Tropical Cyclone Characteristics Represented by the Ocean Wave-Coupled Atmospheric Global Climate Model Incorporating Wave-Dependent Momentum Flux

Tomoya Shimura aDisaster Prevention Research Institute, Kyoto University, Kyoto, Japan

Search for other papers by Tomoya Shimura in
Current site
Google Scholar
PubMed
Close
,
Nobuhito Mori aDisaster Prevention Research Institute, Kyoto University, Kyoto, Japan

Search for other papers by Nobuhito Mori in
Current site
Google Scholar
PubMed
Close
,
Daisuke Urano bGeneral Insurance Rating Organization of Japan, Tokyo, Japan

Search for other papers by Daisuke Urano in
Current site
Google Scholar
PubMed
Close
,
Tetsuya Takemi aDisaster Prevention Research Institute, Kyoto University, Kyoto, Japan

Search for other papers by Tetsuya Takemi in
Current site
Google Scholar
PubMed
Close
, and
Ryo Mizuta cMeteorological Research Institute, Ibaraki, Japan

Search for other papers by Ryo Mizuta in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Understanding the systematic characteristics of tropical cyclones (TCs) represented in global climate models (GCMs) is important for reliable climate change impact assessments. The atmospheric GCM (AGCM) and ocean wave models were coupled by incorporating the wave-dependent momentum flux. Systematic impacts of wave-dependent momentum flux on TC characteristics were estimated by analyzing 100 historical TCs that occurred in the western North Pacific Ocean. Wave-dependent momentum flux parameterization considering wind and wave direction misalignment was used for assessing the wave–atmosphere interaction. The larger the wave age and misalignment are, the larger the drag coefficient is. The drag coefficient at the left-hand side of the TC was enhanced by the wave condition. It was found that the wave-dependent momentum flux did not have any impact on peak TC intensity. On the other hand, the wave-dependent momentum flux showed a significant impact on TC development during the early development stage. Although systematic differences in TC intensity at most developed stages were not detected, systematic differences in TC tracks between experiments were observed. The TC tracks of the wave-coupled AGCM tend to pass in a relatively eastward direction in comparison with those from the uncoupled AGCM. This is because the wave-dependent momentum flux in the coupled AGCM altered the environmental steering flow and the smaller beta effect of smaller TC at the early developing stage. Systematic differences in TC tracks have significant impacts on climate change assessments, such as extreme sea level changes in coastal regions due to climate change.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Tomoya Shimura, shimura.tomoya.2v@kyoto-u.ac.jp

Abstract

Understanding the systematic characteristics of tropical cyclones (TCs) represented in global climate models (GCMs) is important for reliable climate change impact assessments. The atmospheric GCM (AGCM) and ocean wave models were coupled by incorporating the wave-dependent momentum flux. Systematic impacts of wave-dependent momentum flux on TC characteristics were estimated by analyzing 100 historical TCs that occurred in the western North Pacific Ocean. Wave-dependent momentum flux parameterization considering wind and wave direction misalignment was used for assessing the wave–atmosphere interaction. The larger the wave age and misalignment are, the larger the drag coefficient is. The drag coefficient at the left-hand side of the TC was enhanced by the wave condition. It was found that the wave-dependent momentum flux did not have any impact on peak TC intensity. On the other hand, the wave-dependent momentum flux showed a significant impact on TC development during the early development stage. Although systematic differences in TC intensity at most developed stages were not detected, systematic differences in TC tracks between experiments were observed. The TC tracks of the wave-coupled AGCM tend to pass in a relatively eastward direction in comparison with those from the uncoupled AGCM. This is because the wave-dependent momentum flux in the coupled AGCM altered the environmental steering flow and the smaller beta effect of smaller TC at the early developing stage. Systematic differences in TC tracks have significant impacts on climate change assessments, such as extreme sea level changes in coastal regions due to climate change.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Tomoya Shimura, shimura.tomoya.2v@kyoto-u.ac.jp
Save
  • Andreas, E. L, L. Mahrt, and D. Vickers, 2012: A new drag relation for aerodynamically rough flow over the ocean. J. Atmos. Sci., 69, 25202537, https://doi.org/10.1175/JAS-D-11-0312.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ardhuin, F., and Coauthors, 2010: Semiempirical dissipation source functions for ocean waves. Part I: Definition, calibration, and validation. J. Phys. Oceanogr., 40, 19171941, https://doi.org/10.1175/2010JPO4324.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cavaleri, L., B. Fox-Kemper, and M. Hemer, 2012: Wind waves in the coupled climate system. Bull. Amer. Meteor. Soc., 93, 16511661, https://doi.org/10.1175/BAMS-D-11-00170.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chan, J. C., 2005: The physics of tropical cyclone motion. Annu. Rev. Fluid Mech., 37, 99128, https://doi.org/10.1146/annurev.fluid.37.061903.175702.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chan, J. C., and R. T. Williams, 1987: Analytical and numerical studies of the beta-effect in tropical cyclone motion. Part I: Zero mean flow. J. Atmos. Sci., 44, 12571265, https://doi.org/10.1175/1520-0469(1987)044<1257:AANSOT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, S., Rutgersson, A., Yin, X., Xu, Y., and Qiao, F., 2020: On the first observed wave-induced stress over the global ocean. J. Geophys. Res. Oceans, 125, e2020JC016623, https://doi.org/10.1029/2020JC016623.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, S. S., W. Zhao, M. A. Donelan, and H. L. Tolman, 2013: Directional wind–wave coupling in fully coupled atmosphere–wave–ocean models: Results from CBLAST-Hurricane. J. Atmos. Sci., 70, 31983215, https://doi.org/10.1175/JAS-D-12-0157.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Collins, M., and Coauthors, 2019: Extremes, abrupt changes and managing risk. IPCC Special Report on the Ocean and Cryosphere in a Changing Climate, H.-O. Pörtner et al., Eds., 589655, https://www.ipcc.ch/srocc/.

