• Alexeev, V. A., and C. H. Jackson, 2013: Polar amplification: Is atmospheric heat transport important? Climate Dyn., 41, 533547, https://doi.org/10.1007/s00382-012-1601-z.

    • Search Google Scholar
    • Export Citation
  • Andrews, T., J. M. Gregory, and M. J. Webb, 2015: The dependence of radiative forcing and feedback on evolving patterns of surface temperature change in climate models. J. Climate, 28, 16301648, https://doi.org/10.1175/JCLI-D-14-00545.1.

    • Search Google Scholar
    • Export Citation
  • Armour, K. C., C. M. Bitz, and G. H. Roe, 2013: Time-varying climate sensitivity from regional feedbacks. J. Climate, 26, 45184534, https://doi.org/10.1175/JCLI-D-12-00544.1.

    • Search Google Scholar
    • Export Citation
  • Armour, K. C., N. Siler, A. Donohoe, and G. H. Roe, 2019: Meridional atmospheric heat transport constrained by energetics and mediated by large-scale diffusion. J. Climate, 32, 36553680, https://doi.org/10.1175/JCLI-D-18-0563.1.

    • Search Google Scholar
    • Export Citation
  • Bonan, D. B., K. C. Armour, G. H. Roe, N. Siler, and N. Feldl, 2018: Sources of uncertainty in the meridional pattern of climate change. Geophys. Res. Lett., 45, 91319140, https://doi.org/10.1029/2018GL079429.

    • Search Google Scholar
    • Export Citation
  • Burls, N. J., and A. V. Fedorov, 2014a: Simulating Pliocene warmth and a permanent El Niño-like state: The role of cloud albedo. Paleoceanogr. Paleoclimatol., 29, 893910, https://doi.org/10.1002/2014PA002644.

    • Search Google Scholar
    • Export Citation
  • Burls, N. J., and A. V. Fedorov, 2014b: What controls the mean east–west sea surface temperature gradient in the equatorial Pacific: The role of cloud albedo. J. Climate, 27, 27572778, https://doi.org/10.1175/JCLI-D-13-00255.1.

    • Search Google Scholar
    • Export Citation
  • Burls, N. J., A. V. Fedorov, D. M. Sigman, S. L. Jaccard, R. Tiedemann, and G. H. Haug, 2017: Active Pacific meridional overturning circulation (PMOC) during the warm Pliocene. Sci. Adv., 3, e1700156, https://doi.org/10.1126/sciadv.1700156.

    • Search Google Scholar
    • Export Citation
  • Dai, A., D. Luo, M. Song, and J. Liu, 2019: Arctic amplification is caused by sea-ice loss under increasing CO2. Nat. Commun., 10, 121, https://doi.org/10.1038/s41467-018-07954-9.

    • Search Google Scholar
    • Export Citation
  • Danabasoglu, G., and P. R. Gent, 2009: Equilibrium climate sensitivity: Is it accurate to use a slab ocean model? J. Climate, 22, 24942499, https://doi.org/10.1175/2008JCLI2596.1.

    • Search Google Scholar
    • Export Citation
  • Ding, Q., J. M. Wallace, D. S. Battisti, E. J. Steig, A. J. E. Gallant, H.-J. Kim, and L. Geng, 2014: Tropical forcing of the recent rapid Arctic warming in northeastern Canada and Greenland. Nature, 509, 209212, https://doi.org/10.1038/nature13260.

    • Search Google Scholar
    • Export Citation
  • Dong, Y., K. C. Armour, M. D. Zelinka, C. Proistosescu, D. S. Battisti, C. Zhou, and T. Andrews, 2020: Intermodel spread in the pattern effect and its contribution to climate sensitivity in CMIP5 and CMIP6 models. J. Climate, 33, 77557775, https://doi.org/10.1175/JCLI-D-19-1011.1.

