• Ashouri, H., K. Hsu, S. Sorooshian, D. K. Braithwaite, K. R. Knapp, L. D. Cecil, B. R. Nelson, and O. P. Prat, 2015: PERSIANN-CDR: Daily precipitation climate data record from multisatellite observations for hydrological and climate studies. Bull. Amer. Meteor. Soc., 96, 6983, https://doi.org/10.1175/BAMS-D-13-00068.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Barnes, E. A., and I. R. Simpson, 2017: Seasonal sensitivity of the Northern Hemisphere jet stream to Arctic temperatures on subseasonal time scales. J. Climate, 30, 10 11710 137, https://doi.org/10.1175/JCLI-D-17-0299.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bholowalia, P., and A. Kumar, 2014: EBK-means: A clustering technique based on elbow method and K-means in WSN. Int. J. Comput. Appl., 105, 1724, https://doi.org/10.5120/18405-9674.

    • Search Google Scholar
    • Export Citation
  • Branstator, G., 2002: Circumglobal teleconnections, the jet stream waveguide, and the North Atlantic oscillation. J. Climate, 15, 18931910, https://doi.org/10.1175/1520-0442(2002)015<1893:CTTJSW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, G., M. Sawada, and T. Iwasaki, 2013: Influence of summer monsoon diurnal cycle on moisture transport and precipitation over eastern China. J. Geophys. Res. Atmos., 118, 31633177, https://doi.org/10.1002/jgrd.50337.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, X. Y., X. K. Zou, and Q. Zhang, 2017: Grades of rainstorm disaster (in Chinese). National Standard of the People’s Republic of China, GB/T33680–2017, 8 pp.

    • Search Google Scholar
    • Export Citation
  • Chowdary, J. S., K. M. Hu, S. Gangiredla, Y. Kosaka, L. Wang, and K. Kundeti, 2019: The Eurasian jet streams as conduits for East Asian monsoon variability. Curr. Climate Change Rep., 5, 233244, https://doi.org/10.1007/s40641-019-00134-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Christy, J. R., R. W. Spencer, and W. B. Norris, 2011: The role of remote sensing in monitoring global bulk tropospheric temperatures. Int. J. Remote Sens., 32, 671685, https://doi.org/10.1080/01431161.2010.517803.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Coumou, D., V. Petoukhov, S. Rahmstorf, S. Petri, and H. J. Schellnhuber, 2014: Quasi-resonant circulation regimes and hemispheric synchronization of extreme weather in boreal summer. Proc. Natl. Acad. Sci. USA, 111, 12 33112 336, https://doi.org/10.1073/pnas.1412797111.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Coumou, D., G. Di Capua, S. Vavrus, L. Wang, and S. Wang, 2018: The influence of Arctic amplification on mid-latitude summer circulation. Nat. Commun., 9, 2959, https://doi.org/10.1038/s41467-018-05256-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ding, Q., and B. Wang, 2005: Circumglobal teleconnection in the Northern Hemisphere summer. J. Climate, 18, 34833505, https://doi.org/10.1175/JCLI3473.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ding, Q., and B. Wang, 2007: Intraseasonal teleconnection between the summer Eurasian wave train and the Indian monsoon. J. Climate, 20, 37513767, https://doi.org/10.1175/JCLI4221.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Du, Y., Y. C. Zhang, and Z. Q. Xie, 2009: Impacts of the zonal position of the East Asian westerly jet core on precipitation distribution during Meiyu of China. Acta Meteor. Sin., 23, 506516, http://jmr.cmsjournal.net/en/article/id/1206?articleType=archive_en.

    • Search Google Scholar
    • Export Citation
  • Du, Y., T. Li, Z. Q. Xie, and Z. W. Zhu, 2016: Interannual variability of the Asian subtropical westerly jet in boreal summer and associated with circulation and SST anomalies. Climate Dyn., 46, 26732688, https://doi.org/10.1007/s00382-015-2723-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Du, Y., Z. Q. Xie, and Q. Miao, 2020: Spatial scales of heavy Meiyu precipitation events in eastern China and associated atmospheric processes. Geophys. Res. Lett., 46, e2020GL087086, https://doi.org/10.1029/2020GL087086.