    • Search Google Scholar
    • Export Citation
  • Cox, D., and Coauthors, 2019: Hurricanes Irma and Maria post-event survey in US Virgin Islands. Coast. Eng. J., 61, 121134, https://doi.org/10.1080/21664250.2018.1558920.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Curcic, M., and B. K. Haus, 2020: Revised estimates of ocean surface drag in strong winds. Geophys. Res. Lett., 47, e2020GL087647, https://doi.org/10.1029/2020GL087647.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • de Boyer Montégut, C., G. Madec, A. S. Fischer, A. Lazar, and D. Iudicone, 2004: Mixed layer depth over the global ocean: An examination of profile data and a profile-based climatology. J. Geophys. Res., 109, C12003, https://doi.org/10.1029/2004JC002378.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Drennan, W. M., H. C. Graber, D. Hauser, and C. Quentin, 2003: On the wave age dependence of wind stress over pure wind seas. J. Geophys. Res., 108, 8062, https://doi.org/10.1029/2000JC000715.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Drennan, W. M., P. K. Taylor, and M. J. Yelland, 2005: Parameterizing the sea surface roughness. J. Phys. Oceanogr., 35, 835848, https://doi.org/10.1175/JPO2704.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Emanuel, K. A., 1995: Sensitivity of tropical cyclones to surface exchange coefficients and a revised steady-state model incorporating eye dynamics. J. Atmos. Sci., 52, 39693976, https://doi.org/10.1175/1520-0469(1995)0522.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fairall, C. W., E. F. Bradley, D. P. Rogers, J. B. Edson, and G. S. Young, 1996: Bulk parameterization of air–sea fluxes for Tropical Ocean–Global Atmosphere Coupled Ocean–Atmosphere Response Experiment. J. Geophys. Res., 101, 37473764, https://doi.org/10.1029/95JC03205.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fan, Y., S. J. Lin, I. M. Held, Z. Yu, and H. L. Tolman, 2012: Global ocean surface wave simulation using a coupled atmosphere–wave model. J. Climate, 25, 62336252, https://doi.org/10.1175/JCLI-D-11-00621.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gates, W. L., and Coauthors, 1999: An overview of the results of the Atmospheric Model Intercomparison Project (AMIP I). Bull. Amer. Meteor. Soc., 80, 2956, https://doi.org/10.1175/1520-0477(1999)080<0029:AOOTRO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hasselmann, S., and K. Hasselmann, 1985: Computations and parameterizations of the nonlinear energy transfer in a gravity-wave spectrum. Part I: A new method for efficient computations of the exact nonlinear transfer integral. J. Phys. Oceanogr., 15, 13691377, https://doi.org/10.1175/1520-0485(1985)015<1369:CAPOTN>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hersbach, H., and Coauthors, 2020: The ERA5 global reanalysis. Quart. J. Roy. Meteor. Soc., 146, 19992049, https://doi.org/10.1002/qj.3803.

