisphere EASE-Grid 2.0 weekly snow cover and sea ice extent, version 4. National Snow and Ice Data Center, accessed 25 September 2020, https://doi.org/10.5067/P7O0HGJLYUQU.

    • Search Google Scholar
    • Export Citation
  • Cai, W.-J., and Coauthors, 2019: Pantropical climate interactions. Science, 363, eaav6430, https://doi.org/10.1126/science.aav4236.

  • Cassou, C., C. Deser, L. Terray, J. W. Hurrell, and M. Drévillon, 2004: Summer sea surface temperature conditions in the North Atlantic and their impact upon the atmospheric circulation in early winter. J. Climate, 17, 33493363, https://doi.org/10.1175/1520-0442(2004)017<3349:SSSTCI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, S., and R. Wu, 2017: Interdecadal changes in the relationship between interannual variations of spring North Atlantic SST and Eurasian surface air temperature. J. Climate, 30, 37713787, https://doi.org/10.1175/JCLI-D-16-0477.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, S., R. Wu, and W. Chen, 2015: The changing relationship between interannual variations of the North Atlantic Oscillation and northern Tropical Atlantic SST. J. Climate, 28, 485504, https://doi.org/10.1175/JCLI-D-14-00422.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, S. R. Wu, and W. Chen, 2018: Modulation of northern tropical Atlantic sea surface temperature on the ENSO-East Asian summer monsoon connection. Int. J. Climatol., 38, 50205029, https://doi.org/10.1002/joc.5710.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, W., J. Feng, and R. Wu, 2013: Roles of ENSO and PDO in the link of the East Asian winter monsoon to the following summer monsoon. J. Climate, 26, 622635, https://doi.org/10.1175/JCLI-D-12-00021.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chiang, J. C., and A. H. Sobel, 2002: Tropical tropospheric temperature variations caused by ENSO and their influence on the remote tropical climate. J. Climate, 15, 26162631, https://doi.org/10.1175/1520-0442(2002)015<2616:TTTVCB>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chikamoto, Y., Z. F. Johnson, S. Y. S. Wang, M. J. McPhaden, and T. Mochizuki, 2020: El Niño–Southern Oscillation evolution modulated by Atlantic forcing. J. Geophys. Res. Atmos., 125, e2020JC016318, https://doi.org/10.1029/2020JC016138.

    • Search Google Scholar
    • Export Citation
  • Clem, K. R., J. A. Renwick, J. McGregor, and R. L. Fogt, 2016: The relative influence of ENSO and SAM on Antarctic Peninsula climate. J. Geophys. Res. Atmos., 121, 93249341, https://doi.org/10.1002/2016JD025305.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cohen, J., and D. Entekhabi, 2001: The influence of snow cover on Northern Hemisphere climate variability. Atmos.–Ocean, 39, 3553, https://doi.org/10.1080/07055900.2001.9649665.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Curtis, S., and S. Hastenrath, 1995: Forcing of anomalous sea surface temperature evolution in the tropical Atlantic during Pacific warm events. J. Geophys. Res., 100, 15  83515 847, https://doi.org/10.1029/95JC01502.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dai, A., and T. M. L. Wigley, 2000: Global patterns of ENSO-induced precipitation. Geophys. Res. Lett., 27, 12831286, https://doi.org/10.1029/1999GL011140.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dai, L., T. Che, Y. Ding, and X. Hao, 2017: Evaluation of snow cover and snow depth on the Qinghai-Tibetan Plateau derived from passive microwave remote sensing. Cryosphere, 11, 19331948, https://doi.org/10.5194/tc-11-1933-2017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dong, C., and L. Menzel, 2020: Recent snow cover changes over central European low mountain ranges. Hydrol. Processes, 34, 321338, https://doi.org/10.1002/hyp.13586.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Drévillon, M., L. Terray, P. Rogel, and C. Cassou, 2001: Midlatitude Atlantic SST influence on European winter climate variability in the NCEP reanalysis. Climate Dyn., 18, 331344, https://doi.org/10.1007/s003820100178.