Eastward Shift of Interannual Climate Variability in the South Indian Ocean since 1950

Lei Zhang aDepartment of Atmospheric and Oceanic Sciences, University of Colorado, Boulder, Colorado

Search for other papers by Lei Zhang in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0003-2431-869X
,
Weiqing Han aDepartment of Atmospheric and Oceanic Sciences, University of Colorado, Boulder, Colorado

Search for other papers by Weiqing Han in
Current site
Google Scholar
PubMed
Close
,
Kristopher B. Karnauskas aDepartment of Atmospheric and Oceanic Sciences, University of Colorado, Boulder, Colorado
bCooperative Institute for Research in Environmental Sciences, University of Colorado, Boulder, Colorado

Search for other papers by Kristopher B. Karnauskas in
Current site
Google Scholar
PubMed
Close
,
Yuanlong Li aDepartment of Atmospheric and Oceanic Sciences, University of Colorado, Boulder, Colorado
cCAS Key Laboratory of Ocean Circulation and Waves, Institute of Oceanology and Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China

Search for other papers by Yuanlong Li in
Current site
Google Scholar
PubMed
Close
, and
Tomoki Tozuka dDepartment of Earth and Planetary Science, Graduate School of Science, University of Tokyo, Tokyo, Japan

Search for other papers by Tomoki Tozuka in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The subtropical Indian Ocean dipole (SIOD) and Ningaloo Niño are the two dominant modes of interannual climate variability in the subtropical south Indian Ocean. Observations show that the SIOD has been weakening in the recent decades, while Ningaloo Niño has been strengthening. In this study, we investigate the causes for such changes by analyzing climate model experiments using the NCAR Community Earth System Model, version 1 (CESM1). Ensemble-mean results from CESM1 large-ensemble (CESM1-LE) show that the external forcing causes negligible changes in the amplitudes of the SIOD and Ningaloo Niño, suggesting a dominant role of internal climate variability. Meanwhile, results from CESM1 pacemaker experiments reveal that the observed changes in the two climate modes cannot be attributed to the effect of sea surface temperature anomalies (SSTA) in either the eastern tropical Pacific Ocean or tropical Indian Ocean. By further comparing different ensemble members from the CESM1-LE, we find that a warm pool dipole mode of decadal variability, with opposite SSTA in the southeast Indian Ocean and the western-central tropical Pacific Ocean plays an important role in driving the observed changes in the SIOD and Ningaloo Niño. These changes in the two climate modes have considerable impacts on precipitation and sea level variabilities in the south Indian Ocean region.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Lei Zhang, lezh8230@colorado.edu

Abstract

The subtropical Indian Ocean dipole (SIOD) and Ningaloo Niño are the two dominant modes of interannual climate variability in the subtropical south Indian Ocean. Observations show that the SIOD has been weakening in the recent decades, while Ningaloo Niño has been strengthening. In this study, we investigate the causes for such changes by analyzing climate model experiments using the NCAR Community Earth System Model, version 1 (CESM1). Ensemble-mean results from CESM1 large-ensemble (CESM1-LE) show that the external forcing causes negligible changes in the amplitudes of the SIOD and Ningaloo Niño, suggesting a dominant role of internal climate variability. Meanwhile, results from CESM1 pacemaker experiments reveal that the observed changes in the two climate modes cannot be attributed to the effect of sea surface temperature anomalies (SSTA) in either the eastern tropical Pacific Ocean or tropical Indian Ocean. By further comparing different ensemble members from the CESM1-LE, we find that a warm pool dipole mode of decadal variability, with opposite SSTA in the southeast Indian Ocean and the western-central tropical Pacific Ocean plays an important role in driving the observed changes in the SIOD and Ningaloo Niño. These changes in the two climate modes have considerable impacts on precipitation and sea level variabilities in the south Indian Ocean region.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Lei Zhang, lezh8230@colorado.edu

