• Armour, K. C., N. Siler, A. Donohoe, and G. H. Roe, 2019: Meridional atmospheric heat transport constrained by energetics and mediated by large-scale diffusion. J. Climate, 32, 36553680, https://doi.org/10.1175/JCLI-D-18-0563.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bischoff, T., and T. Schneider, 2014: Energetic constraints on the position of the intertropical convergence zone. J. Climate, 27, 49374951, https://doi.org/10.1175/JCLI-D-13-00650.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bischoff, T., and T. Schneider, 2018: Corrigendum. J. Climate, 31, 927, https://doi.org/10.1175/JCLI-D-17-0784.1

  • Caballero, R., and P. L. Langen, 2005: The dynamic range of poleward energy transport in an atmospheric general circulation model. Geophys. Res. Lett., 32, L02705, https://doi.org/10.1029/2004GL021581.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Caballero, R., and J. Hanley, 2012: Midlatitude eddies, storm-track diffusivity, and poleward moisture transport in warm climates. J. Atmos. Sci., 69, 32373250, https://doi.org/10.1175/JAS-D-12-035.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Caballero, R., and M. Huber, 2013: State-dependent climate sensitivity in past warm climates and its implications for future climate projections. Proc. Natl. Acad. Sci. USA, 110, 14 16214 167, https://doi.org/10.1073/pnas.1303365110.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dwyer, J. G., and P. A. O’Gorman, 2017: Moist formulations of the Eliassen–Palm flux and their connection to the surface westerlies. J. Atmos. Sci., 74, 513530, https://doi.org/10.1175/JAS-D-16-0111.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Emanuel, K. A., and R. T. Pierrehumbert, 1995: Microphysical and dynamical control of tropospheric water vapor. Clouds, Chemistry, and Climate, P. J. Crutzen and V. Ramanathan, Eds., Vol. 35, Springer, 1728.

    • Crossref
    • Export Citation
  • Feldl, N., and G. H. Roe, 2013: Four perspectives on climate feedbacks. Geophys. Res. Lett., 40, 40074011, https://doi.org/10.1002/grl.50711.

  • Feldl, N., and T. M. Merlis, 2021: Polar amplification in idealized climates: The role of ice, moisture, and seasons. Geophys. Res. Lett., 48, e2021GL094130, https://doi.org/10.1029/2021GL094130.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Feldl, N., S. Bordoni, and T. M. Merlis, 2017: Coupled high-latitude climate feedbacks and their impact on atmospheric heat transport. J. Climate, 30, 189201, https://doi.org/10.1175/JCLI-D-16-0324.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Feldl, N., S. Po-Chedley, H. K. A. Singh, S. Hay, and P. J. Kushner, 2020: Sea ice and atmospheric circulation shape the high-latitude lapse rate feedback. npj Climate Atmos. Sci., 3, 41, https://doi.org/10.1038/s41612-020-00146-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Flannery, B. P., 1984: Energy balance models incorporating transport of thermal and latent energy. J. Atmos. Sci., 41, 414421, https://doi.org/10.1175/1520-0469(1984)041<0414:EBMITO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Frierson, D. M. W., 2007: The dynamics of idealized convection schemes and their effect on the zonally averaged tropical circulation. J. Atmos. Sci., 64, 19591976, https://doi.org/10.1175/JAS3935.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Frierson, D. M. W., I. M. Held, and P. Zurita-Gotor, 2006: A gray-radiation aquaplanet moist GCM. Part I: Static stability and eddy scale. J. Atmos. Sci., 63, 25482566, https://doi.org/10.1175/JAS3753.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Galewsky, J., A. Sobel, and I. Held, 2005: Diagnosis of subtropical humidity dynamics using tracers of last saturation. J. Atmos. Sci., 62, 33533367, https://doi.org/10.1175/JAS3533.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Graversen, R. G., P. L. Langen, and T. Mauritsen, 2014: Polar amplification in CCSM4: Contributions from the lapse rate and the surface albedo feedbacks. J. Climate, 27, 44334450, https://doi.org/10.1175/JCLI-D-13-00551.1.

    • Search Google Scholar
    • Export Citation
  • Hartmann, D. L., 1994: Global Physical Climatology. 1st ed. Academic Press, 411 pp.