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Enfield, D. B., and D. A. Mayer, 1997: Tropical Atlantic sea surface temperature variability and its relation to El Nino-Southern Oscillation. J. Geophys. Res., 102, 929945, https://doi.org/10.1029/96JC03296.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • He, Z., and R. Wu, 2018: Change in coherence of summer rainfall variability over the western Pacific around the early 2000s: Roles of Indo-Pacific forcing. J. Climate, 31, 35253538, https://doi.org/10.1175/JCLI-D-17-0687.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • He, Z., and Coauthors, 2020: Change in coherence of summer rainfall variability over the western Pacific around the early 2000s: ENSO influence. J. Climate, 33, 11051119, https://doi.org/10.1175/JCLI-D-19-0150.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hirahara, S., M. Ishii, and Y. Fukuda, 2014: Centennial-scale sea surface temperature analysis and its uncertainty. J. Climate, 27, 5775, https://doi.org/10.1175/JCLI-D-12-00837.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hong, C.-C., T.-C. Chang, and H.-H. Hsu, 2014: Enhanced relationship between the tropical Atlantic SST and the summertime western North Pacific subtropical high after the early 1980s. J. Geophys. Res. Atmos., 119, 37153722, https://doi.org/10.1002/2013JD021394.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hu, Z.-Z., A. Kumar, B. Huang, J. Zhu, and H. L. Ren, 2017: Interdecadal variations of ENSO around 1999/2000. J. Meteor. Res., 31, 7381, https://doi.org/10.1007/s13351-017-6074-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jia, X., C. Zhang, R. Wu, and Q. Qian, 2021: Influence of Tibetan Plateau autumn snow cover on interannual variations in spring precipitation over southern China. Climate Dyn., 56, 767782, https://doi.org/10.1007/s00382-020-05497-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jiang, X., T. Zhang, C. Y. Tam, J. Chen, N. C. Lau, S. Yang, and Z. Wang, 2019: Impacts of ENSO and IOD on snow depth over the Tibetan Plateau: Roles of convections over the western North Pacific and Indian Ocean. J. Geophys. Res. Atmos., 124, 11 96111 975, https://doi.org/10.1029/2019JD031384.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Johnson, Z. F., Y. Chikamoto, S. Y. S. Wang, M. J. McPhaden, and T. Mochizuki, 2020: Pacific decadal oscillation remotely forced by the equatorial Pacific and the Atlantic Oceans. Climate Dyn., 55, 789811, https://doi.org/10.1007/s00382-020-05295-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kanamitsu, M., W. Ebisuzaki, J. Woollen, S. K. Yang, J. J. Hnilo, M. Fiorino, and G. L. Potter, 2002: NCEP–DOE AMIP-II Reanalysis (R-2). Bull. Amer. Meteor. Soc., 83, 16311644, https://doi.org/10.1175/BAMS-83-11-1631.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Klein, S. A., B. J. Soden, and N.-C. Lau, 1999: Remote sea surface variations during ENSO: Evidence for a tropical atmospheric bridge. J. Climate, 12, 917932, https://doi.org/10.1175/1520-0442(1999)012<0917:RSSTVD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kushnir, Y., W. A. Robinson, I. Blade, N. M. J. Hall, S. Peng, and R. Sutton, 2002: Atmospheric GCM response to extratropical SST anomalies: Synthesis and evaluation. J. Climate, 15, 22332256, https://doi.org/10.1175/1520-0442(2002)015<2233:AGRTES>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, W., B. Qiu, W. Guo, and P. C. Hsu, 2021: Rapid response of the East Asian trough to Tibetan Plateau snow cover. Int. J. Climatol., 41, 251261, https://doi.org/10.1002/joc.6618.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Neale, R. B., and Coauthors, 2010: Description of the NCAR community atmosphere model (CAM 5.0). NCAR Tech. Note NCAR/TN-486+ STR, 274 pp., www.cesm.ucar.edu/models/cesm1.0/cam/docs/description/cam5_desc.pdf.