Supplementary Materials

    • Supplemental Materials (PDF 2.00 MB)
Save
  • Balmaseda, M. A., K. Mogensen, and A. T. Weaver, 2013: Evaluation of the ECMWF ocean reanalysis system ORAS4. Quart. J. Roy. Meteor. Soc., 139, 11321161, https://doi.org/10.1002/qj.2063.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Behera, S. K., and T. Yamagata, 2001: Subtropical SST dipole events in the southern Indian Ocean. Geophys. Res. Lett., 28, 327330, https://doi.org/10.1029/2000GL011451.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Byrne, M., 2011: Impact of ocean warming and ocean acidification on marine invertebrate life history stages: Vulnerabilities and potential for persistence in a changing ocean. Oceanography and Marine Biology: An Annual Review, R. N. Gibson, R. J. A. Atkinson, and J. D. M. Gordon, Eds., Vol. 49, CRC Press, 142.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cai, W., and Coauthors, 2019: Pantropical climate interactions. Science, 363, eaav4236, https://doi.org/10.1126/science.aav4236.

  • Cane, M. A., G. Eshel, and R. W. Buckland, 1994: Forecasting Zimbabwean maize yield using eastern equatorial Pacific sea surface temperature. Nature, 370, 204205, https://doi.org/10.1038/370204a0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Caputi, N., G. Jackson, and A. Pearce, 2014: The marine heat wave off Western Australia during the summer of 2010/11—2 years on. Department of Fisheries, Western Australia, Fisheries Research Rep. 250. 40 pp.

