Impact of Internal Climate Variability on the Relationship between Spring Northern Tropical Atlantic SST Anomalies and Succedent Winter ENSO: The Role of the North Pacific Oscillation

Shangfeng Chen aCenter for Monsoon System Research, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China

Search for other papers by Shangfeng Chen in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0001-9327-9079
,
Wen Chen aCenter for Monsoon System Research, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China

Search for other papers by Wen Chen in
Current site
Google Scholar
PubMed
Close
,
Bin Yu bClimate Research Division, Environment and Climate Change Canada, Toronto, Ontario, Canada

Search for other papers by Bin Yu in
Current site
Google Scholar
PubMed
Close
, and
Zhibo Li cLaboratory for Climate and Ocean-Atmosphere Studies, Department of Atmospheric and Oceanic Sciences, School of Physics, Peking University, Beijing, China

Search for other papers by Zhibo Li in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Previous studies suggested that spring sea surface temperature anomalies (SSTAs) in the northern tropical Atlantic (NTA) have a marked influence on the succedent winter El Niño–Southern Oscillation (ENSO). In this study, we examine the spring NTA SSTA–winter ENSO connection in a 50-member large-ensemble simulation conducted with the Canadian Centre for Climate Modelling and Analysis second-generation Canadian Earth System Model (CanESM2) and a 100-member ensemble simulation conducted with the Max Planck Institute Earth System Model (MPI-ESM). The observed out-of-phase relation of spring NTA SSTA with winter ENSO can be captured by the multimember ensemble means of the large-ensemble simulations from both models. However, the relation shows a large diversity among different ensemble members attributing to the internal climate variability. The preceding winter North Pacific Oscillation (NPO) is suggested to be an important source of the internal climate variability that modulates the spring NTA SSTA–ENSO connection. The modulation of the winter NPO on the subsequent spring NTA SSTA–winter ENSO relation is seen in both climate modeling and observational datasets. When winter NPO and spring NTA SSTA indices have the same (opposite) sign, the linkage between the spring NTA SSTA and the following winter ENSO tends to be weak (strong). The NPO modulates the spring NTA SSTA–winter ENSO relation mainly via changing the zonal wind anomalies over the tropical western-to-central Pacific induced by the spring NTA SSTA. In addition, our analysis indicates that winter NPO may have a marked effect on the predictability of winter ENSO based on the condition of spring NTA SSTA.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Wen Chen, cw@post.iap.ac.cn

Abstract

Previous studies suggested that spring sea surface temperature anomalies (SSTAs) in the northern tropical Atlantic (NTA) have a marked influence on the succedent winter El Niño–Southern Oscillation (ENSO). In this study, we examine the spring NTA SSTA–winter ENSO connection in a 50-member large-ensemble simulation conducted with the Canadian Centre for Climate Modelling and Analysis second-generation Canadian Earth System Model (CanESM2) and a 100-member ensemble simulation conducted with the Max Planck Institute Earth System Model (MPI-ESM). The observed out-of-phase relation of spring NTA SSTA with winter ENSO can be captured by the multimember ensemble means of the large-ensemble simulations from both models. However, the relation shows a large diversity among different ensemble members attributing to the internal climate variability. The preceding winter North Pacific Oscillation (NPO) is suggested to be an important source of the internal climate variability that modulates the spring NTA SSTA–ENSO connection. The modulation of the winter NPO on the subsequent spring NTA SSTA–winter ENSO relation is seen in both climate modeling and observational datasets. When winter NPO and spring NTA SSTA indices have the same (opposite) sign, the linkage between the spring NTA SSTA and the following winter ENSO tends to be weak (strong). The NPO modulates the spring NTA SSTA–winter ENSO relation mainly via changing the zonal wind anomalies over the tropical western-to-central Pacific induced by the spring NTA SSTA. In addition, our analysis indicates that winter NPO may have a marked effect on the predictability of winter ENSO based on the condition of spring NTA SSTA.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Wen Chen, cw@post.iap.ac.cn
Save
