• Adler, R. F., and Coauthors, 2003: The version-2 Global Precipitation Climatology Project (GPCP) monthly precipitation analysis (1979–present). J. Hydrometeor., 4, 11471167, https://doi.org/10.1175/1525-7541(2003)004<1147:TVGPCP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Barnes, E. A., and L. M. Polvani, 2015: CMIP5 projections of Arctic amplification, of the North American/North Atlantic circulation, and of their relationship. J. Climate, 28, 52545271, https://doi.org/10.1175/JCLI-D-14-00589.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Blackport, R., and P. J. Kushner, 2017: Isolating the atmospheric circulation response to Arctic sea ice loss in the coupled climate system. J. Climate, 30, 21632185, https://doi.org/10.1175/JCLI-D-16-0257.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Blackport, R., and J. A. Screen, 2020: Weakened evidence for mid-latitude impacts of Arctic warming. Nat. Climate Change, 10, 10651066, https://doi.org/10.1038/s41558-020-00954-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cai, W., and Coauthors, 2019: Pantropical climate interactions. Science, 363, eaav4236, https://doi.org/10.1126/science.aav4236.

  • Cayan, D. R., 1992: Latent and sensible heat flux anomalies over the northern oceans: Driving the sea surface temperature. J. Phys. Oceanogr., 22, 859881, https://doi.org/10.1175/1520-0485(1992)022<0859:LASHFA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chang, T.-C., H.-H. Hsu, and C.-C. Hong, 2016: Enhanced influences of tropical Atlantic SST on WNP–NIO atmosphere–ocean coupling since the early 1980s. J. Climate, 29, 65096525, https://doi.org/10.1175/JCLI-D-15-0807.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, J., and S. Bordoni, 2014a: Orographic effects of the Tibetan Plateau on the East Asian summer monsoon: An energetic perspective. J. Climate, 27, 30523072, https://doi.org/10.1175/JCLI-D-13-00479.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, J., and S. Bordoni, 2014b: Intermodel spread of East Asian summer monsoon simulations in CMIP5. Geophys. Res. Lett., 41, 13141321, https://doi.org/10.1002/2013GL058981.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, L., and G. Li, 2022: Interdecadal change in the relationship between El Niño in the decaying stage and the central China summer precipitation. Climate Dyn., 59, 19811996, https://doi.org/10.1007/s00382-022-06192-6.

    • Search Google Scholar
    • Export Citation
  • Chen, L., G. Li, S.-M. Long, C. Gao, Z. Zhang, and B. Lu, 2022: Interdecadal change in the influence of El Niño in the developing stage on the central China summer precipitation. Climate Dyn., 59, 12651282, https://doi.org/10.1007/s00382-021-06036-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, S., R. Wu, and W. Chen, 2021: Influence of North Atlantic sea surface temperature anomalies on springtime surface air temperature variation over Eurasia in CMIP5 models. Climate Dyn., 57, 26692686, https://doi.org/10.1007/s00382-021-05826-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, T. C., S. Y. Wang, W. R. Huang, and M. C. Yen, 2004: Variation of the East Asian summer monsoon rainfall. J. Climate, 17, 744762, https://doi.org/10.1175/1520-0442(2004)017<0744:VOTEAS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, W., 2002: Impacts of El Niño and La Niña on the cycle of the East Asian winter and summer monsoon (in Chinese). Chin. J. Atmos. Sci., 26, 595610.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, Z., Z. Wen, R. Wu, X. Lin, and J. Wang, 2016: Relative importance of tropical SST anomalies in maintaining the western North Pacific anomalous anticyclone during El Niño to La Niña transition years. Climate Dyn., 46, 10271041, https://doi.org/10.1007/s00382-015-2630-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, Z., Y. Du, Z. Wen, R. Wu, and S. P. Xie, 2019: Evolution of south tropical Indian Ocean warming and the climate impacts following strong El Niño events. J. Climate, 32, 73297347, https://doi.org/10.1175/JCLI-D-18-0704.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chiang, J. C. H., L. M. Swenson, and W. Kong, 2017: Role of seasonal transitions and the westerlies in the interannual variability of the East Asian summer monsoon precipitation. Geophys. Res. Lett., 44, 37883795, https://doi.org/10.1002/2017GL072739.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chiang, J. C. H., J. Fischer, W. Kong, and M. J. Herman, 2019: Intensification of the pre-Meiyu rainband in the late 21st century. Geophys. Res. Lett., 46, 75367545, https://doi.org/10.1029/2019GL083383.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chiang, J. C. H., W. Kong, C. H. Wu, and D. S. Battisti, 2020: Origins of East Asian summer monsoon seasonality. J. Climate, 33, 79457965, https://doi.org/10.1175/JCLI-D-19-0888.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cohen, J., and Coauthors, 2014: Recent Arctic amplification and extreme mid-latitude weather. Nat. Geosci., 7, 627637, https://doi.org/10.1038/ngeo2234.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cohen, J., and Coauthors, 2020: Divergent consensuses on Arctic amplification influence on midlatitude severe winter weather. Nat. Climate Change, 10, 2029, https://doi.org/10.1038/s41558-019-0662-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Coumou, D., G. Di Capua, S. Vavrus, L. Wang, and S. Wang, 2018: The influence of Arctic amplification on mid-latitude summer circulation. Nat. Commun., 9, 2959, https://doi.org/10.1038/s41467-018-05256-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ding, Y., 2007: The variability of the Asian summer monsoon. J. Meteor. Soc. Japan, 85B, 2154, https://doi.org/10.2151/jmsj.85B.21.