    • Search Google Scholar
    • Export Citation
  • Francis, J. A., and S. J. Vavrus, 2012: Evidence linking Arctic amplification to extreme weather in mid-latitudes. Geophys. Res. Lett., 39, L06801, https://doi.org/10.1029/2012GL051000.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Francis, J. A., and S. J. Vavrus, 2015: Evidence for a wavier jet stream in response to rapid Arctic warming. Environ. Res. Lett., 10, 014005, https://doi.org/10.1088/1748-9326/10/1/014005.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Guan, P. Y., G. X. Chen, W. X. Zeng, and Q. Liu, 2020: Corridors of mei-yu-season rainfall over eastern China. J. Climate, 33, 26032626, https://doi.org/10.1175/JCLI-D-19-0649.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hagos, S., L. R. Leung, O. Garuba, and C. M. Patricola, 2021: Influence of background divergent moisture flux on the frequency of North Pacific atmospheric rivers. J. Climate, 34, 61296139, https://doi.org/10.1175/JCLI-D-21-0058.1.

    • Search Google Scholar
    • Export Citation
  • Hersbach, H., and Coauthors, 2020: The ERA5 global reanalysis. Quart. J. Roy. Meteor. Soc., 146, 19992049, https://doi.org/10.1002/qj.3803.

  • Herzschuh, U., and Coauthors, 2019: Position and orientation of the westerly jet determined Holocene rainfall patterns in China. Nat. Commun., 10, 2376, https://doi.org/10.1038/s41467-019-09866-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hong, X., and R. Lu, 2016: The meridional displacement of the summer Asian jet, Silk Road pattern, and tropical SST anomalies. J. Climate, 31, 92839292, https://doi.org/10.1175/JCLI-D-15-0541.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Horinouchi, T., 2014: Influence of upper tropospheric disturbances on the synoptic variability of precipitation and moisture transport over summertime East Asia and the northwestern Pacific. J. Meteor. Soc. Japan, 92, 519541, https://doi.org/10.2151/jmsj.2014-602.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Horinouchi, T., and A. Hayashi, 2017: Meandering subtropical jet and precipitation over summertime East Asia and the northwestern Pacific. J. Atmos. Sci., 74, 12331247, https://doi.org/10.1175/JAS-D-16-0252.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huang, D. Q., J. Zhu, Y. C. Zhang, and A. N. Huang, 2015: The impact of the East Asian subtropical jet and polar front jet on the frequency of spring persistent rainfall over southern China in 1997–2011. J. Climate, 28, 60546066, https://doi.org/10.1175/JCLI-D-14-00641.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jaffe, S. C., J. E. Martin, D. J. Vimont, and D. J. Lorenz, 2011: A synoptic climatology of episodic, subseasonal retractions of the Pacific jet. J. Climate, 24, 28462860, https://doi.org/10.1175/2010JCLI3995.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kamae, Y., W. Mei, S. P. Xie, M. Naoi, and H. Ueda, 2017: Atmospheric rivers over the northwestern Pacific: Climatology and interannual variability. J. Climate, 30, 56055619, https://doi.org/10.1175/JCLI-D-16-0875.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kornhuber, K., V. Petoukhov, S. Petri, S. Rahmstorf, and D. Coumou, 2017a: Evidence for wave resonance as a key mechanism for generating high-amplitude quasistationary waves in boreal summer. Climate Dyn., 49, 19611979, https://doi.org/10.1007/s00382-016-3399-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kornhuber, K., V. Petoukhov, D. Karoly, S. Petri, S. Rahmstorf, and D. Coumou, 2017b: Summertime planetary wave resonance in the Northern and Southern Hemispheres. J. Climate, 30, 61336150, https://doi.org/10.1175/JCLI-D-16-0703.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kuang, X. Y., Y. C. Zhang, Y. Huang, and D. Q. Huang, 2014: Spatial differences in seasonal variation of the upper-tropospheric jet stream in the Northern Hemisphere and its thermal dynamic mechanism. Theor. Appl. Climatol., 117, 103112, https://doi.org/10.1007/s00704-013-0994-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kucharski, F., A. Bracco, R. Barimalala, and H. Y. Jin, 2011: Contribution of the east–west thermal heating contrast to the South Asian monsoon and consequences for its variability. Climate Dyn., 37, 721735, https://doi.org/10.1007/s00382-010-0858-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lee, S. H., P. D. Williams, and T. H. A. Frame, 2019: Increased shear in the North Atlantic upper-level jet stream over the past four decades. Nature, 572, 639642, https://doi.org/10.1038/s41586-019-1465-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, D., H. S. Chen, P. Liu, and C. Y. Zhou, 2020: Zonally asymmetric mode of anomalous activity in summer Asian subtropical westerly jet and its possible sources. Theor. Appl. Climatol., 139, 1732, https://doi.org/10.1007/s00704-019-02934-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, L., and Y. C. Zhang, 2014: Effects of different configurations of the East Asian subtropical and polar front jets on precipitation during the mei-yu season. J. Climate, 27, 66606672, https://doi.org/10.1175/JCLI-D-14-00021.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lin, Z. D., 2013: Impacts of two types of northward jumps of the East Asian upper-tropospheric jet stream in midsummer on rainfall in eastern China. Adv. Atmos. Sci., 30, 12241234, https://doi.org/10.1007/s00376-012-2105-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nakamura, N., and C. S. Y. Huang, 2018: Atmospheric blocking as a traffic jam in the jet stream. Science, 361, 4247, https://doi.org/10.1126/science.aat0721.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ninomiya, K., and Y. Shibagaki, 2007: Multi-scale features of the meiyu-baiu front and associated precipitation systems. J. Meteor. Soc. Japan, 85B, 103122, https://doi.org/10.2151/jmsj.85B.103.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Petoukhov, V., S. Rahmstorf, S. Petri, and H. J. Schellnhuber, 2013: Quasiresonant amplification of planetary waves and recent Northern Hemisphere weather extremes. Proc. Natl. Acad. Sci. USA, 110, 53365341, https://doi.org/10.1073/pnas.1222000110.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Petoukhov, V., S. Petr, S. Rahmstorf, D. Coumou, K. Kornhuber, and H. J. Schellnhuber, 2016: Role of quasiresonant planetary wave dynamics in recent boreal spring-to-autumn extreme events. Proc. Natl. Acad. Sci. USA, 113, 68626867, https://doi.org/10.1073/pnas.1606300113.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pham, D. T., S. S. Dimov, and C. D. Nguyen, 2005: Selection of K in K-means clustering. Proc. Inst. Mech. Eng., 219C, 103119, https://doi.org/10.1243/095440605X8298.

