• Amaya, D. J., 2019: The Pacific meridional mode and ENSO: A review. Curr. Climate Change Rep., 5, 296307, https://doi.org/10.1007/s40641-019-00142-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Amaya, D. J., N. Siler, S.-P. Xie, and A. J. Miller, 2018: The interplay of internal and forced modes of Hadley cell expansion: Lessons from the global warming hiatus. Climate Dyn., 51, 305319, https://doi.org/10.1007/s00382-017-3921-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Annamalai, H., S. Xie, J. McCreary, and R. Murtugudde, 2005: Impact of Indian Ocean sea surface temperature on developing El Niño. J. Climate, 18, 302319, https://doi.org/10.1175/JCLI-3268.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Armour, K. C., J. Marshall, J. R. Scott, A. Donohoe, and E. R. Newsom, 2016: Southern Ocean warming delayed by circumpolar upwelling and equatorward transport. Nat. Geosci., 9, 549554, https://doi.org/10.1038/ngeo2731.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Broccoli, A. J., K. A. Dahl, and R. J. Stouffer, 2006: Response of the ITCZ to Northern Hemisphere cooling. Geophys. Res. Lett., 33, L01702, https://doi.org/10.1029/2005GL024546.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Broecker, W. S., 1997: Thermohaline circulation, the Achilles heel of our climate system: Will man-made CO2 upset the current balance? Science, 278, 15821588, https://doi.org/10.1126/science.278.5343.1582.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Broecker, W. S., 2003: Does the trigger for abrupt climate change reside in the ocean or in the atmosphere? Science, 300, 15191522, https://doi.org/10.1126/science.1083797.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Buckley, M. W., and J. Marshall, 2016: Observations, inferences, and mechanisms of the Atlantic meridional overturning circulation: A review. Rev. Geophys., 54, 563, https://doi.org/10.1002/2015RG000493.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chang, P., L. Zhang, R. Saravanan, D. J. Vimont, J. C. Chiang, L. Ji, H. Seidel, and M. K. Tippett, 2007: Pacific meridional mode and El Niño–Southern Oscillation. Geophys. Res. Lett., 34, L16608, https://doi.org/10.1029/2007GL030302.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chiang, J. C., and D. J. Vimont, 2004: Analogous Pacific and Atlantic meridional modes of tropical atmosphere–ocean variability. J. Climate, 17, 41434158, https://doi.org/10.1175/JCLI4953.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chiang, J. C., and C. M. Bitz, 2005: Influence of high latitude ice cover on the marine Intertropical Convergence Zone. Climate Dyn., 25, 477496, https://doi.org/10.1007/s00382-005-0040-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chiang, J. C., M. Biasutti, and D. S. Battisti, 2003: Sensitivity of the Atlantic intertropical convergence zone to last glacial maximum boundary conditions. Paleoceanography, 18, 1094, https://doi.org/10.1029/2003PA000916.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Clement, A. C., R. Burgman, and J. R. Norris, 2009: Observational and model evidence for positive low-level cloud feedback. Science, 325, 460464, https://doi.org/10.1126/science.1171255.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Craig, A., 2014: CPL7 user’s guide (updated for CESM version 1.0.6). CESM, 24 pp., https://www.cesm.ucar.edu/models/cesm1.2/cpl7/doc/ug.pdf.

    • Crossref
    • Export Citation
  • Czaja, A., and J. Marshall, 2006: The partitioning of poleward heat transport between the atmosphere and ocean. J. Atmos. Sci., 63, 14981511, https://doi.org/10.1175/JAS3695.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Deser, C., and Coauthors, 2020: Isolating the evolving contributions of anthropogenic aerosols and greenhouse gases: A new CESM1 large ensemble community resource. J. Climate, 33, 78357858, https://doi.org/10.1175/JCLI-D-20-0123.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Döös, K., and J. Nilsson, 2011: Analysis of the meridional energy transport by atmospheric overturning circulations. J. Atmos. Sci., 68, 18061820, https://doi.org/10.1175/2010JAS3493.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Eisenman, I., C. M. Bitz, and E. Tziperman, 2009: Rain driven by receding ice sheets as a cause of past climate change. Paleoceanography, 24, PA4209, https://doi.org/10.1029/2009PA001778.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Forster, P., and Coauthors, 2021: The Earth’s energy budget, climate feedbacks, and climate sensitivity. Climate Change 2021: The Physical Science Basis, V. Masson-Delmott et al., Eds., Cambridge University Press 9231054, https://doi.org/10.1017/9781009157896.009.