  • Ding, Y., and J. C. L. Chan, 2005: The East Asian summer monsoon: An overview. Meteor. Atmos. Phys., 89, 117142, https://doi.org/10.1007/s00703-005-0125-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Eyring, V., S. Bony, G. A. Meehl, C. A. Senior, B. Stevens, R. J. Stouffer, and K. E. Taylor, 2016: Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization. Geosci. Model Dev., 9, 19371958, https://doi.org/10.5194/gmd-9-1937-2016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gao, C., G. Li, B. Xu, and X. Y. Li, 2020a: Effect of spring soil moisture over the Indo-China Peninsula on the following summer extreme precipitation events over the Yangtze River basin. Climate Dyn., 54, 38453861, https://doi.org/10.1007/s00382-020-05187-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gao, C., G. Li, H. S. Chen, and H. Yan, 2020b: Interdecadal change in the effect of spring soil moisture over the Indo-China peninsula on the following summer precipitation over the Yangtze River basin. J. Climate, 33, 70637082, https://doi.org/10.1175/JCLI-D-19-0754.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gao, C., G. Li, and B. Xu, 2020c: Weakening influence of spring soil moisture over the Indo-China Peninsula on the following summer mei-yu front and precipitation extremes over the Yangtze River basin. J. Climate, 33, 10 05510 072, https://doi.org/10.1175/JCLI-D-20-0117.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ham, Y. G., J. S. Kug, J. Y. Park, and F. F. Jin, 2013: Sea surface temperature in the north tropical Atlantic as a trigger for El Niño/Southern Oscillation events. Nat. Geosci., 6, 112116, https://doi.org/10.1038/ngeo1686.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • He, C., T. Zhou, and T. Li, 2019: Weakened anomalous western North Pacific anticyclone during an El Niño-decaying summer under a warmer climate: Dominant role of the weakened impact of the tropical Indian Ocean on the atmosphere. J. Climate, 32, 213230, https://doi.org/10.1175/JCLI-D-18-0033.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • He, S., Y. Gao, T. Furevik, H. Wang, and F. Li, 2018: Teleconnection between sea ice in the Barents Sea in June and the Silk Road, Pacific-Japan and East Asian rainfall patterns in August. Adv. Atmos. Sci., 35, 5264, https://doi.org/10.1007/s00376-017-7029-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hersbach, H., and Coauthors, 2020: The ERA5 global reanalysis. Quart. J. Roy. Meteor. Soc., 146, 19992049, https://doi.org/10.1002/qj.3803.

  • Hong, C. C., T. C. Tang, and H. H. Hsu, 2014: Enhanced relationship between the tropical Atlantic SST and the summertime western North Pacific subtropical high after the early 1980s. J. Geophys. Res. Atmos., 119, 3715–3732, https://doi.org/10.1002/2013JD021394.