    • Search Google Scholar
    • Export Citation
  • Fedorov, A. V., N. J. Burls, K. T. Lawrence, and L. C. Peterson, 2015: Tightly linked zonal and meridional sea surface temperature gradients over the past five million years. Nat. Geosci., 8, 975980, https://doi.org/10.1038/ngeo2577.

    • Search Google Scholar
    • Export Citation
  • Feldl, N., B. T. Anderson, and S. Bordoni, 2017: Atmospheric eddies mediate lapse rate feedback and Arctic amplification. J. Climate, 30, 92139224, https://doi.org/10.1175/JCLI-D-16-0706.1.

    • Search Google Scholar
    • Export Citation
  • Flannery, B. P., 1984: Energy balance models incorporating transport of thermal and latent energy. J. Atmos. Sci., 41, 414421, https://doi.org/10.1175/1520-0469(1984)041<0414:EBMITO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Frierson, D. M. W., and Y.-T. Hwang, 2012: Extratropical influence on ITCZ shifts in slab ocean simulations of global warming. J. Climate, 25, 720733, https://doi.org/10.1175/JCLI-D-11-00116.1.

    • Search Google Scholar
    • Export Citation
  • Geoffroy, O., and D. Saint-Martin, 2014: Pattern decomposition of the transient climate response. Tellus, 66A, 23393, https://doi.org/10.3402/tellusa.v66.23393.

    • Search Google Scholar
    • Export Citation
  • Geoffroy, O., D. Saint-Martin, D. J. L. Olivié, A. Voldoire, G. Bellon, and S. Tytéca, 2013: Transient climate response in a two-layer energy-balance model. Part I: Analytical solution and parameter calibration using CMIP5 AOGCM experiments. J. Climate, 26, 18411857, https://doi.org/10.1175/JCLI-D-12-00195.1.

    • Search Google Scholar
    • Export Citation
  • Heede, U. K., A. V. Fedorov, and N. J. Burls, 2020: Time scales and mechanisms for the tropical Pacific response to global warming: A tug of war between the ocean thermostat and weaker Walker. J. Climate, 33, 61016118, https://doi.org/10.1175/JCLI-D-19-0690.1.

    • Search Google Scholar
    • Export Citation
  • Held, I. M., M. Winton, K. Takahashi, T. Delworth, F. Zeng, and G. K. Vallis, 2010: Probing the fast and slow components of global warming by returning abruptly to preindustrial forcing. J. Climate, 23, 24182427, https://doi.org/10.1175/2009JCLI3466.1.

    • Search Google Scholar
    • Export Citation
  • Henry, M., T. M. Merlis, N. J. Lutsko, and B. E. J. Rose, 2021: Decomposing the drivers of polar amplification with a single-column model. J. Climate, 34, 23552365, https://doi.org/10.1175/JCLI-D-20-0178.1.

    • Search Google Scholar
    • Export Citation
  • Huang, Y., X. Tan, and Y. Xia, 2016: Inhomogeneous radiative forcing of homogeneous greenhouse gases. J. Geophys. Res. Atmos., 121, 27802789, https://doi.org/10.1002/2015JD024569.

    • Search Google Scholar
    • Export Citation
  • Huang, Y., Y. Xia, and X. Tan, 2017: On the pattern of CO2 radiative forcing and poleward energy transport. J. Geophys. Res. Atmos., 122, 10 57810 593, https://doi.org/10.1002/2017JD027221.

    • Search Google Scholar
    • Export Citation
  • Hwang, Y.-T., D. M. W. Frierson, and J. E. Kay, 2011: Coupling between Arctic feedbacks and changes in poleward energy transport. Geophys. Res. Lett., 38, L17704, https://doi.org/10.1029/2011GL048546.

    • Search Google Scholar
    • Export Citation
  • Jansen, M. F., L.-P. Nadeau, and T. M. Merlis, 2018: Transient versus equilibrium response of the ocean’s overturning circulation to warming. J. Climate, 31, 51475163, https://doi.org/10.1175/JCLI-D-17-0797.1.