    • Crossref
    • Export Citation
  • Frierson, D. M., and Coauthors, 2013: Contribution of ocean overturning circulation to tropical rainfall peak in the Northern Hemisphere. Nat. Geosci., 6, 940944, https://doi.org/10.1038/ngeo1987.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fučkar, N. S., S.-P. Xie, R. Farneti, E. A. Maroon, and D. M. Frierson, 2013: Influence of the extratropical ocean circulation on the intertropical convergence zone in an idealized coupled general circulation model. J. Climate, 26, 46124629, https://doi.org/10.1175/JCLI-D-12-00294.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ganachaud, A., and C. Wunsch, 2003: Large-scale ocean heat and freshwater transports during the World Ocean Circulation Experiment. J. Climate, 16, 696705, https://doi.org/10.1175/1520-0442(2003)016<0696:LSOHAF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Garuba, O. A., and B. A. Klinger, 2016: Ocean heat uptake and interbasin transport of the passive and redistributive components of surface heating. J. Climate, 29, 75077527, https://doi.org/10.1175/JCLI-D-16-0138.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Garuba, O. A., and B. A. Klinger, 2018: The role of individual surface flux components in the passive and active ocean heat uptake. J. Climate, 31, 61576173, https://doi.org/10.1175/JCLI-D-17-0452.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gettelman, A., and S. Sherwood, 2016: Processes responsible for cloud feedback. Curr. Climate Change Rep., 2, 179189, https://doi.org/10.1007/s40641-016-0052-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gjermundsen, A., J. H. LaCasce, and L. Denstad, 2018: The thermally driven ocean circulation with realistic bathymetry. J. Phys. Oceanogr., 48, 647665, https://doi.org/10.1175/JPO-D-17-0147.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Green, B., and J. Marshall, 2017: Coupling of trade winds with ocean circulation damps ITCZ shifts. J. Climate, 30, 43954411, https://doi.org/10.1175/JCLI-D-16-0818.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Green, B., J. Marshall, and J.-M. Campin, 2019: The ‘sticky’ ITCZ: Ocean-moderated ITCZ shifts. Climate Dyn., 53 (1), 119, https://doi.org/10.1007/s00382-019-04623-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gregory, J. M., and Coauthors, 2016: The Flux-Anomaly-Forced Model Intercomparison Project (FAFMIP) contribution to CMIP6: Investigation of sea-level and ocean climate change in response to CO2 forcing. Geosci. Model Dev., 9, 39934017, https://doi.org/10.5194/gmd-9-3993-2016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grist, J. P., R. Marsh, and S. A. Josey, 2009: On the relationship between the North Atlantic meridional overturning circulation and the surface-forced overturning streamfunction. J. Climate, 22, 49895002, https://doi.org/10.1175/2009JCLI2574.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hawcroft, M., J. M. Haywood, M. Collins, A. Jones, A. C. Jones, and G. Stephens, 2017: Southern Ocean albedo, inter-hemispheric energy transports and the double ITCZ: Global impacts of biases in a coupled model. Climate Dyn., 48, 22792295, https://doi.org/10.1007/s00382-016-3205-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hawcroft, M., J. M. Haywood, M. Collins, and A. Jones, 2018: The contrasting climate response to tropical and extratropical energy perturbations. Climate Dyn., 51, 32313249, https://doi.org/10.1007/s00382-018-4076-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • He, C., Z. Liu, and A. Hu, 2019: The transient response of atmospheric and oceanic heat transports to anthropogenic warming. Nat. Climate Change, 9, 222226, https://doi.org/10.1038/s41558-018-0387-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Held, I. M., 2001: The partitioning of the poleward energy transport between the tropical ocean and atmosphere. J. Atmos. Sci., 58, 943948, https://doi.org/10.1175/1520-0469(2001)058<0943:TPOTPE>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Held, I. M., M. Winton, K. Takahashi, T. Delworth, F. Zeng, and G. K. Vallis, 2010: Probing the fast and slow components of global warming by returning abruptly to preindustrial forcing. J. Climate, 23, 24182427, https://doi.org/10.1175/2009JCLI3466.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hogg, A. M., 2010: An Antarctic Circumpolar Current driven by surface buoyancy forcing. Geophys. Res. Lett., 37, L23601, https://doi.org/10.1029/2010GL044777.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hogg, A. M., and B. Gayen, 2020: Ocean gyres driven by surface buoyancy forcing. Geophys. Res. Lett., 47, e2020GL088539, https://doi.org/10.1029/2020GL088539.