    • Search Google Scholar
    • Export Citation
  • Clarke, A. J., and X. Liu, 1994: Interannual sea level in the northern and eastern Indian Ocean. J. Phys. Oceanogr., 24, 12241235, https://doi.org/10.1175/1520-0485(1994)024<1224:ISLITN>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Deepa, J. S., C. Gnanaseelan, R. Kakatkar, A. Parekh, and J. S. Chowdary, 2018: The interannual sea level variability in the Indian Ocean as simulated by an ocean general circulation model. Int. J. Climatol., 38, 11321144, https://doi.org/10.1002/joc.5228.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Deepa, J. S., C. Gnanaseelan, S. Mohapatra, J. S. Chowdary, A. Karmakar, R. Kakatkar, and A. Parekh, 2019: The tropical Indian Ocean decadal sea level response to the Pacific decadal oscillation forcing. Climate Dyn., 52, 50455058, https://doi.org/10.1007/s00382-018-4431-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Denniston, R. F., and Coauthors, 2015: Extreme rainfall activity in the Australian tropics reflects changes in the El Niño/Southern Oscillation over the last two millennia. Proc. Natl. Acad. Sci. USA, 112, 45764581, https://doi.org/10.1073/pnas.1422270112.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Depczynski, M., and Coauthors, 2013: Bleaching, coral mortality and subsequent survivorship on a West Australian fringing reef. Coral Reefs, 32, 233238, https://doi.org/10.1007/s00338-012-0974-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Deser, C., and Coauthors, 2012: ENSO and Pacific decadal variability in the Community Climate System Model version 4. J. Climate, 25, 26222651, https://doi.org/10.1175/JCLI-D-11-00301.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Eyring, V., and Coauthors, 2013: Long-term ozone changes and associated climate impacts in CMIP5 simulations. J. Geophys. Res. Atmos., 118, 50295060, https://doi.org/10.1002/jgrd.50316.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Feng, M., M. J. McPhaden, S. P. Xie, and J. Hafner, 2013: La Niña forces unprecedented Leeuwin Current warming in 2011. Sci. Rep., 3, 1277, https://doi.org/10.1038/srep01277.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Feng, M., H. H. Hendon, S. P. Xie, A. G. Marshall, A. Schiller, Y. Kosaka, N. Caputi, and A. Pearce, 2015: Decadal increase in Ningaloo Niño since the late 1990s. Geophys. Res. Lett., 42, 104112, https://doi.org/10.1002/2014GL062509.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Feng, M., N. Caputi, A. Chandrapavan, M. Chen, A. Hart, and M. Kangas, 2021: Multi-year marine cold-spells off the west coast of Australia and effects on fisheries. J. Mar. Syst., 214, 103473, https://doi.org/10.1016/j.jmarsys.2020.103473.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gadgil, S., P. V. Joseph, and N. V. Joshi, 1984: Ocean–atmosphere coupling over monsoon regions. Nature, 312, 141143, https://doi.org/10.1038/312141a0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Graham, N. E., and T. P. Barnett, 1987: Sea surface temperature, surface wind divergence, and convection over tropical oceans. Science, 238, 657659, https://doi.org/10.1126/science.238.4827.657.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Guilyardi, E., A. Wittenberg, A. Fedorov, M. Collins, C. Wang, A. Capotondi, G. J. Van Oldenborgh, and T. Stockdale, 2009: Understanding El Niño in ocean–atmosphere general circulation models. Bull. Amer. Meteor. Soc., 90, 325340, https://doi.org/10.1175/2008BAMS2387.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Guo, Y., Y. Li, F. Wang, Y. Wei, and Z. Rong, 2020: Processes controlling sea surface temperature variability of Ningaloo Niño. J. Climate, 33, 43694389, https://doi.org/10.1175/JCLI-D-19-0698.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Han, W., and Coauthors, 2014a: Intensification of decadal and multi-decadal sea level variability in the western tropical Pacific during recent decades. Climate Dyn., 43, 13571379, https://doi.org/10.1007/s00382-013-1951-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Han, W., J. Vialard, M. J. McPhaden, T. Lee, Y. Masumoto, M. Feng, and W. P. M. de Ruijter, 2014b: Indian Ocean decadal variability: A review. Bull. Amer. Meteor. Soc., 95, 16791703, https://doi.org/10.1175/BAMS-D-13-00028.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Han, W., and Coauthors, 2019: Impacts of basin-scale climate modes on coastal sea level: A review. Surv. Geophys., 40, 14931541, https://doi.org/10.1007/s10712-019-09562-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Harp, R. D., J. M. Colborn, B. Candrinho, K. L. Colborn, L. Zhang, and K. B. Karnauskas, 2021: Interannual climate variability and Malaria in Mozambique. Geohealth, 5, e2020GH000322, https://doi.org/10.1029/2020GH000322.