    • Crossref
    • Export Citation
  • Hu, K., S.-P. Xie, and G. Huang, 2017: Orographically anchored El Niño effect on summer rainfall in central China. J. Climate, 30, 10 03710 045, https://doi.org/10.1175/JCLI-D-17-0312.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hu, K., G. Huang, S.-P. Xie, and S.-M. Long, 2019: Effect of the mean flow on the anomalous anticyclone over the Indo-northwest Pacific in post-El Niño summers. Climate Dyn., 53, 57255741, https://doi.org/10.1007/s00382-019-04893-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hu, K., Y. Liu, G. Huang, Z. He, and S.-M. Long, 2020: Contributions to the interannual summer rainfall variability in the mountainous area of central China and their decadal changes. Adv. Atmos. Sci., 37, 259268, https://doi.org/10.1007/s00376-019-9099-5.

    • Search Google Scholar
    • Export Citation
  • Huang, Y., B. Wang, X. Li, and H. Wang, 2018: Changes in the influence of the western Pacific subtropical high on Asian summer monsoon rainfall in the late 1990s. Climate Dyn., 51, 443455, https://doi.org/10.1007/s00382-017-3933-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jiang, X., Y. Li, S. Yang, J. Shu, and G. He, 2015: Interannual variation of mid-summer heavy rainfall in the eastern edge of the Tibetan Plateau. Climate Dyn., 45, 30913102, https://doi.org/10.1007/s00382-015-2526-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jing, Y., Y. Li, and Y. Xu, 2020: Assessment of responses of North Atlantic winter sea surface temperature to the North Atlantic Oscillation on an interannual scale in 13 CMIP5 models. Ocean Sci., 16, 15091527, https://doi.org/10.5194/os-16-1509-2020.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77, 437472, https://doi.org/10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ke, D., and Z. Guan, 2014: Regional mean daily precipitation extremes over central China during boreal summer and its relation with the anomalous circulation patterns (in Chinese). Acta Meteor. Sin., 72, 478493, https://doi.org/10.11676/qxxb2014.037.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kim, B. M., S. W. Son, S. K. Min, J. H. Jeong, S. J. Kim, X. Zhang, T. Shim, and J. H. Yoon, 2014: Weakening of the stratospheric polar vortex by Arctic sea-ice loss. Nat. Commun., 5, 4646, https://doi.org/10.1038/ncomms5646.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kong, W., and J. C. H. Chiang, 2020a: Interaction of the westerlies with the Tibetan Plateau in determining the mei-yu termination. J. Climate, 33, 339363, https://doi.org/10.1175/JCLI-D-19-0319.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kong, W., and J. C. H. Chiang, 2020b: Southward shift of westerlies intensifies the East Asian early summer rainband following El Niño. Geophys. Res. Lett., 47, e2020GL088631, https://doi.org/10.1029/2020GL088631.

    • Crossref
    • Export Citation
  • Kosaka, Y., H. Nakamura, M. Watanabe, and M. Kimoto, 2009: Analysis on the dynamics of a wave-like teleconnection pattern along the summertime Asian jet based on a reanalysis dataset and climate model simulations. J. Meteor. Soc. Japan, 87, 561580, https://doi.org/10.2151/jmsj.87.561.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kosaka, Y., J. S. Chowdary, S. P. Xie, Y.-M. Min, and J.-Y. Lee, 2012: Limitations of seasonal predictability for summer climate over East Asia and the northwestern Pacific. J. Climate, 25, 75747589, https://doi.org/10.1175/JCLI-D-12-00009.1.