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Holland, M. M., D. A. Bailey, B. P. Briegleb, B. Light, and E. Hunke, 2012: Improved sea ice shortwave radiation physics in CCSM4: The impact of melt ponds and aerosols on Arctic sea ice. J. Climate, 25, 14131430, https://doi.org/10.1175/JCLI-D-11-00078.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Holmes, R. M., J. D. Zika, R. Ferrari, A. F. Thompson, E. R. Newsom, and M. H. England, 2019: Atlantic Ocean heat transport enabled by Indo-Pacific heat uptake and mixing. Geophys. Res. Lett., 46, 13 93913 949, https://doi.org/10.1029/2019GL085160.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hu, S., S.-P. Xie, and W. Liu, 2020: Global pattern formation of net ocean surface heat flux response to greenhouse warming. J. Climate, 33, 75037522, https://doi.org/10.1175/JCLI-D-19-0642.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huang, R. X., and J. Pedlosky, 1999: Climate variability inferred from a layered model of the ventilated thermocline. J. Phys. Oceanogr., 29, 779790, https://doi.org/10.1175/1520-0485(1999)029<0779:CVIFAL>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hurrell, J. W., and Coauthors, 2013: The Community Earth System Model: A framework for collaborative research. Bull. Amer. Meteor. Soc., 94, 13391360, https://doi.org/10.1175/BAMS-D-12-00121.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hwang, Y.-T., H.-Y. Tseng, K.-C. Li, S. M. Kang, Y.-J. Chen, and J. C. Chiang, 2021: Relative roles of energy and momentum fluxes in the tropical response to extratropical thermal forcing. J. Climate, 34, 37713786, https://doi.org/10.1175/JCLI-D-20-0151.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Johnson, H. L., P. Cessi, D. P. Marshall, F. Schloesser, and M. A. Spall, 2019: Recent contributions of theory to our understanding of the Atlantic meridional overturning circulation. J. Geophys. Res. Oceans, 124, 53765399, https://doi.org/10.1029/2019JC015330.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kang, S. M., I. M. Held, D. M. Frierson, and M. Zhao, 2008: The response of the ITCZ to extratropical thermal forcing: Idealized slab-ocean experiments with a GCM. J. Climate, 21, 35213532, https://doi.org/10.1175/2007JCLI2146.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kang, S. M., D. M. Frierson, and I. M. Held, 2009: The tropical response to extratropical thermal forcing in an idealized GCM: The importance of radiative feedbacks and convective parameterization. J. Atmos. Sci., 66, 28122827, https://doi.org/10.1175/2009JAS2924.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kang, S. M., Y. Shin, and S.-P. Xie, 2018: Extratropical forcing and tropical rainfall distribution: Energetics framework and ocean Ekman advection. npj Climate Atmos. Sci., 1, 20172, https://doi.org/10.1038/s41612-017-0004-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kang, S. M., and Coauthors, 2019: Extratropical–Tropical Interaction Model Intercomparison Project (ETIN-MIP): Protocol and initial results. Bull. Amer. Meteor. Soc., 100, 25892606, https://doi.org/10.1175/BAMS-D-18-0301.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kang, S. M., S.-P. Xie, Y. Shin, H. Kim, Y.-T. Hwang, M. F. Stuecker, B. Xiang, and M. Hawcroft, 2020: Walker circulation response to extratropical radiative forcing. Sci. Adv., 6, eabd3021, https://doi.org/10.1126/sciadv.abd3021.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kang, S. M., S.-P. Xie, C. Deser, and B. Xiang, 2021: Zonal mean and shift modes of historical climate response to evolving aerosol distribution. Sci. Bull., 66, 24052411, https://doi.org/10.1016/j.scib.2021.07.013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kay, J. E., and Coauthors, 2015: The Community Earth System Model (CESM) large ensemble project: A community resource for studying climate change in the presence of internal climate variability. Bull. Amer. Meteor. Soc., 96, 13331349, https://doi.org/10.1175/BAMS-D-13-00255.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kay, J. E., C. Wall, V. Yettella, B. Medeiros, C. Hannay, P. Caldwell, and C. Bitz, 2016: Global climate impacts of fixing the Southern Ocean shortwave radiation bias in the Community Earth System Model (CESM). J. Climate, 29, 46174636, https://doi.org/10.1175/JCLI-D-15-0358.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kuhlbrodt, T., A. Griesel, M. Montoya, A. Levermann, M. Hofmann, and S. Rahmstorf, 2007: On the driving processes of the Atlantic meridional overturning circulation. Rev. Geophys., 45, RG2001, https://doi.org/10.1029/2004RG000166.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Larson, S. M., and B. P. Kirtman, 2013: The Pacific meridional mode as a trigger for ENSO in a high-resolution coupled model. Geophys. Res. Lett., 40, 31893194, https://doi.org/10.1002/grl.50571.