  • Alexander, M. A., I. Bladé, M. Newman, J. R. Lanzante, N.-C. Lau, and J. D. Scott, 2002: The atmospheric bridge: The influence of ENSO teleconnections on air–sea interaction over the global oceans. J. Climate, 15, 22052231, https://doi.org/10.1175/1520-0442(2002)015<2205:TABTIO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Alexander, M. A., D. J. Vimont, P. Chang, and J. D. Scott, 2010: The impact of extratropical atmospheric variability on ENSO: Testing the seasonal footprinting mechanism using coupled model experiments. J. Climate, 23, 28852901, https://doi.org/10.1175/2010JCLI3205.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Anderson, B. T., 2003: Tropical Pacific sea-surface temperatures and preceding sea level pressure anomalies in the subtropical North Pacific. J. Geophys. Res., 108, 4732, https://doi.org/10.1029/2003JD003805.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Anderson, B. T., and R. C. Perez, 2015: ENSO and non-ENSO induced charging and discharging. Climate Dyn., 45, 23092327, https://doi.org/10.1007/s00382-015-2472-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Arora, V. K., and Coauthors, 2011: Carbon emission limits required to satisfy future representative concentration pathways of greenhouse gases. Geophys. Res. Lett., 38, L05805, https://doi.org/10.1029/2010GL046270.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Battisti, D. S., and A. C. Hirst, 1989: Interannual variability in a tropical atmosphere–ocean model: Influence of the basic state, ocean geometry and nonlinearity. J. Atmos. Sci., 46, 16871712, https://doi.org/10.1175/1520-0469(1989)046<1687:IVIATA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bjerknes, J., 1969: Atmospheric teleconnections from the equatorial Pacific. Mon. Wea. Rev., 97, 163172, https://doi.org/10.1175/1520-0493(1969)097<0163:ATFTEP>2.3.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bretherton, C. S., M. Widmann, V. P. Dymnikov, J. M. Wallace, and I. Blade, 1999: The effective number of spatial degrees of freedom of a time-varying field. J. Climate, 12, 19902009, https://doi.org/10.1175/1520-0442(1999)012%3C1990:TENOSD%3E2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cai, W. J., and Coauthors, 2019: Pan-tropical climate interactions. Science, 363, eaav4236, https://doi.org/10.1126/science.aav4236.

  • Chan, J. C. L., 2005: Interannual and interdecadal variations of tropical cyclone activity over the western North Pacific. Meteor. Atmos. Phys., 89, 143152, https://doi.org/10.1007/s00703-005-0126-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chang, P., L. Zhang, R. Saravanan, D. J. Vimont, J. C. H. Chiang, L. Ji, H. Seidel, and M. K. Tippett, 2007: Pacific meridional mode and El Niño-Southern Oscillation. Geophys. Res. Lett., 34, L16608, https://doi.org/10.1029/2007GL030302.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, M. C., and T. Li, 2018: Why 1986 El Niño and 2005 La Niña evolved different from a typical El Niño and La Niña. Climate Dyn., 51, 43094327, https://doi.org/10.1007/s00382-017-3852-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, S. F., and R. Wu, 2017: An enhanced influence of sea surface temperature in the tropical northern Atlantic on the following winter ENSO since the early 1980s. Atmos. Oceanic Sci. Lett., 10, 175182, https://doi.org/10.1080/16742834.2016.1259542.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, S. F., and B. Yu, 2020: The seasonal footprinting mechanism in large ensemble simulations of the second generation Canadian Earth System Model: Uncertainty due to internal climate variability. Climate Dyn., 55, 25232541, https://doi.org/10.1007/s00382-020-05396-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, S. F., B. Yu, and W. Chen, 2014: An analysis on the physical process of the influence of AO on ENSO. Climate Dyn., 42, 973989, https://doi.org/10.1007/s00382-012-1654-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, S. F., R. Wu, and W. Chen, 2015: The changing relationship between interannual variations of the North Atlantic Oscillation and northern tropical Atlantic SST. J. Climate, 28, 485504, https://doi.org/10.1175/JCLI-D-14-00422.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, S. F., B. Yu, W. Chen, and R. Wu, 2018: A review of atmosphere-ocean forcings outside the tropical Pacific on the El Niño-Southern Oscillation occurrence. Atmosphere, 9, 439, https://doi.org/10.3390/atmos9110439.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, S. F., R. Wu, and W. Chen, 2019: Projections of climate changes over mid-high latitudes of Eurasia during boreal spring: Uncertainty due to internal variability. Climate Dyn., 53, 63096327, https://doi.org/10.1007/s00382-019-04929-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, S. F., W. Chen, R. Wu, B. Yu, and H. Graf, 2020a: Potential impact of preceding Aleutian low variation on the El Niño–Southern Oscillation during the following winter. J. Climate, 33, 30613077, https://doi.org/10.1175/JCLI-D-19-0717.