The Role of Latent Heating Anomalies in Exciting the Summertime Eurasian Circulation Trend Pattern and High Surface Temperature

Dong Wan Kim aDepartment of Meteorology and Atmospheric Science, The Pennsylvania State University, University Park, Pennsylvania

Search for other papers by Dong Wan Kim in
Current site
Google Scholar
PubMed
Close
and
Sukyoung Lee aDepartment of Meteorology and Atmospheric Science, The Pennsylvania State University, University Park, Pennsylvania

Search for other papers by Sukyoung Lee in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Dynamical mechanisms for the summer Eurasian circulation trend pattern are investigated by analyzing reanalysis data and conducting numerical model simulations. The daily circulations that resemble the Eurasian circulation trend pattern are identified and categorized into two groups based on surface warming signal over central and eastern Europe. In the group with large warm anomaly, the upper-level circulation takes on a wave packet form over Eurasia, and there are enhanced latent heating anomalies centered over the North Sea and suppressed latent heating anomalies over the Caspian Sea. The numerical model calculations indicate that these latent heating anomalies can excite an upper-level circulation response that resembles the Eurasian circulation trend pattern. Additional analysis indicates that trends of these two latent heating centers contribute to the long-term circulation trend. In the weak warm anomaly group, the circulation pattern takes on a circumglobal teleconnection (CGT) pattern, and there is no heating signal that reinforces the circulation. These results indicate that not all CGT-like patterns excite temperature anomalies that are persistent and in phase with the trend pattern, and that quasi-stationary forcings, such as the latent heating anomalies, play an important role in driving the boreal summer circulation anomaly that accompanies the strong and persistent surface temperature signal.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Dong Wan Kim, dxk582@psu.edu

Abstract

Dynamical mechanisms for the summer Eurasian circulation trend pattern are investigated by analyzing reanalysis data and conducting numerical model simulations. The daily circulations that resemble the Eurasian circulation trend pattern are identified and categorized into two groups based on surface warming signal over central and eastern Europe. In the group with large warm anomaly, the upper-level circulation takes on a wave packet form over Eurasia, and there are enhanced latent heating anomalies centered over the North Sea and suppressed latent heating anomalies over the Caspian Sea. The numerical model calculations indicate that these latent heating anomalies can excite an upper-level circulation response that resembles the Eurasian circulation trend pattern. Additional analysis indicates that trends of these two latent heating centers contribute to the long-term circulation trend. In the weak warm anomaly group, the circulation pattern takes on a circumglobal teleconnection (CGT) pattern, and there is no heating signal that reinforces the circulation. These results indicate that not all CGT-like patterns excite temperature anomalies that are persistent and in phase with the trend pattern, and that quasi-stationary forcings, such as the latent heating anomalies, play an important role in driving the boreal summer circulation anomaly that accompanies the strong and persistent surface temperature signal.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Dong Wan Kim, dxk582@psu.edu
Save
  • Baggett, C., and S. Lee, 2019: Summertime midlatitude weather and climate extremes induced by moisture intrusions to the west of Greenland. Quart. J. Roy. Meteor. Soc., 145, 31483160, https://doi.org/10.1002/qj.3610.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Baker, H. S., T. Woollings, C. Mbengue, M. R. Allen, C. H. O’Reilly, H. Shiogama, and S. Sparrow, 2019: Forced summer stationary waves: The opposing effects of direct radiative forcing and sea surface warming. Climate Dyn., 53, 42914309, https://doi.org/10.1007/s00382-019-04786-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • xBranstator, G., 1985: Analysis of general circulation model sea-surface temperature anomaly simulations using a linear model. Part I: Forced solutions. J. Atmos. Sci., 42, 22252241, https://doi.org/10.1175/1520-0469(1985)042<2225:AOGCMS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Branstator, G., 2002: Circumglobal teleconnections, the jet stream waveguide, and the North Atlantic Oscillation. J. Climate, 15, 18931910, https://doi.org/10.1175/1520-0442(2002)015<1893:CTTJSW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Clark, J. P., and S. B. Feldstein, 2020: What drives the decomposition of the surface downward longwave radiation anomalies North Atlantic Oscillation’s temperature anomaly pattern? Part II: A decomposition of the surface downward longwave radiation anomalies. J. Atmos. Sci., 77, 199216, https://doi.org/10.1175/JAS-D-19-0028.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dee, D. P., and Coauthors, 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597, https://doi.org/10.1002/qj.828.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ding, Q., and B. Wang, 2005: Circumglobal teleconnection in the Northern Hemisphere summer. J. Climate, 18, 34833505, https://doi.org/10.1175/JCLI3473.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ding, Q., and B. Wang, 2007: Intraseasonal teleconnection between the summer Eurasian wave train and the Indian monsoon. J. Climate, 20, 37513767, https://doi.org/10.1175/JCLI4221.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ding, Q., B. Wang, J. M. Wallace, and G. Branstator, 2011: Tropical–extratropical teleconnections in boreal summer: Observed interannual variability. J. Climate, 24, 18781896, https://doi.org/10.1175/2011JCLI3621.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Enomoto, T., B. J. Hoskins, and Y. Matsuda, 2003: The formation mechanism of the Bonin high in August. Quart. J. Roy. Meteor. Soc., 129, 157178, https://doi.org/10.1256/qj.01.211.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Feldstein, S. B., 2002: Fundamental mechanisms of the growth and decay of the PNA teleconnection pattern. Quart. J. Roy. Meteor. Soc., 128, 775796, https://doi.org/10.1256/0035900021643683.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Feldstein, S. B., 2007: The dynamics of the North Atlantic Oscillation during the summer season. Quart. J. Roy. Meteor. Soc., 133, 15091518, https://doi.org/10.1002/qj.107.