  • Held, I. M., and B. J. Soden, 2006: Robust responses of the hydrological cycle to global warming. J. Climate, 19, 56865699, https://doi.org/10.1175/JCLI3990.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Henry, M., and T. M. Merlis, 2019: The role of the nonlinearity of the Stefan-Boltzmann law on the structure of radiatively forced temperature change. J. Climate, 32, 335348, https://doi.org/10.1175/JCLI-D-17-0603.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Henry, M., T. M. Merlis, N. J. Lutsko, and B. E. J. Rose, 2021: Decomposing the drivers of polar amplification with a single-column model. J. Climate, 34, 23552365, https://doi.org/10.1175/JCLI-D-20-0178.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huang, Y., and M. Zhang, 2014: The implication of radiative forcing and feedback for meridional energy transport. Geophys. Res. Lett., 41, 16651672, https://doi.org/10.1002/2013GL059079.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huang, Y., X. Tan, and Y. Xia, 2016: Inhomogeneous radiative forcing of homogeneous greenhouse gases. J. Geophys. Res. Atmos., 121, 27802789, https://doi.org/10.1002/2015JD024569.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hurley, J. V., and J. Galewsky, 2010: A last-saturation diagnosis of subtropical water vapor response to global warming. Geophys. Res. Lett., 37, L06702, https://doi.org/10.1029/2009GL042316.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hwang, Y.-T., D. M. W. Frierson, and J. E. Kay, 2011a: Coupling between Arctic feedbacks and changes in poleward energy transport. Geophys. Res. Lett., 38, L17704, https://doi.org/10.1029/2011GL048546.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hwang, Y.-T., D. M. W. Frierson, B. J. Soden, and I. M. Held, 2011b: Corrigendum: Corrigendum for Held and Soden (2006). J. Climate, 24, 15591560, https://doi.org/10.1175/2010JCLI4045.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jeevanjee, N., P. Hassanzadeh, S. Hill, and A. Sheshadri, 2017: A perspective on climate model hierarchies. J. Adv. Model. Earth Syst., 9, 17601771, https://doi.org/10.1002/2017MS001038.

    • Search Google Scholar
    • Export Citation
  • Jeevanjee, N., J. T. Seeley, D. Paynter, and S. Fueglistaler, 2021: An analytical model for spatially varying clear-sky CO2 forcing. J. Climate, 34, 94639480, https://doi.org/10.1175/JCLI-D-19-0756.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, Q., 2020: Input data for Isca radiative kernel offline calculation. Zenodo, accessed 18 March 2022, https://doi.org/10.5281/zenodo.4071837.