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hermes, J. C., and C. J. C. Reason, 2008: Annual cycle of the south Indian Ocean (Seychelles-Chagos) thermocline ridge in a regional ocean model. J. Geophys. Res. Oceans, 113, C04035, https://doi.org/10.1029/2007JC004363.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Higgins, R. W., V. E. Kousky, and P. Xie, 2011: Extreme precipitation events in the south-central United States during May and June 2010: Historical perspective, role of ENSO, and trends. J. Hydrometeor., 12, 10561070, https://doi.org/10.1175/JHM-D-10-05039.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hoerling, M. P., and A. Kumar, 2002: Atmospheric response patterns associated with tropical forcing. J. Climate, 15, 21842203, https://doi.org/10.1175/1520-0442(2002)015<2184:ARPAWT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Holbrook, N. J., A. Sen Gupta, E. C. J. Oliver, A. J. Hobday, J. A. Benthuysen, H. A. Scannell, D. A. Smale, and T. Wernberg, 2020: Keeping pace with marine heatwaves. Nat. Rev. Earth Environ., 1, 482493, https://doi.org/10.1038/s43017-020-0068-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hu, S., and A. V. Fedorov, 2019: Indian Ocean warming can strengthen the Atlantic meridional overturning circulation. Nat. Climate Change, 9, 747751, https://doi.org/10.1038/s41558-019-0566-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huang, B., and Coauthors, 2017: Extended Reconstructed Sea Surface Temperature, version 5 (ERSSTv5): Upgrades, validations, and intercomparisons. J. Climate, 30, 81798205, https://doi.org/10.1175/JCLI-D-16-0836.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hurrell, J. W., and Coauthors, 2013: The Community Earth System Model: A framework for collaborative research. Bull. Amer. Meteor. Soc., 94, 13391360, https://doi.org/10.1175/BAMS-D-12-00121.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ishii, M., A. Shouji, S. Sugimoto, and T. Matsumoto, 2005: Objective analyses of sea-surface temperature and marine meteorological variables for the 20th century using ICOADS and the Kobe Collection. Int. J. Climatol., 25, 865879, https://doi.org/10.1002/joc.1169.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jin, F. F., J. Boucharel, and I. I. Lin, 2014: Eastern Pacific tropical cyclones intensified by El Niño delivery of subsurface ocean heat. Nature, 516, 8285, https://doi.org/10.1038/nature13958.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77, 437471, https://doi.org/10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Karnauskas, K. B., J. E. Smerdon, R. Seager, and J. F. González-Rouco, 2012: A Pacific centennial oscillation predicted by coupled GCMs. J. Climate, 25, 59435961, https://doi.org/10.1175/JCLI-D-11-00421.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kataoka, T., T. Tozuka, S. Behera, and T. Yamagata, 2014: On the Ningaloo Niño/Niña. Climate Dyn., 43, 14631482, https://doi.org/10.1007/s00382-013-1961-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kay, J. E., and Coauthors, 2015: The Community Earth System Model (CESM) Large Ensemble project: A community resource for studying climate change in the presence of internal climate variability. Bull. Amer. Meteor. Soc., 96, 13331349, https://doi.org/10.1175/BAMS-D-13-00255.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lee, T., and M. J. McPhaden, 2010: Increasing intensity of El Niño in the central-equatorial Pacific. Geophys. Res. Lett., 37, L14603, https://doi.org/10.1029/2010GL044007.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, Y., W. Han, and L. Zhang, 2017: Enhanced decadal warming of the southeast Indian Ocean during the recent global surface warming slowdown. Geophys. Res. Lett., 44, 98769884, https://doi.org/10.1002/2017GL075050.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lin, L., C. Chen, and M. Luo, 2018: Impacts of El Niño–Southern Oscillation on heat waves in the Indochina Peninsula. Atmos. Sci. Lett., 19, e856, https://doi.org/10.1002/asl.856.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Luo, J.-J., W. Sasaki, and Y. Masumoto, 2012: Indian Ocean warming modulates Pacific climate change. Proc. Natl. Acad. Sci. USA, 109, 18 70118 706, https://doi.org/10.1073/pnas.1210239109.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marsh, D. R., M. J. Mills, D. E. Kinnison, J.-F. Lamarque, N. Calvo, and L. M. Polvani, 2013: Climate change from 1850 to 2005 simulated in CESM1(WACCM). J. Climate, 26, 73727391, https://doi.org/10.1175/JCLI-D-12-00558.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marshall, A. G., H. H. Hendon, M. Feng, and A. Schiller, 2015: Initiation and amplification of the Ningaloo Niño. Climate Dyn., 45, 23672385, https://doi.org/10.1007/s00382-015-2477-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McPhaden, M. J., S. E. Zebiak, and M. H. Glantz, 2006: ENSO as an integrating concept in earth science. Science, 314, 17401745, https://doi.org/10.1126/science.1132588.