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Larson, S. M., and B. P. Kirtman, 2014: The Pacific meridional mode as an ENSO precursor and predictor in the North American Multimodel Ensemble. J. Climate, 27, 70187032, https://doi.org/10.1175/JCLI-D-14-00055.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Larson, S. M., D. J. Vimont, A. C. Clement, and B. P. Kirtman, 2018: How momentum coupling affects SST variance and large-scale Pacific climate variability in CESM. J. Climate, 31, 29272944, https://doi.org/10.1175/JCLI-D-17-0645.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Larson, S. M., M. W. Buckley, and A. C. Clement, 2020: Extracting the buoyancy-driven Atlantic meridional overturning circulation. J. Climate, 33, 46974714, https://doi.org/10.1175/JCLI-D-19-0590.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lawrence, D. M., K. W. Oleson, M. G. Flanner, C. G. Fletcher, P. J. Lawrence, S. Levis, S. C. Swenson, and G. B. Bonan, 2012: The CCSM4 land simulation, 1850–2005: Assessment of surface climate and new capabilities. J. Climate, 25, 22402260, https://doi.org/10.1175/JCLI-D-11-00103.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lindzen, R. S., and A. V. Hou, 1988: Hadley circulations for zonally averaged heating centered off the equator. J. Atmos. Sci., 45, 24162427, https://doi.org/10.1175/1520-0469(1988)045<2416:HCFZAH>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, F., Y. Luo, J. Lu, and X. Wan, 2021: The role of ocean dynamics in the cross-equatorial energy transport under a thermal forcing in the Southern Ocean. Adv. Atmos. Sci., 38, 17371749, https://doi.org/10.1007/s00376-021-1099-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, W., J. Lu, S.-P. Xie, and A. Fedorov, 2018: Southern Ocean heat uptake, redistribution, and storage in a warming climate: The role of meridional overturning circulation. J. Climate, 31, 47274743, https://doi.org/10.1175/JCLI-D-17-0761.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, Z., 1994: A simple model of the mass exchange between the subtropical and tropical ocean. J. Phys. Oceanogr., 24, 11531165, https://doi.org/10.1175/1520-0485(1994)024<1153:ASMOTM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Liu, Z., 1999: Forced planetary wave response in a thermocline gyre. J. Phys. Oceanogr., 29, 10361055, https://doi.org/10.1175/1520-0485(1999)029<1036:FPWRIA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lu, F., Z. Liu, Y. Liu, S. Zhang, and R. Jacob, 2017: Understanding the control of extratropical atmospheric variability on ENSO using a coupled data assimilation approach. Climate Dyn., 48, 31393160, https://doi.org/10.1007/s00382-016-3256-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Luyten, J., J. Pedlosky, and H. Stommel, 1983: The ventilated thermocline. J. Phys. Oceanogr., 13, 292309, https://doi.org/10.1175/1520-0485(1983)013<0292:TVT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ma, J., S.-P. Xie, and H. Xu, 2017: Contributions of the North Pacific meridional mode to ensemble spread of ENSO prediction. J. Climate, 30, 91679181, https://doi.org/10.1175/JCLI-D-17-0182.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Manabe, S., and R. J. Stouffer, 1997: Coupled ocean–atmosphere model response to freshwater input: Comparison to Younger Dryas event. Paleoceanography, 12, 321336, https://doi.org/10.1029/96PA03932.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Manabe, S., and R. J. Stouffer, 1999: The role of thermohaline circulation in climate. Tellus, 51B, 91109, https://doi.org/10.3402/tellusb.v51i1.16262.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marsh, R., 2000: Recent variability of the North Atlantic thermohaline circulation inferred from surface heat and freshwater fluxes. J. Climate, 13, 32393260, https://doi.org/10.1175/1520-0442(2000)013<3239:RVOTNA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marshall, J., A. Donohoe, D. Ferreira, and D. McGee, 2014: The ocean’s role in setting the mean position of the Inter-Tropical Convergence Zone. Climate Dyn., 42, 19671979, https://doi.org/10.1007/s00382-013-1767-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McCreary, J. P., and P. Lu, 1994: Interaction between the subtropical and equatorial ocean circulations: The subtropical cell. J. Phys. Oceanogr., 24, 466497, https://doi.org/10.1175/1520-0485(1994)024<0466:IBTSAE>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mitchell, T. P., and J. M. Wallace, 1992: The annual cycle in equatorial convection and sea surface temperature. J. Climate, 5, 11401156, https://doi.org/10.1175/1520-0442(1992)005<1140:TACIEC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Neale, R. B., and Coauthors, 2010: Description of the NCAR Community Atmosphere Model (CAM5.0). NCAR Tech. Note NCAR/TN-486+STR, 268 pp., www.cesm.ucar.edu/models/cesm1.1/cam/docs/description/cam5_desc.pdf.