    • Search Google Scholar
    • Export Citation
  • Polvani, L. M., and D. W. Waugh, 2004: Upward wave activity flux as a precursor to extreme stratospheric events and subsequent anomalous surface weather regimes. J. Climate, 17, 35483554, https://doi.org/10.1175/1520-0442(2004)017<3548:UWAFAA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ralph, F. M., J. J. Rutz, J. M. Cordeira, M. Dettinger, M. Anderson, D. Reynolds, L. J. Schick, and C. Smallcomb, 2019: A scale to characterize the strength and impacts of atmospheric rivers. Bull. Amer. Meteor. Soc., 100, 269289, https://doi.org/10.1175/BAMS-D-18-0023.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Röthlisberger, M., S. Pfahl, and O. Martius, 2016: Regional-scale jet waviness modulates the occurrence of midlatitude weather extremes. Geophys. Res. Lett., 43, 10 98910 997, https://doi.org/10.1002/2016GL070944.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sampe, T., and S. P. Xie, 2010: Large-scale dynamics of the meiyu-baiu rainband: Environmental forcing by the westerly jet. J. Climate, 23, 113134, https://doi.org/10.1175/2009JCLI3128.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schubert, S., H. Wang, and M. Suarez, 2011: Warm season subseasonal variability and climate extremes in the Northern Hemisphere: The role of stationary Rossby waves. J. Climate, 24, 47734792, https://doi.org/10.1175/JCLI-D-10-05035.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Screen, J. A., and I. Simmonds, 2014: Amplified mid-latitude planetary waves favour particular regional weather extremes. Nat. Climate Change, 4, 704709, https://doi.org/10.1038/nclimate2271.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shi, Z. G., X. D. Liu, Y. M. Liu, Y. Y. Sha, and T. T. Xu, 2015: Impact of Mongolian Plateau versus Tibetan Plateau on the westerly jet over North Pacific Ocean. Climate Dyn., 44, 30673076, https://doi.org/10.1007/s00382-014-2217-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stadtherr, L., D. Coumou, V. Petoukhov, S. Petri, and S. Rahmstorf, 2016: Record Balkan floods of 2014 linked to planetary wave resonance. Sci. Adv., 2, e1501428, https://doi.org/10.1126/sciadv.1501428.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Torrence, C., and G. P. Compo, 1998: A practical guide to wavelet analysis. Bull. Amer. Meteor. Soc., 79, 6178, https://doi.org/10.1175/1520-0477(1998)079<0061:APGTWA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Touma, D., A. M. Michalak, D. L. Swain, and N. S. Diffenbaugh, 2018: Characterizing the spatial scales of extreme daily precipitation in the United States. J. Climate, 31, 80238037, https://doi.org/10.1175/JCLI-D-18-0019.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Toussaint, G., 1983: Solving geometric problems with the rotating calipers. Proc. IEEE, 83, 1017, https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.155.5671&rep=rep1&type=pdf.