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Meyers, G., 1996: Variation of Indonesian Throughflow and the El Niño–Southern Oscillation. J. Geophys. Res. Oceans, 101, 12 25512 263, https://doi.org/10.1029/95JC03729.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mohapatra, S., C. Gnanaseelan, and J. S. Deepa, 2020: Multidecadal to decadal variability in the equatorial Indian Ocean subsurface temperature and the forcing mechanisms. Climate Dyn., 54, 34753487, https://doi.org/10.1007/s00382-020-05185-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pearce, A. F., and M. Feng, 2013: The rise and fall of the “marine heat wave” off Western Australia during the summer of 2010/2011. J. Mar. Syst., 111–112, 139156, https://doi.org/10.1016/j.jmarsys.2012.10.009.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Poli, P., and Coauthors, 2016: ERA-20C: An atmospheric reanalysis of the twentieth century. J. Climate, 29, 40834097, https://doi.org/10.1175/JCLI-D-15-0556.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rahul, S., and C. Gnanaseelan, 2016: Can large scale surface circulation changes modulate the sea surface warming pattern in the tropical Indian Ocean?. Climate Dyn., 46, 36173632, https://doi.org/10.1007/s00382-015-2790-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ratnam, J. V., S. K. Behera, H. Annamalai, S. B. Ratna, M. Rajeevan, and T. Yamagata, 2016: ENSO’s far reaching connection to Indian cold waves. Sci. Rep., 6, 37657, https://doi.org/10.1038/srep37657.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rayner, N. A., D. E. Parker, E. B. Horton, C. K. Folland, L. V. Alexander, D. P. Rowell, E. C. Kent, and A. Kaplan, 2003: Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J. Geophys. Res., 108, 4407, https://doi.org/10.1029/2002JD002670.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reason, C. J. C., 2001: Subtropical Indian Ocean SST dipole events and southern African rainfall. Geophys. Res. Lett., 28, 22252227, https://doi.org/10.1029/2000GL012735.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Saji, N. H., and T. Yamagata, 2003: Possible impacts of Indian Ocean dipole mode events on global climate. Climate Res., 25, 151169, https://doi.org/10.3354/cr025151.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Saji, N. H., B. N. Goswami, P. N. Vinayachandran, and T. Yamagata, 1999: A dipole mode in the tropical Indian Ocean. Nature, 401, 360363, https://doi.org/10.1038/43854.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Samanta, D., K. B. Karnauskas, N. F. Goodkin, S. Coats, J. E. Smerdon, and L. Zhang, 2018: Coupled model biases breed spurious low-frequency variability in the tropical Pacific Ocean. Geophys. Res. Lett., 45, 10 60910 618, https://doi.org/10.1029/2018GL079455.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schneider, D. P., and C. Deser, 2018: Tropically driven and externally forced patterns of Antarctic Sea ice change: Reconciling observed and modeled trends. Climate Dyn., 50, 45994618, https://doi.org/10.1007/s00382-017-3893-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schneider, D. P., C. Deser, and T. Fan, 2015: Comparing the impacts of tropical SST variability and polar stratospheric ozone loss on the Southern Ocean westerly winds. J. Climate, 28, 93509372, https://doi.org/10.1175/JCLI-D-15-0090.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tanuma, N., and T. Tozuka, 2020: Influences of the interdecadal Pacific Oscillation on the locally amplified Ningaloo Niño. Geophys. Res. Lett., 47, e2020GL088712, https://doi.org/10.1029/2020GL088712.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tozuka, T., and P. Oettli, 2018: Asymmetric cloud-shortwave radiation-sea surface temperature feedback of Ningaloo Niño/Niña. Geophys. Res. Lett., 45, 98709879, https://doi.org/10.1029/2018GL079869.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tozuka, T., T. Kataoka, and T. Yamagata, 2014: Locally and remotely forced atmospheric circulation anomalies of Ningaloo Niño/Niña. Climate Dyn., 43, 21972205, https://doi.org/10.1007/s00382-013-2044-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tozuka, T., M. Feng, W. Han, S. Kido, and L. Zhang, 2021: The Ningaloo Niño/Niña: Mechanisms, relation with other climate modes and impacts. Tropical and Extratropical Air-Sea Interactions, Elsevier, 207219.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Waliser, D. E., and N. E. Graham, 1993: Convective cloud systems and warm-pool sea surface temperatures: Coupled interactions and self-regulation. J. Geophys. Res., 98, 12 88112 893, https://doi.org/10.1029/93JD00872.