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, S. F., R. Wu, and W. Chen, 2020b: Strengthened connection between springtime North Atlantic Oscillation and North Atlantic tripole SST pattern since the late 1980s. J. Climate, 33, 20072022, https://doi.org/10.1175/JCLI-D-19-0628.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, S. F., R. Wu, W. Chen, and B. Yu, 2020c: Influence of winter Arctic sea ice concentration change on the El Niño-Southern Oscillation in the following winter. Climate Dyn., 54, 741757, https://doi.org/10.1007/s00382-019-05027-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, W., H. F. Graf, and R. Huang, 2000: The interannual variability of East Asian winter monsoon and its relation to the summer monsoon. Adv. Atmos. Sci., 17, 4860, https://doi.org/10.1007/s00376-000-0042-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, W., J. Feng, and R. Wu, 2013: Roles of ENSO and PDO in the link of the East Asian winter monsoon to the following summer monsoon. J. Climate, 26, 622635, https://doi.org/10.1175/JCLI-D-12-00021.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chiang, J. C. H., and D. J. Vimont, 2004: Analogous Pacific and Atlantic meridional modes of tropical atmosphere-ocean variability. J. Climate, 17, 41434158, https://doi.org/10.1175/JCLI4953.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chikamoto, Y., and Coauthors, 2015: Skillful multi-year predictions of tropical trans-basin climate variability. Nat. Commun., 6, 6869, https://doi.org/10.1038/ncomms7869.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chikamoto, Y., Z. Johnson, S. Wang, M. McPhaden, and T. Mochizuki, 2020: El Niño-Southern Oscillation evolution modulated by Atlantic forcing. J. Geophys. Res. Oceans, 125, e2020JC016318, https://doi.org/10.1029/2020JC016318.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Christian, J. R., and Coauthors, 2010: The global carbon cycle in the Canadian Earth system model (CanESM1): Preindustrial control simulation. J. Geophys. Res., 115, G03014, https://doi.org/10.1029/2008JG000920.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Curtis, S., and S. Hastenrath, 1995: Forcing of anomalous sea surface temperature evolution in the tropical Atlantic during Pacific warm events. J. Geophys. Res., 100, 15 83515 847, https://doi.org/10.1029/95JC01502.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Czaja, A., P. Van der Vaart, and J. Marshall, 2002: A diagnostic study of the role of remote forcing in tropical Atlantic variability. J. Climate, 15, 32803290, https://doi.org/10.1175/1520-0442(2002)015<3280:ADSOTR>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dai, A., and T. M. L. Wigley, 2000: Global patterns of ENSO-induced precipitation. Geophys. Res. Lett., 27, 12831286, https://doi.org/10.1029/1999GL011140.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dai, A., and C. E. Bloecker, 2019: Impacts of internal variability on temperature and precipitation trends in large ensemble simulations by two climate models. Climate Dyn., 52, 289306, https://doi.org/10.1007/s00382-018-4132-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Deser, C., R. Knutti, S. Solomon, and A. S. Phillips, 2012: Communication of the role of natural variability in future North American climate. Nat. Climate Change, 2, 775779, https://doi.org/10.1038/nclimate1562.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Deser, C., A. S. Phillips, M. A. Alexander, and B. V. Smoliak, 2014: Projecting North American climate over the next 50 years: Uncertainty due to internal variability. J. Climate, 27, 22712296, https://doi.org/10.1175/JCLI-D-13-00451.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Deser, C., I. R. Simpson, K. A. McKinnon, and A. S. Phillips, 2017: The Northern Hemisphere extratropical atmospheric circulation response to ENSO: How well do we know it and how do we evaluate models accordingly?. J. Climate, 30, 50595082, https://doi.org/10.1175/JCLI-D-16-0844.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Diaz, H. F., M. P. Hoerling, and J. K. Eischeid, 2001: ENSO variability, teleconnections and climate change. Int. J. Climatol., 21, 18451862, https://doi.org/10.1002/joc.631.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ding, H., N. Keenlyside, and M. Latif, 2012: Impact of the equatorial Atlantic on the El Niño Southern Oscillation. Geophys. Res. Lett., 38, 19651972, https://doi.org/10.1007/s00382-011-1097-y.