    • Search Google Scholar
    • Export Citation
  • Wang, J. Q., and M. S. Hu, 1993: Distribution of extreme values of areal rainstorms in China (in Chinese). Adv. Water Sci., 4(1), 19, http://skxjz.nhri.cn/article/exportPdf?id=2180&language=en.

    • Search Google Scholar
    • Export Citation
  • Wang, W., X. Zhou, X. Wang, S. K. Fong, and K. C. Leong, 2013: Summer high temperature extremes in southeast China associated with the East Asian jet stream and circumglobal teleconnection. J. Geophys. Res. Atmos., 118, 83068319, https://doi.org/10.1002/jgrd.50633.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, Y. Q., 2012: wContour: A. NET class library of contour-related algorithms. Comput. Geosci., 48, 330333, https://doi.org/10.1016/j.cageo.2011.12.003.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wei, W. R., H. Zhang, M. Wen, and S. Yang, 2017: Relationship between the Asian westerly jet stream and summer rainfall over central Asia and north China: Roles of the Indian monsoon and the South Asian high. J. Climate, 30, 537552, https://doi.org/10.1175/JCLI-D-15-0814.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wills, R., R. H. White, and X. J. Levine, 2019: Northern Hemisphere stationary waves in a changing climate. Curr. Climate Change Rep., 5, 372389, https://doi.org/10.1007/s40641-019-00147-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xie, Z. Q., Y. Du, and S. Yang, 2015: Zonal extension and retraction of the subtropical westerly jet stream and evolution of precipitation over East Asia and the western Pacific. J. Climate, 28, 67836798, https://doi.org/10.1175/JCLI-D-14-00649.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xuan, S. L., Q. Y. Zhang, and S. Q. Sun, 2011: Anomalous midsummer rainfall in Yangtze River-Huaihe River valleys and its association with the East Asia westerly jet. Adv. Atmos. Sci., 28, 387397, https://doi.org/10.1007/s00376-010-0111-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xue, D. K., and Y. C. Zhang, 2017: Concurrent variations in the location and intensity of the Asian winter jet streams and the possible mechanism. Climate Dyn., 49, 3752, https://doi.org/10.1007/s00382-016-3325-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yang, S., K. M. Lau, and K. M. Kim, 2002: Variations of the East Asian jet stream and Asian–Pacific–American winter climate anomalies. J. Climate, 15, 306325, https://doi.org/10.1175/1520-0442(2002)015<0306:VOTEAJ>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yasui, S., and M. Watanabe, 2010: Forcing processes of the summertime circumglobal teleconnection pattern in a dry AGCM. J. Climate, 23, 20932114, https://doi.org/10.1175/2009JCLI3323.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, L. H., M. Xu, N. Shi, and J. Deng, 2017: Responses of the East Asian jet steam to the North Pacific subtropical front in spring. Adv. Atmos. Sci., 34, 144156, https://doi.org/10.1007/s00376-016-6026-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, Y. C., X. Y. Kuang, W. D. Guo, and T. J. Zhou, 2006: Seasonal evolution of the upper tropospheric westerly jet core over East Asia. Geophys. Res. Lett., 33, L11708, https://doi.org/10.1029/2006GL026377.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 444 444 88
Full Text Views 168 168 9
PDF Downloads 197 197 17

Influence of Zonal Variation of the Subtropical Westerly Jet on Rainfall Patterns and Frequency of Heavy Precipitation Events over East Asia

Yin DuaKey Laboratory of Meteorological Disaster, Ministry of Education, International Joint Laboratory on Climate and Environment Change, Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, Climate Dynamics Research Center, Nanjing University of Information Science and Technology, Nanjing, China

Search for other papers by Yin Du in
Current site
Google Scholar
PubMed
Close
,
Zhiqing XiebJiangsu Climate Center, Nanjing, China

Search for other papers by Zhiqing Xie in
Current site
Google Scholar
PubMed
Close
,
Ning WangbJiangsu Climate Center, Nanjing, China

Search for other papers by Ning Wang in
Current site
Google Scholar
PubMed
Close
,
Qian MiaobJiangsu Climate Center, Nanjing, China

Search for other papers by Qian Miao in
Current site
Google Scholar
PubMed
Close
, and
Lingling ZhangbJiangsu Climate Center, Nanjing, China