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, B., and J. C. L. Chan, 2002: How strong ENSO events affect tropical storm activity over the western North Pacific. J. Climate, 15, 16431658, https://doi.org/10.1175/1520-0442(2002)015<1643:HSEEAT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Webster, P. J., A. M. Moore, J. P. Loschnigg, and R. R. Leben, 1999: Coupled ocean–atmosphere dynamics in the Indian Ocean during 1997–98. Nature, 401, 356360, https://doi.org/10.1038/43848.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xie, S. P., H. Annamalai, F. A. Schott, and J. P. McCreary, 2002: Structure and mechanisms of south Indian Ocean climate variability. J. Climate, 15, 864878, https://doi.org/10.1175/1520-0442(2002)015<0864:SAMOSI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xie, S. P., K. Hu, J. Hafner, H. Tokinaga, Y. Du, G. Huang, and T. Sampe, 2009: Indian Ocean capacitor effect on Indo-western Pacific climate during the summer following El Niño. J. Climate, 22, 730747, https://doi.org/10.1175/2008JCLI2544.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yan, L., Y. Du, and L. Zhang, 2013: Southern ocean SST variability and its relationship with ENSO on inter-decadal time scales. J. Ocean Univ. China, 12, 287294, https://doi.org/10.1007/s11802-013-2262-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yang, J., Q. Liu, S.-P. Xie, Z. Liu, and L. Wu, 2007: Impact of the Indian Ocean SST basin mode on the Asian summer monsoon. Geophys. Res. Lett., 34, L02708, https://doi.org/10.1029/2006GL028571.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yeh, S. W., J. S. Kug, B. Dewitte, M. H. Kwon, B. P. Kirtman, and F. F. Jin, 2009: El Niño in a changing climate. Nature, 461, 511514, https://doi.org/10.1038/nature08316.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yokoi, T., T. Tozuka, and T. Yamagata, 2008: Seasonal variation of the Seychelles Dome. J. Climate, 21, 37403754, https://doi.org/10.1175/2008JCLI1957.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yu, J.-Y., P. Kao, H. Paek, H.-H. Hsu, C. Hung, M.-M. Lu, and S.-I. An, 2015: Linking emergence of the central Pacific El Niño to the Atlantic multidecadal oscillation. J. Climate, 28, 651662, https://doi.org/10.1175/JCLI-D-14-00347.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, L., 2016: The roles of external forcing and natural variability in global warming hiatuses. Climate Dyn., 47, 31573169, https://doi.org/10.1007/s00382-016-3018-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, L., and W. Han, 2018: Impact of Ningaloo Niño on tropical Pacific and an interbasin coupling mechanism. Geophys. Res. Lett., 45, 11 30011 309, https://doi.org/10.1029/2018GL078579.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, L., and W. Han, 2020: Barrier for the eastward propagation of Madden–Julian oscillation over the Maritime Continent: A possible new mechanism. Geophys. Res. Lett., 47, e2020GL090211, https://doi.org/10.1029/2020GL090211.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, L., W. Han, Y. Li, and T. Shinoda, 2018a: Mechanisms for generation and development of the Ningaloo Niño. J. Climate, 31, 92399259, https://doi.org/10.1175/JCLI-D-18-0175.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, L., W. Han, and F. Sienz, 2018b: Unraveling causes for the changing behavior of the tropical Indian Ocean in the past few decades. J. Climate, 31, 23772388, https://doi.org/10.1175/JCLI-D-17-0445.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, L., W. Han, K. B. Karnauskas, G. A. Meehl, A. Hu, N. Rosenbloom, and T. Shinoda, 2019a: Indian Ocean warming trend reduces Pacific warming response to anthropogenic greenhouse gases: An interbasin thermostat mechanism. Geophys. Res. Lett., 46, 10 88210 890, https://doi.org/10.1029/2019GL084088.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, L., W. Han, Y. Li, and N. S. Lovenduski, 2019b: Variability of sea level and upper-ocean heat content in the Indian Ocean: Effects of subtropical Indian Ocean dipole and ENSO. J. Climate, 32, 72277245, https://doi.org/10.1175/JCLI-D-19-0167.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, L., G. Wang, M. Newman, and W. Han, 2021: Interannual to decadal variability of tropical Indian Ocean sea surface temperature: Pacific influence versus local internal variability. J. Climate, 34, 26692684, https://doi.org/10.1175/JCLI-D-20-0807.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zinke, J., A. Rountrey, M. Feng, S. P. Xie, D. Dissard, K. Rankenburg, J. M. Lough, and M. T. McCulloch, 2014: Corals record long-term Leeuwin Current variability including Ningaloo Niño/Niña since 1795. Nat. Commun., 5, 3607, https://doi.org/10.1038/ncomms4607.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 648 0 0
Full Text Views 661 260 25
PDF Downloads 587 153 6