    • Crossref
    • Export Citation
  • Maher, P., and Coauthors, 2019: Model hierarchies for understanding atmospheric circulation. Rev. Geophys., 57, 250280, https://doi.org/10.1029/2018RG000607.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mbengue, C., and T. Schneider, 2018: Linking Hadley circulation and storm tracks in a conceptual model of the atmospheric energy balance. J. Atmos. Sci., 75, 841856, https://doi.org/10.1175/JAS-D-17-0098.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Merlis, T. M., 2014: Interacting components of the top-of-atmosphere energy balance affect changes in regional surface temperature. Geophys. Res. Lett., 41, 72917297, https://doi.org/10.1002/2014GL061700.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Merlis, T. M., and T. Schneider, 2011: Changes in zonal surface temperature gradients and Walker circulations in a wide range of climates. J. Climate, 24, 47574768, https://doi.org/10.1175/2011JCLI4042.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Merlis, T. M., and M. Henry, 2018: Simple estimates of polar amplification in moist diffusive energy balance models. J. Climate, 31, 58115824, https://doi.org/10.1175/JCLI-D-17-0578.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Miyawaki, O., T. A. Shaw, and M. F. Jansen, 2022: Quantifying energy balance regimes in the modern climate, their link to lapse rate regimes, and their response to warming. J. Climate, 35, 10451061, https://doi.org/10.1175/JCLI-D-21-0440.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • North, G. R., 1975: Theory of energy-balance climate models. J. Atmos. Sci., 32, 20332043, https://doi.org/10.1175/1520-0469(1975)032<2033:TOEBCM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • O’Gorman, P. A., 2011: The effective static stability experienced by eddies in a moist atmosphere. J. Atmos. Sci., 68, 7590, https://doi.org/10.1175/2010JAS3537.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • O’Gorman, P. A., and T. Schneider, 2008a: Energy of midlatitude transient eddies in idealized simulations of changed climates. J. Climate, 21, 57975806, https://doi.org/10.1175/2008JCLI2099.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • O’Gorman, P. A., and T. Schneider, 2008b: The hydrological cycle over a wide range of climates simulated with an idealized GCM. J. Climate, 21, 38153832, https://doi.org/10.1175/2007JCLI2065.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • O’Gorman, P. A., T. M. Merlis, and M. S. Singh, 2018: Increase in the skewness of extratropical vertical velocities with climate warming: Fully nonlinear simulations versus moist baroclinic instability. Quart. J. Roy. Meteor. Soc., 144, 208217, https://doi.org/10.1002/qj.3195.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pendergrass, A. G., A. Conley, and F. M. Vitt, 2018: Surface and top-of-atmosphere radiative feedback kernels for CESM-CAM5. Earth Syst. Sci. Data, 10, 317324, https://doi.org/10.5194/essd-10-317-2018.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Po-Chedley, S., K. C. Armour, C. M. Bitz, M. D. Zelinka, B. D. Santer, and Q. Fu, 2018: Sources of intermodel spread in the lapse rate and water vapor feedbacks. J. Climate, 31, 31873206, https://doi.org/10.1175/JCLI-D-17-0674.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Roe, G., 2009: Feedbacks, timescales, and seeing red. Annu. Rev. Earth Planet. Sci., 37, 93115, https://doi.org/10.1146/annurev.earth.061008.134734.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rose, B. E. J., K. C. Armour, D. S. Battisti, N. Feldl, and D. D. B. Koll, 2014: The dependence of transient climate sensitivity and radiative feedbacks on the spatial pattern of ocean heat uptake. Geophys. Res. Lett., 41, 10711078, https://doi.org/10.1002/2013GL058955.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schneider, T., and C. C. Walker, 2008: Scaling laws and regime transitions of macroturbulence in dry atmospheres. J. Atmos. Sci., 65, 21532173, https://doi.org/10.1175/2007JAS2616.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schneider, T., and P. A. O’Gorman, 2008: Moist convection and the thermal stratification of the extratropical troposphere. J. Atmos. Sci., 65, 35713583, https://doi.org/10.1175/2008JAS2652.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schneider, T., K. L. Smith, P. A. O’Gorman, and C. C. Walker, 2006: A climatology of tropospheric zonal-mean water vapor fields and fluxes in isentropic coordinates. J. Climate, 19, 59185933, https://doi.org/10.1175/JCLI3931.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sellers, W. D., 1969: A global climatic model based on the energy balance of the Earth–atmosphere system. J. Appl. Meteor. Climatol., 8, 392400, https://doi.org/10.1175/1520-0450(1969)008<0392:AGCMBO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shaw, T. A., and A. Voigt, 2016: What can moist thermodynamics tell us about circulation shifts in response to uniform warming? Geophys. Res. Lett., 43, 45664575, https://doi.org/10.1002/2016GL068712.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Soden, B. J., I. M. Held, R. Colman, K. M. Shell, J. T. Kiehl, and C. A. Shields, 2008: Quantifying climate feedbacks using radiative kernels. J. Climate, 21, 35043520, https://doi.org/10.1175/2007JCLI2110.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stone, P. H., and M.-S. Yao, 1990: Development of a two-dimensional zonally averaged statistical-dynamical model. Part III: The parameterization of the eddy fluxes of heat and moisture. J. Climate, 3, 726740, https://doi.org/10.1175/1520-0442(1990)003<0726:DOATDZ>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tan, Z., O. Lachmy, and T. A. Shaw, 2019: The sensitivity of the jet stream response to climate change to radiative assumptions. J. Adv. Model. Earth Syst., 11, 934956, https://doi.org/10.1029/2018MS001492.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Trossman, D. S., J. B. Palter, T. M. Merlis, Y. Huang, and Y. Xia, 2016: Large-scale ocean circulation–cloud interactions reduce the pace of transient climate change. Geophys. Res. Lett., 43, 39353943, https://doi.org/10.1002/2016GL067931.