  • Newsom, E. R., and A. F. Thompson, 2018: Reassessing the role of the Indo-Pacific in the ocean’s global overturning circulation. Geophys. Res. Lett., 45, 12 42212 431, https://doi.org/10.1029/2018GL080350.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Newsom, E. R., C. M. Bitz, F. O. Bryan, R. Abernathey, and P. R. Gent, 2016: Southern Ocean deep circulation and heat uptake in a high-resolution climate model. J. Climate, 29, 25972619, https://doi.org/10.1175/JCLI-D-15-0513.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Newsom, E. R., L. Zanna, S. Khatiwala, and J. M. Gregory, 2020: The influence of warming patterns on passive ocean heat uptake. Geophys. Res. Lett., 47, e2020GL088429, https://doi.org/10.1029/2020GL088429.

    • Search Google Scholar
    • Export Citation
  • Nonaka, M., S.-P. Xie, and K. Takeuchi, 2000: Equatorward spreading of a passive tracer with application to North Pacific interdecadal temperature variations. J. Oceanogr., 56, 173183, https://doi.org/10.1023/A:1011135113079.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Norris, J. R., and C. B. Leovy, 1994: Interannual variability in stratiform cloudiness and sea surface temperature. J. Climate, 7, 19151925, https://doi.org/10.1175/1520-0442(1994)007<1915:IVISCA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Norris, J. R., Y. Zhang, and J. M. Wallace, 1998: Role of low clouds in summertime atmosphere–ocean interactions over the North Pacific. J. Climate, 11, 24822490, https://doi.org/10.1175/1520-0442(1998)011<2482:ROLCIS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Oldenburg, D., R. C. Wills, K. C. Armour, L. Thompson, and L. C. Jackson, 2021: Mechanisms of low-frequency variability in North Atlantic Ocean heat transport and AMOC. J. Climate, 34, 47334755, https://doi.org/10.1175/JCLI-D-20-0614.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pausata, F. S., L. Chafik, R. Caballero, and D. S. Battisti, 2015: Impacts of high-latitude volcanic eruptions on ENSO and AMOC. Proc. Natl. Acad. Sci. USA, 112, 13 78413 788, https://doi.org/10.1073/pnas.1509153112.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pausata, F. S., C. Karamperidou, R. Caballero, and D. S. Battisti, 2016: ENSO response to high-latitude volcanic eruptions in the Northern Hemisphere: The role of the initial conditions. Geophys. Res. Lett., 43, 86948702, https://doi.org/10.1002/2016GL069575.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pegion, K. V., and C. Selman, 2017: Extratropical precursors of the El Niño–Southern Oscillation. Climate Extremes, 226, 301, https://doi.org/10.1002/9781119068020.ch18.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Philander, S., D. Gu, G. Lambert, T. Li, D. Halpern, N. Lau, and R. Pacanowski, 1996: Why the ITCZ is mostly north of the equator. J. Climate, 9, 29582972, https://doi.org/10.1175/1520-0442(1996)009<2958:WTIIMN>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Qiu, B., W. Miao, and P. Müller, 1997: Propagation and decay of forced and free baroclinic Rossby waves in off-equatorial oceans. J. Phys. Oceanogr., 27, 24052417, https://doi.org/10.1175/1520-0485(1997)027<2405:PADOFA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schneider, T., 2017: Feedback of atmosphere–ocean coupling on shifts of the Intertropical Convergence Zone. Geophys. Res. Lett., 44, 11 64411 653, https://doi.org/10.1002/2017GL075817.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schneider, T., T. Bischoff, and G. H. Haug, 2014: Migrations and dynamics of the intertropical convergence zone. Nature, 513, 4553, https://doi.org/10.1038/nature13636.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sherwood, S., and Coauthors, 2020: An assessment of Earth’s climate sensitivity using multiple lines of evidence. Rev. Geophys., 58, e2019RG000678, https://doi.org/10.1029/2019RG000678.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shi, J.-R., L. D. Talley, S.-P. Xie, W. Liu, and S. T. Gille, 2020: Effects of buoyancy and wind forcing on Southern Ocean climate change. J. Climate, 33, 10 00310 020, https://doi.org/10.1175/JCLI-D-19-0877.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shin, S.-I., and Z. Liu, 2000: Response of the equatorial thermocline to extratropical buoyancy forcing. J. Phys. Oceanogr., 30, 28832905, https://doi.org/10.1175/1520-0485(2001)031<2883:ROTETT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Smith, R., and Coauthors, 2010: The Parallel Ocean Program (POP) reference manual: Ocean component of the Community Climate System Model (CCSM) and Community Earth System Model (CESM). Rep. LAUR-10-01853, 141 pp., https://opensky.ucar.edu/islandora/object/manuscripts%3A825/datastream/PDF/view.