    • Search Google Scholar
    • Export Citation
  • Kucharski, F., F. S. Syed, A. Burhan, I. Farah, and A. Gohar, 2014: Tropical Atlantic influence on Pacific variability and mean state in the twentieth century in observations and CMIP5. Climate Dyn., 44, 881896, https://doi.org/10.1007/s00382-014-2228-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kug, J. S., J. H. Jeong, Y. S. Jang, B. M. Kim, C. K. Folland, S. K. Min, and S. W. Son, 2015: Two distinct influences of Arctic warming on cold winters over North America and East Asia. Nat. Geosci., 8, 759762, https://doi.org/10.1038/ngeo2517.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lau, K. M., and S. Yang, 1997: Climatology and interannual variability of the Southeast Asian summer monsoon. Adv. Atmos. Sci., 14, 141162, https://doi.org/10.1007/s00376-997-0016-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, G., B. H. Ren, J. Q. Zheng, and C. Y. Yang, 2011: Net air–sea surface heat flux during 1984-2004 over the North Pacific and North Atlantic Oceans (10°N–50°N): Annual mean climatology and trend. Theor. Appl. Climatol., 104, 387401, https://doi.org/10.1007/s00704-010-0351-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, G., C. Gao, B. Lu, and H. Chen, 2021a: Inter-annual variability of spring precipitation over the Indo-China Peninsula and its asymmetric relationship with El Niño–Southern Oscillation. Climate Dyn., 56, 26512665, https://doi.org/10.1007/s00382-020-05609-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, G., C. Gao, B. Xu, B. Lu, H. Chen, H. Ma, and X. Li, 2021b: Strengthening influence of El Niño on the following spring precipitation over the Indochina Peninsula. J. Climate, 34, 59715984, https://doi.org/10.1175/JCLI-D-20-0940.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, J., and J. X. L. Wang, 2003: A new North Atlantic Oscillation index and its variability. Adv. Atmos. Sci., 20, 661676, https://doi.org/10.1007/BF02915394.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, J., and C. Ruan, 2018: The North Atlantic–Eurasian teleconnection in summer and its effects on Eurasian climates. Environ. Res. Lett., 13, 024007, https://doi.org/10.1088/1748-9326/aa9d33.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, J., F. Zheng, C. Sun, J. Feng, and J. Wang, 2019: Pathways of influence of the Northern Hemisphere mid-high latitudes on East Asian climate: A review. Adv. Atmos. Sci., 36, 902921, https://doi.org/10.1007/s00376-019-8236-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, T., B. Wang, B. Wu, T. Zhou, C. P. Chang, and R. Zhang, 2017: Theories on formation of an anomalous anticyclone in western North Pacific during El Niño: A review. J. Meteor. Res., 31, 9871006, https://doi.org/10.1007/s13351-017-7147-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, W., H. C. Ren, J. Zuo, and H. L. Ren, 2018: Early summer southern China rainfall variability and its ocean drivers. Climate Dyn., 50, 46914705, https://doi.org/10.1007/s00382-017-3898-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, X., and R. Lu, 2017: Extratropical factors affecting the variability in summer precipitation over the Yangtze River basin, China. J. Climate, 30, 83578374, https://doi.org/10.1175/JCLI-D-16-0282.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, X., S.-P. Xie, S. T. Gille, and C. Yoo, 2016: Atlantic-induced pan-tropical climate change over the past three decades. Nat. Climate Change, 6, 275279, https://doi.org/10.1038/nclimate2840.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, X., R. Lu, and G. Li, 2021: Different configurations of interannual variability of the western North Pacific subtropical high and East Asian westerly jet in summer. Adv. Atmos. Sci., 38, 931942, https://doi.org/10.1007/s00376-021-0339-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, F., Y. Ouyang, B. Wang, J. Yang, J. Ling, and P. C. Hsu, 2020: Seasonal evolution of the intraseasonal variability of China summer precipitation. Climate Dyn., 54, 46414655, https://doi.org/10.1007/s00382-020-05251-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, F., B. Wang, Y. Ouyang, H. Wang, S. B. Qiao, G. Chen, and W. Dong, 2022: Intraseasonal variability of global land monsoon precipitation and its recent trend. npj Climate Atmos. Sci., 5, 30, https://doi.org/10.1038/s41612-022-00253-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lu, B., and H. L. Ren, 2020: What caused the extreme Indian Ocean Dipole event in 2019? Geophys. Res. Lett., 47, e2020GL087768, https://doi.org/10.1029/2020GL087768.

    • Crossref
    • Export Citation
  • Lu, R., 2004: Associations among the components of the East Asian summer monsoon system in the meridional direction. J. Meteor. Soc. Japan, 82, 155165, https://doi.org/10.2151/jmsj.82.155.