    • Search Google Scholar
    • Export Citation
  • Ding, R. Q., J. Li, and Y. H. Tseng, 2015: The impact of South Pacific extratropical forcing on ENSO and comparisons with the North Pacific. Climate Dyn., 44, 20172034, https://doi.org/10.1007/s00382-014-2303-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ding, R. Q., J. Li, Y. H. Tseng, C. Sun, and F. Xie, 2017a: Joint impact of North and South Pacific extratropical atmospheric variability on the onset of ENSO events. J. Geophys. Res. Atmos., 122, 279298, https://doi.org/10.1002/2016JD025502.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ding, R. Q., J. Li, Y. H. Tseng, C. Sun, and F. Zheng, 2017b: Linking a sea level pressure anomaly dipole over North America to the central Pacific El Niño. Climate Dyn., 49, 13211339, https://doi.org/10.1007/s00382-016-3389-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ding, S., W. Chen, H.-F. Graf, Y. Guo, and D. Nath, 2017: Distinct winter patterns of tropical Pacific convection anomaly and the associated extratropical wave trains in the Northern Hemisphere. Climate Dyn., 51, 20032022, https://doi.org/10.1007/s00382-017-3995-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Domeisen, D. I., C. I. Garfinkel, and A. H. Butler, 2019: The teleconnection of El Niño: Southern Oscillation to the stratosphere. Rev. Geophys., 57, 547, https://doi.org/10.1029/2018RG000596.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Duan, W., L. Song, Y. Li, and J. Mao, 2013: Modulation of PDO on the predictability of the interannual variability of early summer rainfall over south China. J. Geophys. Res. Atmos., 118, 13 00813 021, https://doi.org/10.1002/2013JD019862.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Duchon, C. E., 1979: Lanczos filtering in one and two dimensions. J. Appl. Meteor., 18, 10161022, https://doi.org/10.1175/1520-0450(1979)018<1016:LFIOAT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fisher, R. A., 1921: On the “probable error” of a coefficient of correlation deduced from a small sample. Metron, 1, 332.