    • Search Google Scholar
    • Export Citation
  • Li, C., J.-S. von Storch, and J. Marotzke, 2013: Deep-ocean heat uptake and equilibrium climate response. Climate Dyn., 40, 10711086, https://doi.org/10.1007/s00382-012-1350-z.

    • Search Google Scholar
    • Export Citation
  • Manabe, S., R. J. Stouffer, M. J. Spelman, and K. Bryan, 1991: Transient responses of a coupled ocean–atmosphere model to gradual changes of atmospheric CO2. Part I: Annual mean response. J. Climate, 4, 785818, https://doi.org/10.1175/1520-0442(1991)004<0785:TROACO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Marshall, J., J. R. Scott, K. C. Armour, J.-M. Campin, M. Kelley, and A. Romanou, 2015: The ocean’s role in the transient response of climate to abrupt greenhouse gas forcing. Climate Dyn., 44, 22872299, https://doi.org/10.1007/s00382-014-2308-0.

    • Search Google Scholar
    • Export Citation
  • Merlis, T. M., 2015: Direct weakening of tropical circulations from masked CO2 radiative forcing. Proc. Natl. Acad. Sci. USA, 112, 13 16713 171, https://doi.org/10.1073/pnas.1508268112.

    • Search Google Scholar
    • Export Citation
  • Merlis, T. M., and M. Henry, 2018: Simple estimates of polar amplification in moist diffusive energy balance models. J. Climate, 31, 58115824, https://doi.org/10.1175/JCLI-D-17-0578.1.

    • Search Google Scholar
    • Export Citation
  • Previdi, M., T. P. Janoski, G. Chiodo, K. L. Smith, and L. M. Polvani, 2020: Arctic amplification: A rapid response to radiative forcing. Geophys. Res. Lett., 47, e2020GL089933, https://doi.org/10.1029/2020GL089933.

    • Search Google Scholar
    • Export Citation
  • Roe, G. H., N. Feldl, K. C. Armour, Y.-T. Hwang, and D. M. W. Frierson, 2015: The remote impacts of climate feedbacks on regional climate predictability. Nat. Geosci., 8, 135139, https://doi.org/10.1038/ngeo2346.

    • Search Google Scholar
    • Export Citation
  • Rohrschneider, T., B. Stevens, and T. Mauritsen, 2019: On simple representations of the climate response to external radiative forcing. Climate Dyn., 53, 31313145, https://doi.org/10.1007/s00382-019-04686-4.

    • Search Google Scholar
    • Export Citation
  • Rose, B. E. J., K. C. Armour, D. S. Battisti, N. Feldl, and D. D. B. Koll, 2014: The dependence of transient climate sensitivity and radiative feedbacks on the spatial pattern of ocean heat uptake. Geophys. Res. Lett., 41, 10711078, https://doi.org/10.1002/2013GL058955.

    • Search Google Scholar
    • Export Citation
  • Rugenstein, M., and Coauthors, 2019: LongRunMIP: Motivation and design for a large collection of millennial-length AOGCM simulations. Bull. Amer. Meteor. Soc., 100, 25512570, https://doi.org/10.1175/BAMS-D-19-0068.1.

    • Search Google Scholar
    • Export Citation
  • Rugenstein, M., and Coauthors, 2020: Equilibrium climate sensitivity estimated by equilibrating climate models. Geophys. Res. Lett., 47, e2019GL083898, https://doi.org/10.1029/2019GL083898.

    • Search Google Scholar
    • Export Citation
  • Russotto, R. D., and M. Biasutti, 2020: Polar amplification as an inherent response of a circulating atmosphere: Results from the TRACMIP aquaplanets. Geophys. Res. Lett., 47, e2019GL086771, https://doi.org/10.1029/2019GL086771.