Search for other papers by Lingling Zhang in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Understanding the effects of zonal variation of the East Asian subtropical westerly jet (EAWJ) on spatial features of heavy precipitation events requires characterization of the shape, orientation, position, and scale of both the EAWJ and rain belts. Applying a rotating calipers algorithm, jet-axis tracking, wavelet analysis, and K-means clustering algorithm, spatial structures of both the EAWJ and rain belts were quantified for each heavy rainfall event lasting 3 days (3-day-HRE) in 1983–2020. The results reveal that approximately 90% of the EAWJs related to 3-day-HREs had a statistically significant wave structure of ∼6000–12 000 km over East Asia and the North Pacific. These EAWJs had tilted, wavy, and flat patterns and strongly affected the position, orientation, and spatial scales of the 3-day-HRE rain belts by modifying the vapor transport trajectory and vertical rising motions. All types of EAWJ had an orientation similar to that of the rain belts and an average distance to the rain belts of ∼500–1500 km at 105°–125°E and ∼500 km at 125°E–180°. Correspondingly, the rain belts of 3-day-HREs had the largest frequency over eastern China and southern Japan. Zonally asymmetric Rossby waves arising from the land–sea thermal contrast, atmospheric diabatic heating, and topography dominantly contributed to the formation of a meandering or flat EAWJ. A zonally oscillating trough–ridge system, featuring an equivalent barotropic structure with large geopotential height anomalies reaching the lower troposphere, weakens or blocks vapor transport and is ultimately responsible for the strongly varying spatial scales and orientations of rain belts.

Significance Statement

A solid theoretical basis that variations in the EAWJ intimately covary with the location and orientation of rain belts means that understanding the relationships between the EAWJ’s zonal variations and the spatial features of monsoonal rain belts is conducive to better predicting the weather and climate over East Asia. We quantitatively explored the effects of EAWJ zonal variations on the position, orientation, and scale of rain belts and found that a tilted, wavy, or relatively flat pattern of the EAWJ strongly affected the rain belt spatial features by modifying the vapor transport trajectory. A zonally oscillating trough–ridge system, featuring an equivalent barotropic structure throughout the troposphere, is responsible for the varying spatial scale of rain belts.

© 2022 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Zhiqing Xie, xiezhiqing9896@163.com

Abstract

Understanding the effects of zonal variation of the East Asian subtropical westerly jet (EAWJ) on spatial features of heavy precipitation events requires characterization of the shape, orientation, position, and scale of both the EAWJ and rain belts. Applying a rotating calipers algorithm, jet-axis tracking, wavelet analysis, and K-means clustering algorithm, spatial structures of both the EAWJ and rain belts were quantified for each heavy rainfall event lasting 3 days (3-day-HRE) in 1983–2020. The results reveal that approximately 90% of the EAWJs related to 3-day-HREs had a statistically significant wave structure of ∼6000–12 000 km over East Asia and the North Pacific. These EAWJs had tilted, wavy, and flat patterns and strongly affected the position, orientation, and spatial scales of the 3-day-HRE rain belts by modifying the vapor transport trajectory and vertical rising motions. All types of EAWJ had an orientation similar to that of the rain belts and an average distance to the rain belts of ∼500–1500 km at 105°–125°E and ∼500 km at 125°E–180°. Correspondingly, the rain belts of 3-day-HREs had the largest frequency over eastern China and southern Japan. Zonally asymmetric Rossby waves arising from the land–sea thermal contrast, atmospheric diabatic heating, and topography dominantly contributed to the formation of a meandering or flat EAWJ. A zonally oscillating trough–ridge system, featuring an equivalent barotropic structure with large geopotential height anomalies reaching the lower troposphere, weakens or blocks vapor transport and is ultimately responsible for the strongly varying spatial scales and orientations of rain belts.

Significance Statement

A solid theoretical basis that variations in the EAWJ intimately covary with the location and orientation of rain belts means that understanding the relationships between the EAWJ’s zonal variations and the spatial features of monsoonal rain belts is conducive to better predicting the weather and climate over East Asia. We quantitatively explored the effects of EAWJ zonal variations on the position, orientation, and scale of rain belts and found that a tilted, wavy, or relatively flat pattern of the EAWJ strongly affected the rain belt spatial features by modifying the vapor transport trajectory. A zonally oscillating trough–ridge system, featuring an equivalent barotropic structure throughout the troposphere, is responsible for the varying spatial scale of rain belts.

© 2022 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Zhiqing Xie, xiezhiqing9896@163.com
Save