    • Crossref
    • Export Citation
  • Speer, K., and E. Tziperman, 1992: Rates of water mass formation in the North Atlantic Ocean. J. Phys. Oceanogr., 22, 93104, https://doi.org/10.1175/1520-0485(1992)022<0093:ROWMFI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stevenson, S., B. Otto-Bliesner, J. Fasullo, and E. Brady, 2016: “El Niño like” hydroclimate responses to last millennium volcanic eruptions. J. Climate, 29, 29072921, https://doi.org/10.1175/JCLI-D-15-0239.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stommel, H., 1979: Determination of water mass properties of water pumped down from the Ekman layer to the geostrophic flow below. Proc. Natl. Acad. Sci. USA, 76, 30513055, https://doi.org/10.1073/pnas.76.7.3051.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sun, S., I. Eisenman, and A. L. Stewart, 2018: Does Southern Ocean surface forcing shape the global ocean overturning circulation? Geophys. Res. Lett., 45, 24132423, https://doi.org/10.1002/2017GL076437.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sun, S., A. F. Thompson, and I. Eisenman, 2020: Transient overturning compensation between Atlantic and Indo-Pacific basins. J. Phys. Oceanogr., 50, 21512172, https://doi.org/10.1175/JPO-D-20-0060.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sun, S., A. F. Thompson, S.-P. Xie, and S.-M. Long, 2022: Indo-Pacific warming induced by a weakening of the Atlantic meridional overturning circulation. J. Climate, 35, 815832, https://doi.org/10.1175/JCLI-D-21-0346.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Talley, L. D., G. L. Pickard, W. J. Emery, and J. H. Swift, 2011: Descriptive Physical Oceanography: An Introduction. 6th ed. Academic Press, 555 pp.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thompson, L. A., and C. A. Ladd, 2004: The response of the North Pacific Ocean to decadal variability in atmospheric forcing: Wind versus buoyancy forcing. J. Phys. Oceanogr., 34, 13731386, https://doi.org/10.1175/1520-0485(2004)034<1373:TROTNP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tomas, R. A., C. Deser, and L. Sun, 2016: The role of ocean heat transport in the global climate response to projected Arctic sea ice loss. J. Climate, 29, 68416859, https://doi.org/10.1175/JCLI-D-15-0651.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vimont, D. J., J. M. Wallace, and D. S. Battisti, 2003: The seasonal footprinting mechanism in the Pacific: Implications for ENSO. J. Climate, 16, 26682675, https://doi.org/10.1175/1520-0442(2003)016<2668:TSFMIT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Walin, G., 1982: On the relation between sea-surface heat flow and thermal circulation in the ocean. Tellus, 34, 187195, https://doi.org/10.3402/tellusa.v34i2.10801.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Waliser, D. E., and C. Gautier, 1993: A satellite-derived climatology of the ITCZ. J. Climate, 6, 21622174, https://doi.org/10.1175/1520-0442(1993)006<2162:ASDCOT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, G., S.-P. Xie, R. X. Huang, and C. Chen, 2015: Robust warming pattern of global subtropical oceans and its mechanism. J. Climate, 28, 85748584, https://doi.org/10.1175/JCLI-D-14-00809.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, H., S.-P. Xie, and Q. Liu, 2016: Comparison of climate response to anthropogenic aerosol versus greenhouse gas forcing: Distinct patterns. J. Climate, 29, 51755188, https://doi.org/10.1175/JCLI-D-16-0106.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wood, R., 2012: Stratocumulus clouds. Mon. Wea. Rev., 140, 23732423, https://doi.org/10.1175/MWR-D-11-00121.1.