    • Search Google Scholar
    • Export Citation
  • Saint-Martin, D., and Coauthors, 2019: Fast-forward to perturbed equilibrium climate. Geophys. Res. Lett., 46, 89698975, https://doi.org/10.1029/2019GL083031.

    • Search Google Scholar
    • Export Citation
  • Senior, C. A., and J. F. B. Mitchell, 2000: The time-dependence of climate sensitivity. Geophys. Res. Lett., 27, 26852688, https://doi.org/10.1029/2000GL011373.

    • Search Google Scholar
    • Export Citation
  • Shields, C. A., D. A. Bailey, G. Danabasoglu, M. Jochum, J. T. Kiehl, S. Levis, and S. Park, 2012: The low-resolution CCSM4. J. Climate, 25, 39934014, https://doi.org/10.1175/JCLI-D-11-00260.1.

    • Search Google Scholar
    • Export Citation
  • Shin, Y., and S. M. Kang, 2021: How does the high-latitude thermal forcing in one hemisphere affect the other hemisphere? Geophys. Res. Lett., 48, e2021GL095870, https://doi.org/10.1029/2021GL095870.

    • Search Google Scholar
    • Export Citation
  • Smith, R. S., J. M. Gregory, and A. Osprey, 2008: A description of the FAMOUS (version XDBUA) climate model and control run. Geosci. Model Dev., 1, 5368, https://doi.org/10.5194/gmd-1-53-2008.

    • Search Google Scholar
    • Export Citation
  • Stephens, G. L., D. O’Brien, P. J. Webster, P. Pilewski, S. Kato, and J.-l. Li, 2015: The albedo of Earth. Rev. Geophys., 53, 141163, https://doi.org/10.1002/2014RG000449.

    • Search Google Scholar
    • Export Citation
  • Stuecker, M. F., and Coauthors, 2018: Polar amplification dominated by local forcing and feedbacks. Nat. Climate Change, 8, 10761081, https://doi.org/10.1038/s41558-018-0339-y.

    • Search Google Scholar
    • Export Citation
  • Tebaldi, C., and J. M. Arblaster, 2014: Pattern scaling: Its strengths and limitations, and an update on the latest model simulations. Climatic Change, 122, 459471, https://doi.org/10.1007/s10584-013-1032-9.

    • Search Google Scholar
    • Export Citation
  • Virtanen, P., and Coauthors, 2020: SciPy 1.0: Fundamental algorithms for scientific computing in Python. Nat. Methods, 17, 261272, https://doi.org/10.1038/s41592-019-0686-2.

    • Search Google Scholar
    • Export Citation
  • Voigt, A., B. Stevens, J. Bader, and T. Mauritsen, 2013: The observed hemispheric symmetry in reflected shortwave irradiance. J. Climate, 26, 468477, https://doi.org/10.1175/JCLI-D-12-00132.1.

    • Search Google Scholar
    • Export Citation
  • Voigt, A., B. Stevens, J. Bader, and T. Mauritsen, 2014: Compensation of hemispheric albedo asymmetries by shifts of the ITCZ and tropical clouds. J. Climate, 27, 10291045, https://doi.org/10.1175/JCLI-D-13-00205.1.

    • Search Google Scholar
    • Export Citation
  • Wagner, T. J. W., and I. Eisenman, 2015: How climate model complexity influences sea ice stability. J. Climate, 28, 39984014, https://doi.org/10.1175/JCLI-D-14-00654.1.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 557 557 29
Full Text Views 282 282 18
PDF Downloads 305 305 20

Symmetric and Antisymmetric Components of Polar-Amplified Warming

Spencer A. HillaLamont-Doherty Earth Observatory, Columbia University, Palisades, New York

Search for other papers by Spencer A. Hill in
Current site
Google Scholar
PubMed
Close
,
Natalie J. BurlsbDepartment of Atmospheric, Oceanic, and Earth Sciences, Center for Ocean-Land-Atmosphere Studies, George Mason University, Fairfax, Virginia