    • Search Google Scholar
    • Export Citation
  • Feldstein, S. B., and U. Dayan, 2008: Circumglobal teleconnections and wave packets associated with Israeli winter precipitation. Quart. J. Roy. Meteor. Soc., 134, 455467, https://doi.org/10.1002/qj.225.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Franzke, C., S. Lee, and S. B. Feldstein, 2004: Is the North Atlantic Oscillation a breaking wave? J. Atmos. Sci., 61, 145160, https://doi.org/10.1175/1520-0469(2004)061<0145:ITNAOA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gong, T., S. B. Feldstein, and S. Lee, 2017: The role of downward infrared radiation in the recent Arctic Winter warming trend. J. Climate, 30, 49374949, https://doi.org/10.1175/JCLI-D-16-0180.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gong, T., S. B. Feldstein, and S. Lee, 2020: Rossby wave propagation from the Arctic into the midlatitudes: Does it arise from in situ latent heating or a trans-Arctic wave train? J. Climate, 33, 36193633, https://doi.org/10.1175/JCLI-D-18-0780.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Goss, M., S. B. Feldstein, and S. Lee, 2016: Stationary wave interference and its relation to tropical convection and Arctic warming. J. Climate, 29, 13691389, https://doi.org/10.1175/JCLI-D-15-0267.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Held, I. M., and M. J. Suarez, 1994: A proposal for the intercomparison of the dynamical cores of atmospheric general circulation models. Bull. Amer. Meteor. Soc., 75, 18251830, https://doi.org/10.1175/1520-0477(1994)075<1825:APFTIO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hoskins, B. J., and D. J. Karoly, 1981: The steady linear response of a spherical atmosphere to thermal and orographic forcing. J. Atmos. Sci., 38, 11791196, https://doi.org/10.1175/1520-0469(1981)038<1179:TSLROA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kim, D. W., and S. Lee, 2021: Relationship between boreal summer circulation trend and destructive stationary–Transient wave interference in the Western Hemisphere. J. Climate, 34, 49894999, https://doi.org/10.1175/JCLI-D-20-0530.1.