  • Furtado, J. C., E. D. Lorenzo, B. T. Anderson, and N. Schneider, 2012: Linkages between the North Pacific Oscillation and central tropical Pacific SSTs at low frequencies. Climate Dyn., 39, 28332846, https://doi.org/10.1007/s00382-011-1245-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gray, W. M., 1984: Atlantic seasonal hurricane frequency. Part I: El Niño and 30 mb quasi-biennial oscillation influences. Mon. Wea. Rev., 112, 16491668, https://doi.org/10.1175/1520-0493(1984)112<1649:ASHFPI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ham, Y.-G., and J.-S. Kug, 2015: Role of north tropical Atlantic SST on the ENSO simulated using CMIP3 and CMIP5 models. Climate Dyn., 45, 31033117, https://doi.org/10.1007/s00382-015-2527-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ham, Y.-G., J.-S. Kug, J.-Y. Park, and F.-F. Jin, 2013: Sea surface temperature in the north tropical Atlantic as a trigger for El Niño/Southern Oscillation events. Nat. Geosci., 6, 112116, https://doi.org/10.1038/ngeo1686.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • He, S. P., and H. J. Wang, 2013: Oscillating relationship between the East Asian winter monsoon and ENSO. J. Climate, 26, 98199838, https://doi.org/10.1175/JCLI-D-13-00174.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Horel, J. D., and J. M. Wallace, 1981: Planetary-scale atmospheric phenomena associated with the Southern Oscillation. Mon. Wea. Rev., 109, 813829, https://doi.org/10.1175/1520-0493(1981)109<0813:PSAPAW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huang, B., and J. Shukla, 2005: Ocean–atmosphere interactions in the tropical and subtropical Atlantic Ocean. J. Climate, 18, 16521672, https://doi.org/10.1175/JCLI3368.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huang, B., and Coauthors, 2017: Extended Reconstructed Sea Surface Temperature version 5 (ERSSTv5): Upgrades, validations, and intercomparisons. J. Climate, 30, 81798205, https://doi.org/10.1175/JCLI-D-16-0836.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huang, R., R. Zhang, and B. Yan, 2001: Dynamical effect of the zonal wind anomalies over the tropical western Pacific on ENSO cycles. Sci. China, 44D, 10891098, https://doi.org/10.1007/BF02906865.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huang, R., W. Chen, B. Yang, and R. Zhang, 2004: Recent advances in studies of the interaction between the East Asian winter and summer monsoons and ENSO cycle. Adv. Atmos. Sci., 21, 407424, https://doi.org/10.1007/BF02915568.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hurrell, J. W., and H. van Loon, 1997: Decadal variations in climate associated with the North Atlantic Oscillation. Climatic Change at High Elevation Sites, H. F. Diaz, M. Beniston, and R. Bradley, Eds., Springer, 6994.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Izumo, T., and Coauthors, 2010: Influence of the state of the Indian Ocean dipole on the following year’s El Niño. Nat. Geosci., 3, 168172, https://doi.org/10.1038/ngeo760.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Izumo, T., J. Vialard, H. Dayan, M. Lengaigne, and I. Suresh, 2016: A simple estimation of equatorial Pacific response from windstress to untangle Indian Ocean Dipole and Basin influences on El Niño. Climate Dyn., 46, 22472268, https://doi.org/10.1007/s00382-015-2700-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jia, F., L. Wu, B. L. Gan, and W. Cai, 2016: Global warming attenuates the tropical Atlantic-Pacific teleconnection. Sci. Rep., 6, 20078, https://doi.org/10.1038/srep20078.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jia, F., W. Cai, L. Wu, B. L. Gan, G. Wang, F. Kucharhi, P. Chang, and N. Keenlyside, 2019: Weakening Atlantic Niño–Pacific connection under greenhouse warming. Sci. Adv., 5, eaax4111, https://doi.org/10.1126/sciadv.aax4111.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jia, X. J., S. Wang, H. Lin, and Q. Bao, 2015: A connection between the tropical Pacific Ocean and the winter climate in the Asian-Pacific region. J. Geophys. Res. Atmos., 120, 430448, https://doi.org/10.1002/2014JD022324.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jia, X. J., J. W. Ge, and S. Wang, 2016: Diverse impacts of ENSO on wintertime rainfall over the Maritime Continent. Int. J. Climatol., 36, 33843397, https://doi.org/10.1002/joc.4562.