    • Search Google Scholar
    • Export Citation
  • Plumb, R. A., 1985: On the three-dimensional propagation of stationary waves. J. Atmos. Sci., 42, 217229, https://doi.org/10.1175/1520-0469(1985)042<0217:OTTDPO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Qian, Q.-F., X.-J. Jia, and R. Wu, 2020: On the interdecadal change in the interannual variation in autumn snow cover over the central eastern Tibetan Plateau in the mid-1990s. J. Geophys. Res. Atmos., 125, e2020JD032685, https://doi.org/10.1029/2020JD032685.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rong, X.-Y., R.-H. Zhang, and T. Li, 2010: Impacts of Atlantic sea surface temperature anomalies on Indo-East Asian summer monsoon–ENSO relationship. Chin. Sci. Bull., 55, 24582468, https://doi.org/10.1007/s11434-010-3098-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ropelewski, C. F., and M. S. Halpert, 1986: North American precipitation and temperature patterns associated with the El Niño/Southern Oscillation (ENSO). Mon. Wea. Rev., 114, 23522362, https://doi.org/10.1175/1520-0493(1986)114<2352:NAPATP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sakai, K., and R. Kawamura, 2009: Remote response of the East Asian winter monsoon to tropical forcing related to El Niño–Southern Oscillation. J. Geophys. Res., 114, D06105, https://doi.org/10.1029/2008JD010824.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shaman, J., and E. Tziperman, 2005: The effect of ENSO on Tibetan Plateau snow depth: A stationary wave teleconnection mechanism and implications for the South Asian monsoons. J. Climate, 18, 20672079, https://doi.org/10.1175/JCLI3391.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Torrence, C., and P. J. Webster, 1999: Interdecadal changes in the ENSO–monsoon system. J. Climate, 12, 26792690, https://doi.org/10.1175/1520-0442(1999)012<2679:ICITEM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., 1997: The definition of El Niño. Bull. Amer. Meteor. Soc., 78, 27712778, https://doi.org/10.1175/1520-0477(1997)078<2771:TDOENO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wallace, J. M., E. M. Rasmusson, T. P. Mitchell, V. E. Kousky, E. S. Sarachik, and H. Von, 1998: On the structure and evolution of ENSO-related climate variability in the tropical Pacific: Lessons from TOGA. J. Geophys. Res., 103, 14 24114 259, https://doi.org/10.1029/97JC02905.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, B., R. Wu, and X. Fu, 2000: Pacific–East Asian teleconnection: How does ENSO affect East Asian climate? J. Climate, 13, 15171536, https://doi.org/10.1175/1520-0442(2000)013<1517:PEATHD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, L., W. Chen, and R. Huang, 2008: Interdecadal modulation of PDO on the impact of ENSO on the East Asian winter monsoon. Geophys. Res. Lett., 35, L20702, https://doi.org/10.1029/2008GL035287.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, Y., and X. Xu, 2018: Impact of ENSO on the thermal condition over the Tibetan Plateau. J. Meteor. Soc. Japan, 96, 269281, https://doi.org/10.2151/jmsj.2018-032.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, Z., R. Wu, P. Zhao, S. L. Yao, and X. Jia, 2019: Formation of snow cover anomalies over the Tibetan Plateau in cold seasons. J. Geophys. Res. Atmos., 124, 48734890, https://doi.org/10.1029/2018JD029525.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, Z., R. Wu, A. Duan, and X. Qu, 2020: Influence of Eastern Tibetan Plateau spring snow cover on North American air temperature and its interdecadal change. J. Climate, 33, 51235139, https://doi.org/10.1175/JCLI-D-19-0455.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Watanabe, M., and M. Kimoto, 2000: Atmosphere-ocean thermal coupling in the North Atlantic: A positive feedback. Quart. J. Roy. Meteor. Soc., 126, 33433369, https://doi.org/10.1002/qj.49712657017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Watanabe, M., and F. F. Jin, 2003: A moist linear baroclinic model: Coupled dynamical–convective response to El Niño. J. Climate, 16, 11211139, https://doi.org/10.1175/1520-0442(2003)16<1121:AMLBMC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, R., and B. Wang, 2002: A contrast of the East Asian summer monsoon–ENSO relationship between 1962–77 and 1978–93. J. Climate, 15, 32663279, https://doi.org/10.1175/1520-0442(2002)015<3266:ACOTEA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, R., and B. P. Kirtman, 2007a: Observed relationship of spring and summer East Asian rainfall with winter and spring Eurasian snow. J. Climate, 20, 12851304, https://doi.org/10.1175/JCLI4068.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, R., and B. P. Kirtman, 2007b: Regimes of local air-sea interactions and implications for performance of forced simulations. Climate Dyn., 29, 393410, https://doi.org/10.1007/s00382-007-0246-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, R., and L. Zhang, 2010: Biennial relationship of rainfall variability between Central America and equatorial South America. Geophys. Res. Lett., 37, L08701, https://doi.org/10.1029/2010GL042732.