    • Search Google Scholar
    • Export Citation
  • Lu, R., and Z. Lin, 2009: Role of subtropical precipitation anomalies in maintaining the summertime meridional teleconnection over the western North Pacific and East Asia. J. Climate, 22, 20582072, https://doi.org/10.1175/2008JCLI2444.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lu, R., J. H. Oh, and B.-J. Kim, 2002: A teleconnection pattern in upper-level meridional wind over the North African and Eurasian continent in summer. Tellus, 54A, 4455, https://doi.org/10.3402/tellusa.v54i1.12122.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McGregor, S., A. Timmermann, M. F. Stuecker, M. H. England, M. Merrifield, F. F. Jin, and Y. Chikamoto, 2014: Recent Walker circulation strengthening and Pacific cooling amplified by Atlantic warming. Nat. Climate Change, 4, 888892, https://doi.org/10.1038/nclimate2330.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Molnar, P., W. R. Boos, and D. S. Battisti, 2010: Orographic controls on climate and paleoclimate of Asia: Thermal and mechanical roles for the Tibetan Plateau. Annu. Rev. Earth Planet. Sci., 38, 77102, https://doi.org/10.1146/annurev-earth-040809-152456.

    • Search Google Scholar
    • Export Citation
  • Rayner, N. A., P. Brohan, D. E. Parker, C. K. Folland, J. J. Kennedy, M. Vanicek, T. J. Ansell, and S. F. B. Tett, 2006: Improved analyses of changes and uncertainties in sea surface temperature measured in situ since the mid-nineteenth century: The HadSST2 dataset. J. Climate, 19, 446469, https://doi.org/10.1175/JCLI3637.1.

    • Search Google Scholar
    • Export Citation
  • Ren, Q., X. Jiang, Y. Zhang, Z. Li, and S. Yang, 2021: Effects of suppressed transient eddies by the Tibetan Plateau on the East Asian summer monsoon. J. Climate, 34, 84818501, https://doi.org/10.1175/JCLI-D-20-0646.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ren, Y., Y. Gao, Y. Xiao, S. Wan, and M. Wang, 2013: Analysis of the precipitation change character over central China from 1961–2010 (in Chinese). Resour. Environ. Yangtze Basin, 22, 9095.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sampe, T., and S.-P. Xie, 2010: Large-scale dynamics of the meiyu-baiu rainband: Environmental forcing by the westerly jet. J. Climate, 23, 113134, https://doi.org/10.1175/2009JCLI3128.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stuecker, M. F., A. Timmermann, F.-F. Jin, S. McGregor, and H. L. Ren, 2013: A combination mode of the annual cycle and the El Niño/Southern Oscillation. Nat. Geosci., 6, 540544, https://doi.org/10.1038/ngeo1826.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stuecker, M. F., F.-F. Jin, A. Timmermann, and S. McGregor, 2015: Combination mode dynamics of the anomalous northwest Pacific anticyclone. J. Climate, 28, 10931111, https://doi.org/10.1175/JCLI-D-14-00225.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Su, T., and F. Xue, 2010: The intraseasonal variation of summer monsoon circulation and rainfall in East Asia (in Chinese). Chin. J. Atmos. Sci., 34, 611628.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sun, J., Y. Xu, Z. Chen, and K. Wang, 2010: Characteristics of precipitation in central region of China over 45 years (in Chinese). Resour. Environ. Yangtze Basin, 19, 4551.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sun, L., X. Q. Yang, L. Tao, J. Fang, and X. Sun, 2021: Changing impact of ENSO events on the following summer rainfall in eastern China since the 1950s. J. Climate, 34, 81058123, https://doi.org/10.1175/JCLI-D-21-0018.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Takaya, K., and H. Nakamura, 2001: A formulation of a phase-independent wave-activity flux for stationary and migratory quasigeostrophic eddies on a zonally varying basic flow. J. Atmos. Sci., 58, 608627, https://doi.org/10.1175/1520-0469(2001)058<0608:AFOAPI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., G. W. Branstator, D. Karoly, A. Kumar, N.-C. Lau, and C. Ropelewski, 1998: Progress during TOGA in understanding and modeling global teleconnections associated with tropical sea surface temperatures. J. Geophys. Res. Oceans, 103, 14 29114 324, https://doi.org/10.1029/97JC01444.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vimont, D. J., D. S. Battisti, and A. C. Hirst, 2001: Footprinting: A seasonal connection between the tropics and mid-latitudes. Geophys. Res. Lett., 28, 39233926, https://doi.org/10.1029/2001GL013435.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, B., R. Wu, and X. Fu, 2000: Pacific–East Asian teleconnection: How does ENSO affect East Asian climate? J. Climate, 13, 15171536, https://doi.org/10.1175/1520-0442(2000)013<1517:PEATHD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, B., B. Xiang, and J. Y. Lee, 2013: Subtropical high predictability establishes a promising way for monsoon and tropical storm predictions. Proc. Natl. Acad. Sci. U. S. A., 110, 27182722, https://doi.org/10.1073/pnas.1214626110.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, B., J. Li, and Q. He, 2017: Variable and robust East Asian monsoon rainfall response to El Niño over the past 60 years (1957–2016). Adv. Atmos. Sci., 34, 12351248, https://doi.org/10.1007/s00376-017-7016-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, C., 2019: Three-ocean interactions and climate variability: A review and perspective. Climate Dyn., 53, 51195136, https://doi.org/10.1007/s00382-019-04930-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, C., F. Kucharski, R. Barimalala, and A. Bracco, 2009: Teleconnections of the tropical Atlantic to the tropical Indian and Pacific Oceans: A review of recent findings. Meteor. Z., 18, 445454, https://doi.org/10.1127/0941-2948/2009/0394.