  • Högström, U., E. Sahlée, A. S. Smedman, A. Rutgersson, E. Nilsson, K. K. Kahma, and W. M. Drennan, 2015: Surface stress over the ocean in swell-dominated conditions during moderate winds. J. Atmos. Sci., 72, 47774795, https://doi.org/10.1175/JAS-D-15-0139.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Holthuijsen, L. H., M. D. Powell, and J. D. Pietrzak, 2012: Wind and waves in extreme hurricanes. J. Geophys. Res., 117, C09003, https://doi.org/10.1029/2012JC007983.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Janssen, P. A., 1991: Quasi-linear theory of wind-wave generation applied to wave forecasting. J. Phys. Oceanogr., 21, 16311642, https://doi.org/10.1175/1520-0485(1991)021<1631:QLTOWW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Janssen, P. A., 2004: The Interaction of Ocean Waves and Wind., Cambridge University Press, 310 pp.

  • Janssen, P. A., and P. Viterbo, 1996: Ocean waves and the atmospheric climate. J. Climate, 9, 12691287, https://doi.org/10.1175/1520-0442(1996)009<1269:OWATAC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jarosz, E., D. A. Mitchell, D. W. Wang, and W. J. Teague, 2007: Bottom-up determination of air–sea momentum exchange under a major tropical cyclone. Science, 315, 17071709, https://doi.org/10.1126/science.1136466.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jones, I. S., and Y. Toba, Eds., 2001: Wind Stress over the Ocean., Cambridge University Press, 307 pp.

  • Kennedy, A. B., N. Mori, T. Yasuda, T. Shimozono, T. Tomiczek, A. Donahue, T. Shimura, and Y. Imai, 2017: Extreme block and boulder transport along a cliffed coastline (Calicoan Island, Philippines) during Super Typhoon Haiyan. Mar. Geol., 383, 6577, https://doi.org/10.1016/j.margeo.2016.11.004.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Khouakhi, A., G. Villarini, and G. A. Vecchi, 2017: Contribution of tropical cyclones to rainfall at the global scale. J. Climate, 30, 359372, https://doi.org/10.1175/JCLI-D-16-0298.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Knapp, K. R., M. C. Kruk, D. H. Levinson, H. J. Diamond, and C. J. Neumann, 2010: The International Best Track Archive for Climate Stewardship (IBTrACS): Unifying tropical cyclone best track data. Bull. Amer. Meteor. Soc., 91, 363376, https://doi.org/10.1175/2009BAMS2755.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Knapp, K. R., H. J. Diamond, J. P. Kossin, M. C. Kruk, and C. J. Schreck, 2018: International Best Track Archive for Climate Stewardship (IBTrACS) Project, version 4. NOAA National Centers for Environmental Information, accessed 28 November 2019, https://doi.org/10.25921/82ty-9e16.