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jin, F. F., 1997: An equatorial ocean recharge paradigm for ENSO. Part I: Conceptual model. J. Atmos. Sci., 54, 811829, https://doi.org/10.1175/1520-0469(1997)054<0811:AEORPF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Johnson, Z., Y. Chikamoto, S. Wang, M. McPhaden, and T. Mochizuki, 2020: Pacific Decadal Oscillation remotely forced by the equatorial Pacific and Atlantic Oceans. Climate Dyn., 55, 789811, https://doi.org/10.1007/s00382-020-05295-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Joshi, M. K., and K. J. Ha, 2019: Fidelity of CMIP5-simulated teleconnection between Atlantic multidecadal oscillation and Indian summer monsoon rainfall. Climate Dyn., 52, 41574176, https://doi.org/10.1007/s00382-018-4376-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77, 437471, https://doi.org/10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kay, J. E., and Coauthors, 2015: The Community Earth System Model (CESM) large ensemble project: A community resource for studying climate change in the presence of internal climate variability. Bull. Amer. Meter. Soc., 96, 13331349, https://doi.org/10.1175/BAMS-D-13-00255.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Keenlyside, N. S., H. Ding, and M. Latif, 2013: Potential of equatorial Atlantic variability to enhance El Niño prediction. Geophys. Res. Lett., 40, 22782283, https://doi.org/10.1002/grl.50362.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kirchmeier-Young, M. C., F. W. Zwiers, and N. P. Gillett, 2017: Attribution of extreme events in Arctic sea ice extent. J. Climate, 30, 553571, https://doi.org/10.1175/JCLI-D-16-0412.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kucharski, F., I. Kang, R. Farneti, and L. Feudale, 2011: Tropical Pacific response to 20th century Atlantic warming. Geophys. Res. Lett., 38, L0302, https://doi.org/10.1029/2010GL046248.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kucharski, F., and Coauthors, 2016: Atlantic forcing of Pacific decadal variability. Climate Dyn., 46, 23372351, https://doi.org/10.1007/s00382-015-2705-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Larson, S., and B. Kirtman, 2013: The Pacific meridional mode as a trigger for ENSO in a high-resolution coupled model. Geophys. Res. Lett., 40, 31893194, https://doi.org/10.1002/grl.50571.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lengaigne, M., E. Guilyardi, J. P. Boulanger, C. Menkes, P. Delecluse, P. Inness, J. Cole, and J. Slingo, 2004: Triggering of El Niño by westerly wind events in a coupled general circulation model. Climate Dyn., 23, 601620, https://doi.org/10.1007/s00382-004-0457-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, X., S. Xie, S. Gille, and C. Yoo, 2015: Atlantic-induced pan-tropical climate change over the past three decades. Nat. Climate Change, 6, 275279, https://doi.org/10.1038/nclimate2840.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Linkin, M. E., and S. Nigam, 2008: The North Pacific Oscillation–west Pacific teleconnection pattern: Mature-phase structure and winter impacts. J. Climate, 21, 19791997, https://doi.org/10.1175/2007JCLI2048.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ma, T., W. Chen, D. Nath, H.-F. Graf, L. Wang, and J. Huangfu, 2018: East Asian winter monsoon impacts the ENSO-related teleconnections and North American seasonal air temperature prediction. Sci. Rep., 8, 6547, https://doi.org/10.1038/s41598-018-24552-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ma, T., W. Chen, H.-F. Graf, S. Ding, P. Xu, L. Song, and X. Lan, 2020: Different impacts of the East Asian winter monsoon on the surface air temperature in North America during ENSO and neutral ENSO years. J. Climate, 33, 10 67110 690, https://doi.org/10.1175/JCLI-D-18-0760.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Maher, N., D. Matei, S. Milinski, and J. Marotzke, 2018: ENSO change in climate projections: Forced response or internal variability?. Geophys. Res. Lett., 45, 11 39011 398, https://doi.org/10.1029/2018GL079764.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Maher, N., and Coauthors, 2019: The Max Planck Institute grand ensemble: Enabling the exploration of climate system variability. J. Adv. Model. Earth Syst., 11, 20502069, https://doi.org/10.1029/2019MS001639.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Martín-Rey, M., B. Rodríguez-Fonseca, I. Polo, and F. Kucharski, 2014: On the Atlantic-Pacific Niños connection: A multidecadal modulated mode. Climate Dyn., 43, 31633178, https://doi.org/10.1007/s00382-014-2305-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Martín-Rey, M., B. Rodríguez-Fonseca, and I. Polo, 2015: Atlantic opportunities for ENSO prediction. Geophys. Res. Lett., 42, 68026810, https://doi.org/10.1002/2015GL065062.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Martín-Rey, M., I.