    • Search Google Scholar
    • Export Citation
  • Wang, L., J. Y. Yu, and H. Paek, 2017: Enhanced biennial variability in the Pacific due to Atlantic capacitor effect. Nat. Commun., 8, 14887, https://doi.org/10.1038/ncomms14887.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Weng, H., K. Ashok, S. K. Behera, S. A. Rao, and T. Yamagata, 2007: Impacts of recent El Niño Modoki on dry/wet conditions in the Pacific rim during boreal summer. Climate Dyn., 29, 113129, https://doi.org/10.1007/s00382-007-0234-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, B., T. Zhou, and T. Li, 2009: Seasonally evolving dominant interannual variability modes of East Asian climate. J. Climate, 22, 29923005, https://doi.org/10.1175/2008JCLI2710.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, B., T. Li, and T. Zhou, 2010: Relative contributions of the Indian Ocean and local SST anomalies to the maintenance of the western North Pacific anomalous anticyclone during the El Niño decaying summer. J. Climate, 23, 29742986, https://doi.org/10.1175/2010JCLI3300.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, L., Z. P. Wen, and R. H. Huang, 2011: A primary study of the correlation between the net air–sea heat flux and the interannual variation of western North Pacific tropical cyclone track and intensity. Acta Oceanol. Sin., 30, 2735, https://doi.org/10.1007/s13131-011-0158-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, R., and B. P. Kirtman, 2005: Roles of Indian and Pacific Ocean air–sea coupling in tropical atmospheric variability. Climate Dyn., 25, 155170, https://doi.org/10.1007/s00382-005-0003-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, X., G. Li, W. Jiang, S. M. Long, and B. Lu, 2021: Asymmetric relationship between ENSO and the tropical Indian Ocean summer SST anomalies. J. Climate, 34, 59555969, https://doi.org/10.1175/JCLI-D-20-0546.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, Z., B. Wang, J. Li, and F.-F. Jin, 2009: An empirical seasonal prediction model of the East Asian summer monsoon using ENSO and NAO. J. Geophys. Res. Atmos., 114, D18120, https://doi.org/10.1029/2009JD011733.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, Z., J. Li, Z. Jiang, J. He, and X. Zhu, 2012: Possible effects of the North Atlantic Oscillation on the strengthening relationship between the East Asian summer monsoon and ENSO. Int. J. Climatol., 32, 794800, https://doi.org/10.1002/joc.2309.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xie, S.-P., and J. A. Carton, 2004: Tropical Atlantic variability: Patterns, mechanisms, and impacts. Earth’s Climate: The Ocean–Atmosphere Interaction, Geophys. Monogr., Vol. 147, Amer. Geophys. Union, 121–142, https://doi.org/10.1029/147GM07.

    • Crossref
    • Export Citation
  • Xie, S.-P., K. Hu, J. Hafner, H. Tokinaga, Y. Du, G. Huang, and T. Sampe, 2009: Indian Ocean capacitor effect on Indo–western Pacific climate during the summer following El Niño. J. Climate, 22, 730747, https://doi.org/10.1175/2008JCLI2544.1.