    • Search Google Scholar
    • Export Citation
  • Kobayashi, S., and Coauthors, 2015: The JRA-55 reanalysis: General specifications and basic characteristics. J. Meteor. Soc. Japan, 93, 548, https://doi.org/10.2151/jmsj.2015-001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kornhuber, K., S. Osprey, D. Coumou, S. Petri, V. Petoukhov, S. Rahmstorf, and L. Gray, 2019: Extreme weather events in early summer 2018 connected by a recurrent hemispheric wave-7 pattern. Environ. Res. Lett., 14, 054002, https://doi.org/10.1088/1748-9326/ab13bf.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lachmy, O., and Y. Kaspi, 2020: The role of diabatic heating in Ferrel cell dynamics. Geophys. Res. Lett., 47, e2020GL090619, https://doi.org/10.1029/2020GL090619.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lau, W. K., and K. M. Kim, 2012: The 2010 Pakistan flood and Russian heat wave: Teleconnection of hydrometeorological extremes. J. Hydrometeor., 13, 392403, https://doi.org/10.1175/JHM-D-11-016.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lee, M. H., S. Lee, H. J. Song, and C. H. Ho, 2017: The recent increase in the occurrence of a boreal summer teleconnection and its relationship with temperature extremes. J. Climate, 30, 74937504, https://doi.org/10.1175/JCLI-D-16-0094.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lyon, B., and R. M. Dole, 1995: A diagnostic comparison of the 1980 and 1988 U.S. summer heat wave-droughts. J. Climate, 8, 16581675, https://doi.org/10.1175/1520-0442(1995)008<1658:ADCOTA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ma, H.-Y., and Coauthors, 2014: On the correspondence between mean forecast errors and climate errors in CMIP5 models. J. Climate, 27, 17811798, https://doi.org/10.1175/JCLI-D-13-00474.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mann, M. E., S. Rahmstorf, K. Kornhuber, B. A. Steinman, S. K. Miller, S. Petri, and D. Coumou, 2018: Projected changes in persistent extreme summer weather events: The role of quasi-resonant amplification. Sci. Adv., 4, eaat3272, https://doi.org/10.1126/sciadv.aat3272.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Meehl, G. A., and C. Tebaldi, 2004: More intense, more frequent, and longer lasting heat waves in the 21st century. Science, 305, 994997, https://doi.org/10.1126/science.1098704.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • NCAR, 2019: NCAR Command Language version 6.6.2. Accessed 14 May 2021, https://doi.org/10.5065/D6WD3XH5.

  • Park, M., and S. Lee, 2019: Relationship between tropical and extratropical diabatic heating and their impact on stationary–transient wave interference. J. Atmos. Sci., 76, 26172633, https://doi.org/10.1175/JAS-D-18-0371.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Park, M., and S. Lee, 2021: Is the stationary wave bias in CMIP5 simulations driven by latent heating biases? Geophys. Res. Lett., 48, e2020GL091678, https://doi.org/10.1029/2020GL091678.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Park, D.-S. R., S. Lee, and S. B. Feldstein, 2015: Attribution of the recent winter sea ice decline over the Atlantic sector of the Arctic Ocean. J. Climate, 28, 40274033, https://doi.org/10.1175/JCLI-D-15-0042.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Takaya, K., and H. Nakamura, 2001: A formulation of a phase-independent wave-activity flux for stationary and migratory quasigeostrophic eddies on a zonally varying basic flow. J. Atmos. Sci., 58, 608627, https://doi.org/10.1175/1520-0469(2001)058<0608:AFOAPI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Teng, H., G. Branstator, H. Wang, G. A. Meehl, and W. M. Washington, 2013: Probability of US heat waves affected by a subseasonal planetary wave pattern. Nat. Geosci., 6, 10561061, https://doi.org/10.1038/ngeo1988.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Teng, H., G. Branstator, A. B. Tawfik, and P. Callaghan, 2019: Circumglobal response to prescribed soil moisture over North America. J. Climate, 32, 45254545, https://doi.org/10.1175/JCLI-D-18-0823.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ting, M., 1994: Maintenance of northern summer stationary waves in a GCM. J. Atmos. Sci., 51, 32863308, https://doi.org/10.1175/1520-0469(1994)051<3286:MONSSW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., and G. W. Branstator, 1992: Issues in establishing causes of the 1988 drought over North America. J. Climate, 5, 159172, https://doi.org/10.1175/1520-0442(1992)005<0159:IIECOT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., and J. T. Fasullo, 2012: Climate extremes and climate change: The Russian heat wave and other climate extremes of 2010. J. Geophys. Res., 117, D17103, https://doi.org/10.1029/2012JD018020.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wilks, D. S., 2011: Statistical Methods in the Atmospheric Sciences. 3rd ed. International Geophysics Series, Vol. 100, Academic press, 704 pp.

    • Search Google Scholar
    • Export Citation
  • Yasui, S., and M. Watanabe, 2010: Forcing processes of the summertime circumglobal teleconnection pattern in a dry AGCM. J. Climate, 23, 20932114, https://doi.org/10.1175/2009JCLI3323.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yeo, S. R., S. W. Yeh, and W. S. Lee, 2019: Two types of heat wave in Korea associated with atmospheric circulation pattern. J. Geophys. Res. Atmos., 124, 74987511, https://doi.org/10.1029/2018JD030170.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, K., W. J. Randel, and R. Fu, 2017: Relationships between outgoing longwave radiation and diabatic heating in reanalyses. Climate Dyn., 49, 29112929, https://doi.org/10.1007/s00382-016-3501-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 560 0 0
Full Text Views 643 199 10
PDF Downloads 667 173 6