  • Wunsch, C., 2005: The total meridional heat flux and its oceanic and atmospheric partition. J. Climate, 18, 43744380, https://doi.org/10.1175/JCLI3539.1.

    • Search Google Scholar
    • Export Citation
  • Xie, S.-P., 2004: The shape of continents, air–sea interaction, and the rising branch of the Hadley circulation. The Hadley Circulation: Present, Past and Future. H. F. Diaz and R. S. Bradley, Eds., Springer, 121152.

    • Search Google Scholar
    • Export Citation
  • Xie, S.-P., and S. G. H. Philander, 1994: A coupled ocean–atmosphere model of relevance to the ITCZ in the eastern Pacific. Tellus, 46A, 340350, https://doi.org/10.3402/tellusa.v46i4.15484.

    • Search Google Scholar
    • Export Citation
  • Xie, S.-P., C. Deser, G. A. Vecchi, J. Ma, H. Teng, and A. T. Wittenberg, 2010: Global warming pattern formation: Sea surface temperature and rainfall. J. Climate, 23, 966986, https://doi.org/10.1175/2009JCLI3329.1.

    • Search Google Scholar
    • Export Citation
  • Yang, L., S.-P. Xie, S. S. P. Shen, J.-W. Liu, and Y.-T. Hwang, 2022: Low cloud–SST feedback over the subtropical northeast Pacific and the effect on ENSO variability. J. Climate, submitted.

    • Search Google Scholar
    • Export Citation
  • Yu, S., and M. S. Pritchard, 2019: A strong role for the AMOC in partitioning global energy transport and shifting ITCZ position in response to latitudinally discrete solar forcing in CESM1. 2. J. Climate, 32, 22072226, https://doi.org/10.1175/JCLI-D-18-0360.1.