    • Search Google Scholar
    • Export Citation
  • Xie, S.-P., Y. Kosaka, Y. Du, K. Hu, J. S. Chowdary, and G. Huang, 2016: Indo-western Pacific Ocean capacitor and coherent climate anomalies in post-ENSO summer: A review. Adv. Atmos. Sci., 33, 411432, https://doi.org/10.1007/s00376-015-5192-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yang, J., Q. Liu, S. P. Xie, Z. Liu, and L. Wu, 2007: Impact of the Indian Ocean SST basin mode on the Asian summer monsoon. Geophys. Res. Lett., 34, L02708, https://doi.org/10.1029/2006GL028571.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ye, H., and R. Lu, 2011: Subseasonal variation in ENSO-related East Asian rainfall anomalies during summer and its role in weakening the relationship between the ENSO and summer rainfall in eastern China since the late 1970s. J. Climate, 24, 22712284, https://doi.org/10.1175/2010JCLI3747.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yim, S. Y., B. Wang, and M. H. Kwon, 2014: Interdecadal change of the controlling mechanisms for East Asian early summer rainfall variation around the mid-1990s. Climate Dyn., 42, 13251333, https://doi.org/10.1007/s00382-013-1760-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yuan, Y., and S. Yang, 2012: Impacts of different types of El Niño on the East Asian climate: Focus on ENSO cycles. J. Climate, 25, 77027722, https://doi.org/10.1175/JCLI-D-11-00576.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, R. H., Q. Y. Min, and J. Z. Su, 2017: Impact of El Niño on atmospheric circulations over East Asia and rainfall in China: Role of the anomalous western North Pacific anticyclone. Sci. China Earth Sci., 60, 11241132, https://doi.org/10.1007/s11430-016-9026-x.

    • Search Google Scholar
    • Export Citation
  • Zhang, T., and Coauthors, 2022: Influence of the boreal winter Arctic Oscillation on the peak-summer compound heat waves over the Yangtze-Huaihe River basin: The North Atlantic capacitor effect. Climate Dyn., 59, 23312343, https://doi.org/10.1007/s00382-022-06212-5.

    • Search Google Scholar
    • Export Citation
  • Zhang, Z., and G. Li, 2022: Uncertainty in the projected changes of Sahel summer rainfall under global warming in CMIP5 and CMIP6 multi-model ensembles. Climate Dyn., https://doi.org/10.1007/s00382-022-06284-3, in press.

    • Search Google Scholar
    • Export Citation
  • Zhou, Z. Q., S. P. Xie, G. J. Zhang, and W. Zhou, 2018: Evaluating AMIP skill in simulating interannual variability over the Indo-western Pacific. J. Climate, 31, 22532265, https://doi.org/10.1175/JCLI-D-17-0123.1.

    • Search Google Scholar
    • Export Citation
  • Zhou, Z. Q., S. P. Xie, and R. Zhang, 2021: Historic Yangtze flooding of 2020 tied to extreme Indian Ocean conditions. Proc. Natl. Acad. Sci. USA., 118, e2022255118, https://doi.org/10.1073/pnas.2022255118.

    • Search Google Scholar
    • Export Citation
  • Zuo, J., W. Li, H. Ren, and L. Chen, 2012: Change of the relationship between the spring NAO and East Asian summer monsoon and its possible mechanism. Chin. J. Geophys., 55, 2334, https://doi.org/10.1002/cjg2.1697.

    • Search Google Scholar
    • Export Citation
  • Zuo, J., W. Li, C. Sun, L. Xu, and H. L. Ren, 2013: Impact of the North Atlantic sea surface temperature tripole on the East Asian summer monsoon. Adv. Atmos. Sci., 30, 11731186, https://doi.org/10.1007/s00376-012-2125-5.

    • Search Google Scholar
    • Export Citation
  • Zuo, J., W. Li, C. Sun, and H.-C. Ren, 2019: Remote forcing of the northern tropical Atlantic SST anomalies on the western North Pacific anomalous anticyclone. Climate Dyn., 52, 28372853, https://doi.org/10.1007/s00382-018-4298-9.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 591 591 41
Full Text Views 260 260 28
PDF Downloads 323 323 39

Two Approaches of the Spring North Atlantic Sea Surface Temperature Affecting the Following July Precipitation over Central China: The Tropical and Extratropical Pathways

Lin ChenaCollege of Oceanography, Hohai University, Nanjing, China

Search for other papers by Lin Chen in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0002-5466-4991
,
Gen LiaCollege of Oceanography, Hohai University, Nanjing, China
bSouthern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China