    • Search Google Scholar
    • Export Citation
  • Zelinka, M. D., and D. L. Hartmann, 2012: Climate feedbacks and their implications for poleward energy flux changes in a warming climate. J. Climate, 25, 608624, https://doi.org/10.1175/JCLI-D-11-00096.1.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 475 475 37
Full Text Views 266 266 5
PDF Downloads 315 315 4

Changes in Poleward Atmospheric Energy Transport over a Wide Range of Climates: Energetic and Diffusive Perspectives and A Priori Theories

Timothy M. MerlisaPrinceton University, Princeton, New Jersey

Search for other papers by Timothy M. Merlis in
Current site
Google Scholar
PubMed
Close
,
Nicole FeldlbUniversity of California, Santa Cruz, Santa Cruz, California

Search for other papers by Nicole Feldl in
Current site
Google Scholar
PubMed
Close
, and
Rodrigo CaballerocStockholm University, Stockholm, Sweden

Search for other papers by Rodrigo Caballero in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The midlatitude poleward atmospheric energy transport increases in radiatively forced simulations of warmed climates across a range of models from comprehensive coupled general circulation models (GCMs) to idealized aquaplanet moist GCMs to diffusive moist energy balance models. These increases have been rationalized from two perspectives. The energetic (or radiative) perspective takes the atmospheric energy budget and decomposes energy flux changes (radiative forcing, feedbacks, or surface fluxes) to determine the energy transport changes required by the budget. The diffusive perspective takes the net effect of atmospheric macroturbulence to be a diffusive energy transport down-gradient, so transport changes can arise from changes in mean energy gradients or turbulent diffusivity. Here, we compare these perspectives in idealized moist, gray-radiation GCM simulations over a wide range of climates. The energetic perspective has a dominant role for radiative forcing in this GCM, with cancellation between the temperature feedback components that account for the GCM’s nonmonotonic energy transport changes in response to warming. Comprehensive CMIP5 simulations have similarities in the Northern Hemisphere to the idealized GCM, although a comprehensive GCM over several CO2 doublings has a distinctly different feedback evolution structure. The diffusive perspective requires a non-constant diffusivity to account for the idealized GCM-simulated changes, with important roles for the eddy velocity, dry static stability, and horizontal energy gradients. Beyond diagnostic analysis, GCM-independent a priori theories for components of the temperature feedback are presented that account for changes without knowledge of a perturbed climate state, suggesting that the energetic perspective is the more parsimonious one.

© 2022 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Timothy M. Merlis, tmerlis@princeton.edu

Abstract

The midlatitude poleward atmospheric energy transport increases in radiatively forced simulations of warmed climates across a range of models from comprehensive coupled general circulation models (GCMs) to idealized aquaplanet moist GCMs to diffusive moist energy balance models. These increases have been rationalized from two perspectives. The energetic (or radiative) perspective takes the atmospheric energy budget and decomposes energy flux changes (radiative forcing, feedbacks, or surface fluxes) to determine the energy transport changes required by the budget. The diffusive perspective takes the net effect of atmospheric macroturbulence to be a diffusive energy transport down-gradient, so transport changes can arise from changes in mean energy gradients or turbulent diffusivity. Here, we compare these perspectives in idealized moist, gray-radiation GCM simulations over a wide range of climates. The energetic perspective has a dominant role for radiative forcing in this GCM, with cancellation between the temperature feedback components that account for the GCM’s nonmonotonic energy transport changes in response to warming. Comprehensive CMIP5 simulations have similarities in the Northern Hemisphere to the idealized GCM, although a comprehensive GCM over several CO2 doublings has a distinctly different feedback evolution structure. The diffusive perspective requires a non-constant diffusivity to account for the idealized GCM-simulated changes, with important roles for the eddy velocity, dry static stability, and horizontal energy gradients. Beyond diagnostic analysis, GCM-independent a priori theories for components of the temperature feedback are presented that account for changes without knowledge of a perturbed climate state, suggesting that the energetic perspective is the more parsimonious one.

© 2022 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Timothy M. Merlis, tmerlis@princeton.edu
Save