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, R., and S. Chen, 2016: Regional change in snow water equivalent–surface air temperature relationship over Eurasia during boreal spring. Climate Dyn., 47, 24252442, https://doi.org/10.1007/s00382-015-2972-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, R., and S. Chen, 2020: What leads to persisting surface air temperature anomalies from winter to following spring over the mid- to high-latitude Eurasia? J. Climate, 33, 58615883, https://doi.org/10.1175/JCLI-D-19-0819.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, R., and P. Zhu, 2021: Interdecadal change in the relationship of Indochina Peninsula May precipitation to ENSO. Int. J. Climatol., 41, 24412455, https://doi.org/10.1002/joc.6968.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, R., Z. Z. Hu, and B. P. Kirtman, 2003: Evolution of ENSO-related rainfall anomalies in East Asia. J. Climate, 16, 37423758, https://doi.org/10.1175/1520-0442(2003)016<3742:EOERAI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, R., S. Yang, S. Liu, L. Sun, Y. Lian, and Z. Gao, 2010: Change in the relationship between northeast China summer temperature and ENSO. J. Geophys. Res., 115, D21107, https://doi.org/10.1029/2010JD014422.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, R., S. Yang, S. Liu, L. Sun, Y. Lian, and Z. Gao, 2011: Northeast China summer temperature and North Atlantic SST. J. Geophys. Res., 116, D16116, https://doi.org/10.1029/2011JD015779.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, R., M.-Y. Lin, and H.-M. Sun, 2020: Impacts of different types of El Niño and La Niña on northern tropical Atlantic sea surface temperature. Climate Dyn., 54, 41474167, https://doi.org/10.1007/s00382-020-05220-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, Z., B. Wang, J.-P. Li, and F.-F. Jin, 2009: An empirical seasonal prediction model of the East Asian summer monsoon using ENSO and NAO. J. Geophys. Res., 114, D18120, https://doi.org/10.1029/2009JD011733.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, Z., P. Zhang, H. Chen, and Y. Li, 2016: Can the Tibetan Plateau snow cover influence the interannual variations of Eurasian heat wave frequency? Climate Dyn., 46, 34053417, https://doi.org/10.1007/s00382-015-2775-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yang, Y., S. P. Xie, L. Wu, Y. Kosaka, and J. Li, 2018: ENSO forced and local variability of North Tropical Atlantic SST: Model simulations and biases. Climate Dyn., 51, 45114524, https://doi.org/10.1007/s00382-017-3679-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yasunari, T., A. Kitoh, and T. Tokioka, 1991: Local and remote responses to excessive snow mass over Eurasia appearing in the northern spring and summer climate. J. Meteor. Soc. Japan, 69, 473487, https://doi.org/10.2151/jmsj1965.69.4_473.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yuan, C., T. Tozuka, T. Miyasaka, and T. Yamagata, 2009: Respective influences of IOD and ENSO on the Tibetan snow cover in early winter. Climate Dyn., 33, 509520, https://doi.org/10.1007/s00382-008-0495-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yuan, C., T. Tozuka, and T. Yamagata, 2012: IOD influence on the early winter Tibetan Plateau snow cover: Diagnostic analyses and an AGCM simulation. Climate Dyn., 39, 16431660, https://doi.org/10.1007/s00382-011-1204-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, Y., J. M. Wallace, and D. S. Battisti, 1997: ENSO-like interdecadal variability: 1900–93. J. Climate, 10, 10041020, https://doi.org/10.1175/1520-0442(1997)010<1004:ELIV>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhao, P., Z. Zhou, and J. Liu, 2007: Variability of Tibetan spring snow and its associations with the hemispheric extratropical circulation and East Asian summer monsoon rainfall: An observational investigation. J. Climate, 20, 39423955, https://doi.org/10.1175/JCLI4205.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zuo, J., W. Li, C. Sun, L. Xu, and H. Ren, 2013: Impact of the North Atlantic sea surface temperature tripole on the East Asian summer monsoon. Adv. Atmos. Sci., 30, 11731186, https://doi.org/10.1007/s00376-012-2125-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zuo, Z., R. Zhang, B. Wu, and X. Rong, 2012: Decadal variability in springtime snow over Eurasia: Relation with circulation and possible influence on springtime rainfall over China. Int. J. Climatol., 32, 13361345, https://doi.org/10.1002/joc.2355.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 501 0 0
Full Text Views 720 343 24
PDF Downloads 753 298 19