Search for other papers by Natalie J. Burls in
Current site
Google Scholar
PubMed
Close
,
Alexey FedorovcDepartment of Earth and Planetary Sciences, Yale University, New Haven, Connecticut
dLOCEAN/IPSL, Sorbonne University, Paris, France

Search for other papers by Alexey Fedorov in
Current site
Google Scholar
PubMed
Close
, and
Timothy M. MerliseDepartment of Atmospheric and Oceanic Sciences, McGill University, Montreal, Quebec, Canada

Search for other papers by Timothy M. Merlis in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

CO2-forced surface warming in general circulation models (GCMs) is initially polar amplified in the Arctic but not in the Antarctic—a largely hemispherically antisymmetric signal. Nevertheless, we show in CESM1 and 11 LongRunMIP GCMs that the hemispherically symmetric component of global-mean-normalized, zonal-mean warming (Tsym*) under 4 × CO2 changes weakly or becomes modestly more polar amplified from the first decade to near-equilibrium. Conversely, the antisymmetric warming component (Tasym*) weakens with time in all models, modestly in some including FAMOUS, but effectively vanishing in others including CESM1. We explore mechanisms underlying the robust Tsym* behavior with a diffusive moist energy balance model (MEBM), which given radiative feedback parameter (λ) and ocean heat uptake (O) fields diagnosed from CESM1 adequately reproduces the CESM1 Tsym* and Tasym* fields. In further MEBM simulations perturbing λ and O, Tsym* is sensitive to their symmetric components only, and more to that of λ. A three-box, two-time-scale model fitted to FAMOUS and CESM1 reveals a curiously short Antarctic fast-response time scale in FAMOUS. In additional CESM1 simulations spanning a broader range of forcings, Tsym* changes modestly across 2–16 × CO2, and Tsym* in a Pliocene-like simulation is more polar amplified but likewise approximately time invariant. Determining the real-world relevance of these behaviors—which imply that a surprising amount of information about near-equilibrium polar amplification emerges within decades—merits further study.

© 2022 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Hill’s current affiliation: Program in Atmospheric and Oceanic Sciences, Princeton University, Princeton, New Jersey.

Corresponding author: Spencer Hill, spencerh@princeton.edu

Abstract

CO2-forced surface warming in general circulation models (GCMs) is initially polar amplified in the Arctic but not in the Antarctic—a largely hemispherically antisymmetric signal. Nevertheless, we show in CESM1 and 11 LongRunMIP GCMs that the hemispherically symmetric component of global-mean-normalized, zonal-mean warming (Tsym*) under 4 × CO2 changes weakly or becomes modestly more polar amplified from the first decade to near-equilibrium. Conversely, the antisymmetric warming component (Tasym*) weakens with time in all models, modestly in some including FAMOUS, but effectively vanishing in others including CESM1. We explore mechanisms underlying the robust Tsym* behavior with a diffusive moist energy balance model (MEBM), which given radiative feedback parameter (λ) and ocean heat uptake (O) fields diagnosed from CESM1 adequately reproduces the CESM1 Tsym* and Tasym* fields. In further MEBM simulations perturbing λ and O, Tsym* is sensitive to their symmetric components only, and more to that of λ. A three-box, two-time-scale model fitted to FAMOUS and CESM1 reveals a curiously short Antarctic fast-response time scale in FAMOUS. In additional CESM1 simulations spanning a broader range of forcings, Tsym* changes modestly across 2–16 × CO2, and Tsym* in a Pliocene-like simulation is more polar amplified but likewise approximately time invariant. Determining the real-world relevance of these behaviors—which imply that a surprising amount of information about near-equilibrium polar amplification emerges within decades—merits further study.

© 2022 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Hill’s current affiliation: Program in Atmospheric and Oceanic Sciences, Princeton University, Princeton, New Jersey.

Corresponding author: Spencer Hill, spencerh@princeton.edu
Save