    • Search Google Scholar
    • Export Citation
  • Kumar, R., B. S. Sandeepan, and D. M. Holland, 2020: Impact of different sea surface roughness on surface gravity waves using a coupled atmosphere–wave model: A case of Hurricane Isaac (2012). Ocean Dyn., 70, 421433, https://doi.org/10.1007/s10236-019-01327-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lee, C. Y., and S. S. Chen, 2012: Symmetric and asymmetric structures of hurricane boundary layer in coupled atmosphere–wave–ocean models and observations. J. Atmos. Sci., 69, 35763594, https://doi.org/10.1175/JAS-D-12-046.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, D., J. Staneva, J. R. Bidlot, S. Grayek, Y. Zhu, and B. Yin, 2021: Improving regional model skills during typhoon events: A case study for super Typhoon Lingling over the northwest Pacific Ocean. Front. Mar. Sci., 8, 613913, https://doi.org/10.3389/fmars.2021.613913.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Magnusson, L., and Coauthors, 2019: ECMWF activities for improved hurricane forecasts. Bull. Amer. Meteor. Soc., 100, 445458, https://doi.org/10.1175/BAMS-D-18-0044.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Miyamoto, Y., and T. Takemi, 2010: An effective radius of the sea surface enthalpy flux for the maintenance of a tropical cyclone. Atmos. Sci. Lett., 11, 278282, https://doi.org/10.1002/asl.292.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mizuta, R., and Coauthors, 2012: Climate simulations using MRI-AGCM3. 2 with 20-km grid. J. Meteor. Soc. Japan, 90, 233258, https://doi.org/10.2151/jmsj.2012-A12.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mizuta, R., and Coauthors, 2017: Over 5,000 years of ensemble future climate simulations by 60-km global and 20-km regional atmospheric models. Bull. Amer. Meteor. Soc., 98, 13831398, https://doi.org/10.1175/BAMS-D-16-0099.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mogensen, K. S., L. Magnusson, and J. R. Bidlot, 2017: Tropical cyclone sensitivity to ocean coupling in the ECMWF coupled model. J. Geophys. Res. Oceans, 122, 43924412, https://doi.org/10.1002/2017JC012753.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mori, N., T. Yasuda, T. Arikawa, T. Kataoka, S. Nakajo, K. Suzuki, Y. Yamanaka, and A. Webb, 2019: 2018 Typhoon Jebi post-event survey of coastal damage in the Kansai region, Japan. Coast. Eng. J., 61, 278294, https://doi.org/10.1080/21664250.2019.1619253.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mori, N., and Coauthors, 2021: Recent nationwide climate change impact assessments of natural hazards in Japan and East Asia. Wea. Climate Extremes, 32, 100309, https://doi.org/10.1016/j.wace.2021.100309.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Murakami, H., T. L. Delworth, W. F. Cooke, M. Zhao, B. Xiang, and P. C. Hsu, 2020: Detected climatic change in global distribution of tropical cyclones. Proc. Natl. Acad. Sci. USA, 117, 10 70610 714, https://doi.org/10.1073/pnas.1922500117.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Needham, H. F., B. D. Keim, and D. Sathiaraj, 2015: A review of tropical cyclone-generated storm surges: Global data sources, observations, and impacts. Rev. Geophys., 53, 545591, https://doi.org/10.1002/2014RG000477.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Neumann, C. J., 1992: The Joint Typhoon Warning Center JTWC92 Model. In Final report for the Joint Typhoon Warning Center JTWC92 Model, R. E. Englebretson, Ed., SAIC Contract Rep. N00014-90-C-6042, 2-12-41.

    • Search Google Scholar
    • Export Citation
  • Patton, E. G., P. P. Sullivan, B. Kosović, J. Dudhia, L. Mahrt, M. Žagar, and T. Marić, 2019: On the influence of swell propagation angle on surface drag. J. Appl. Meteor. Climatol., 58, 10391059, https://doi.org/10.1175/JAMC-D-18-0211.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Potter, H., 2015: Swell and the drag coefficient. Ocean Dyn., 65, 375384, https://doi.org/10.1007/s10236-015-0811-4.