    • Search Google Scholar
    • Export Citation
  • Zhu, J., Z. Liu, X. Zhang, I. Eisenman, and W. Liu, 2014: Linear weakening of the AMOC in response to receding glacial ice sheets in CCSM3. Geophys. Res. Lett., 41, 62526258, https://doi.org/10.1002/2014GL060891.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 741 741 85
Full Text Views 379 379 36
PDF Downloads 414 414 25

Buoyancy Forcing Dominates the Cross-Equatorial Ocean Heat Transport Response to Northern Hemisphere Extratropical Cooling

Matthew T. LuongoaScripps Institution of Oceanography, University of California, San Diego, La Jolla, California

Search for other papers by Matthew T. Luongo in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0002-2996-7579
,
Shang-Ping XieaScripps Institution of Oceanography, University of California, San Diego, La Jolla, California

Search for other papers by Shang-Ping Xie in
Current site
Google Scholar
PubMed
Close
, and
Ian EisenmanaScripps Institution of Oceanography, University of California, San Diego, La Jolla, California

Search for other papers by Ian Eisenman in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Cross-equatorial ocean heat transport (OHT) changes have been found to damp meridional shifts of the intertropical convergence zone (ITCZ) induced by hemispheric asymmetries in radiative forcing. Zonal-mean energy transport theories and idealized model simulations have suggested that these OHT changes occur primarily due to wind-driven changes in the Indo-Pacific’s shallow subtropical cells (STCs) and buoyancy-driven changes in the deep Atlantic meridional overturning circulation (AMOC). In this study we explore the partitioning between buoyancy and momentum forcing in the ocean’s response. We adjust the top-of-atmosphere solar forcing to cool the Northern Hemisphere (NH) extratropics in a novel set of comprehensive climate model simulations designed to isolate buoyancy-forced and momentum-forced changes. In this case of NH high-latitude forcing, we confirm that buoyancy-driven changes in the AMOC dominate in the Atlantic. However, in contrast with prior expectations, buoyancy-driven changes in the STCs are the primary driver of the heat transport changes in the Indo-Pacific. We find that buoyancy-forced Indo-Pacific STC changes transport nearly 4 times the amount of heat across the equator as the shallower wind-driven STC changes. This buoyancy-forced STC response arises from extratropical density perturbations that are amplified by the low cloud feedback and communicated to the tropics by the ventilated thermocline. While the ocean’s specific response is dependent on the forcing scheme, our results suggest that partitioning the ocean’s total response to energy perturbations into buoyancy and momentum forcing provides basin-specific insight into key aspects of how the ocean damps ITCZ migrations that previous zonal-mean frameworks omit.

© 2022 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: M. T. Luongo, mluongo@ucsd.edu

Abstract

Cross-equatorial ocean heat transport (OHT) changes have been found to damp meridional shifts of the intertropical convergence zone (ITCZ) induced by hemispheric asymmetries in radiative forcing. Zonal-mean energy transport theories and idealized model simulations have suggested that these OHT changes occur primarily due to wind-driven changes in the Indo-Pacific’s shallow subtropical cells (STCs) and buoyancy-driven changes in the deep Atlantic meridional overturning circulation (AMOC). In this study we explore the partitioning between buoyancy and momentum forcing in the ocean’s response. We adjust the top-of-atmosphere solar forcing to cool the Northern Hemisphere (NH) extratropics in a novel set of comprehensive climate model simulations designed to isolate buoyancy-forced and momentum-forced changes. In this case of NH high-latitude forcing, we confirm that buoyancy-driven changes in the AMOC dominate in the Atlantic. However, in contrast with prior expectations, buoyancy-driven changes in the STCs are the primary driver of the heat transport changes in the Indo-Pacific. We find that buoyancy-forced Indo-Pacific STC changes transport nearly 4 times the amount of heat across the equator as the shallower wind-driven STC changes. This buoyancy-forced STC response arises from extratropical density perturbations that are amplified by the low cloud feedback and communicated to the tropics by the ventilated thermocline. While the ocean’s specific response is dependent on the forcing scheme, our results suggest that partitioning the ocean’s total response to energy perturbations into buoyancy and momentum forcing provides basin-specific insight into key aspects of how the ocean damps ITCZ migrations that previous zonal-mean frameworks omit.

© 2022 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: M. T. Luongo, mluongo@ucsd.edu

Supplementary Materials

    • Supplemental Materials (PDF 4.75 MB)
Save