  • Powell, M. D., P. J. Vickery, and T. A. Reinhold, 2003: Reduced drag coefficient for high wind speeds in tropical cyclones. Nature, 422, 279283, https://doi.org/10.1038/nature01481.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reynolds, R. W., T. M. Smith, C. Liu, D. B. Chelton, K. S. Casey, and M. G. Schlax, 2007: Daily high-resolution-blended analyses for sea surface temperature. J. Climate, 20, 54735496, https://doi.org/10.1175/2007JCLI1824.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Roberts, M. J., and Coauthors, 2020: Projected future changes in tropical cyclones using the CMIP6 HighResMIP multimodel ensemble. Geophys. Res. Lett., 47, e2020GL088662, https://doi.org/10.1029/2020GL088662.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schade, L. R., and K. A. Emanuel, 1999: The ocean’s effect on the intensity of tropical cyclones: Results from a simple coupled atmosphere–ocean model. J. Atmos. Sci., 56, 642651, https://doi.org/10.1175/1520-0469(1999)056<0642:TOSEOT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Semedo, A., K. Sušelj, A. Rutgersson, and A. Sterl, 2011: A global view on the wind sea and swell climate and variability from ERA-40. J. Climate, 24, 14611479, https://doi.org/10.1175/2010JCLI3718.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shimozono, T., Y. Tajima, A. B. Kennedy, H. Nobuoka, J. Sasaki, and S. Sato, 2015: Combined infragravity wave and sea-swell runup over fringing reefs by super typhoon Haiyan. J. Geophys. Res. Oceans, 120, 44634486, https://doi.org/10.1002/2015JC010760.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shimura, T., N. Mori, T. Takemi, and R. Mizuta, 2017: Long-term impacts of ocean wave-dependent roughness on global climate systems. J. Geophys. Res. Oceans, 122, 19952011, https://doi.org/10.1002/2016JC012621.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shimura, T., M. Hemer, A. Lenton, M. A. Chamberlain, and D. Monselesan, 2020: Impacts of ocean wave-dependent momentum flux on global ocean climate. Geophys. Res. Lett., 47, e2020GL089296, https://doi.org/10.1029/2020GL089296.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Soloviev, A. V., R. Lukas, M. A. Donelan, B. K. Haus, and I. Ginis, 2014: The air–sea interface and surface stress under tropical cyclones. Sci. Rep., 4, 5306, https://doi.org/10.1038/srep05306.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Takagaki, N., S. Komori, N. Suzuki, K. Iwano, and R. Kurose, 2016: Mechanism of drag coefficient saturation at strong wind speeds. Geophys. Res. Lett., 43, 98299835, https://doi.org/10.1002/2016GL070666.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Taylor, P. K., and M. J. Yelland, 2001: The dependence of sea surface roughness on the height and steepness of the waves. J. Phys. Oceanogr., 31, 572590, https://doi.org/10.1175/1520-0485(2001)031<0572:TDOSSR>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thomsen, G. L., M. T. Montgomery, and R. K. Smith, 2014: Sensitivity of tropical-cyclone intensification to perturbations in the surface drag coefficient. Quart. J. Roy. Meteor. Soc., 140, 407415, https://doi.org/10.1002/qj.2048.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tolman, H., 2014: User manual and system documentation of WAVEWATCH III version 4.18. Marine Modeling and Analysis Branch Contribution No. 316, NOAA/NWS/NCEP MMAB Tech. Note, 282 pp., https://polar.ncep.noaa.gov/waves/wavewatch/manual.v4.18.pdf.

    • Search Google Scholar
    • Export Citation
  • Urano, D., T. Shimura, N. Mori, and R. Mizuta, 2018: The impact of SST cooling on tropical cyclone by coupled atmospheric global climate–slab ocean–wave model (in Japanese). J. Japan Soc. Civil Eng., 74, I_1375I_1380, https://doi.org/10.2208/kaigan.74.I_1375.

    • Search Google Scholar
    • Export Citation
  • Veron, F., 2015: Ocean spray. Annu. Rev. Fluid Mech., 47, 507538, https://doi.org/10.1146/annurev-fluid-010814-014651.

  • Voermans, J. J., H. Rapizo, H. Ma, F. Qiao, and A. V. Babanin, 2019: Air–sea momentum fluxes during tropical cyclone Olwyn. J. Phys. Oceanogr., 49, 13691379, https://doi.org/10.1175/JPO-D-18-0261.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • WMO, 2012: Atlas of mortality and economic losses from weather, climate and water extremes (1970–2012). WMO Doc. WMO-1123, 44 pp., https://public.wmo.int/en/resources/library/atlas-mortality-and-economic-losses-weather-and-climate-extremes-1970-2012.

    • Search Google Scholar
    • Export Citation
  • Wu, L., B. Wang, and S. Geng, 2005: Growing typhoon influence on East Asia. Geophys. Res. Lett., 32, L18703, https://doi.org/10.1029/2005GL022937.

  • Wu, Z., J. Chen, C. Jiang, X. Liu, B. Deng, K. Qu, Z. He, and Z. Xie, 2020: Numerical investigation of Typhoon Kai-tak (1213) using a mesoscale coupled WRF-ROMS model—Part II: Wave effects. Ocean Eng., 196, 106805, https://doi.org/10.1016/j.oceaneng.2019.106805.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yoshida, K., M. Sugi, R. Mizuta, H. Murakami, and M. Ishii, 2017: Future changes in tropical cyclone activity in high-resolution large-ensemble simulations. Geophys. Res. Lett., 44, 99109917, https://doi.org/10.1002/2017GL075058.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zarzycki, C. M., 2016: Tropical cyclone intensity errors associated with lack of two-way ocean coupling in high-resolution global simulations. J. Climate, 29, 85898610, https://doi.org/10.1175/JCLI-D-16-0273.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 625 0 0
Full Text Views 529 190 12
PDF Downloads 526 191 16