Search for other papers by Gen Li in
Current site
Google Scholar
PubMed
Close
,
Bo LucNational Climate Center, China Meteorological Administration, Beijing, China

Search for other papers by Bo Lu in
Current site
Google Scholar
PubMed
Close
,
Yanping LiaCollege of Oceanography, Hohai University, Nanjing, China

Search for other papers by Yanping Li in
Current site
Google Scholar
PubMed
Close
,
Chujie GaoaCollege of Oceanography, Hohai University, Nanjing, China
dKey Laboratory of Meteorological Disaster, Ministry of Education (KLME) and Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters (CIC-FEMD), Nanjing University of Information Science and Technology, Nanjing, China

Search for other papers by Chujie Gao in
Current site
Google Scholar
PubMed
Close
,
Shang-Min LongaCollege of Oceanography, Hohai University, Nanjing, China

Search for other papers by Shang-Min Long in
Current site
Google Scholar
PubMed
Close
,
Xinyu LiaCollege of Oceanography, Hohai University, Nanjing, China

Search for other papers by Xinyu Li in
Current site
Google Scholar
PubMed
Close
, and
Ziqian WangbSouthern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China
eSchool of Atmospheric Sciences and Guangdong Province Key Laboratory for Climate Change and Natural Disaster Studies, Sun Yat-sen University, Zhuhai, China

Search for other papers by Ziqian Wang in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The spring tripole sea surface temperature (SST) anomalies in North Atlantic are an outstanding regional mode of interannual variability. Based on the observed and reanalyzed datasets during 1979–2019, this study reveals the relationship and linking mechanism between the spring tripole North Atlantic SST anomalies and the central China July precipitation (CCJP). Results show that the tripole SST anomalies, especially the warm SST anomalies in the tropical North Atlantic (TNA) and the subpolar North Atlantic (SNA), often cause surplus CCJP through the tropical and extratropical pathways. On the one hand, the spring TNA SST warming induces a pan-tropical climate response with the cooling in the central equatorial Pacific and the warming in the Indo-western Pacific until the following July through a series of air–sea interactions, helping maintain an anomalous anticyclone over the northwest Pacific and transport more warm humid flows to central China. On the other hand, the spring TNA and SNA SST warming persist into the following July and then emanate a wave train extending from the SNA throughout the Eurasian continent to East Asia, which induces an anomalous anticyclone over North China with its southeast flank transporting more cold air to central China. The warm humid flows from the south against the cold air from the north are conductive to the local ascending motion, favoring the increased CCJP. Our results highlight both the tropical and extratropical teleconnection pathways of the North Atlantic SST anomalies affecting the CCJP. This suggests an important seasonal predictor of the regional climate.

Significance Statement

July is the peak rainy month of central China, with heavy precipitation occurring frequently and often causing serious impacts on the local production and livelihood of millions of people. This study finds that the spring tripole sea surface temperature anomalies in North Atlantic induced by the North Atlantic Oscillation can exert significant impacts on the following July precipitation over central China through both the tropical and extratropical pathways. This improves our understanding of the causes of the surplus July precipitation over central China and has important implications for the seasonal predictability of the regional climate.

© 2022 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Gen Li, ligen@hhu.edu.cn

Abstract

The spring tripole sea surface temperature (SST) anomalies in North Atlantic are an outstanding regional mode of interannual variability. Based on the observed and reanalyzed datasets during 1979–2019, this study reveals the relationship and linking mechanism between the spring tripole North Atlantic SST anomalies and the central China July precipitation (CCJP). Results show that the tripole SST anomalies, especially the warm SST anomalies in the tropical North Atlantic (TNA) and the subpolar North Atlantic (SNA), often cause surplus CCJP through the tropical and extratropical pathways. On the one hand, the spring TNA SST warming induces a pan-tropical climate response with the cooling in the central equatorial Pacific and the warming in the Indo-western Pacific until the following July through a series of air–sea interactions, helping maintain an anomalous anticyclone over the northwest Pacific and transport more warm humid flows to central China. On the other hand, the spring TNA and SNA SST warming persist into the following July and then emanate a wave train extending from the SNA throughout the Eurasian continent to East Asia, which induces an anomalous anticyclone over North China with its southeast flank transporting more cold air to central China. The warm humid flows from the south against the cold air from the north are conductive to the local ascending motion, favoring the increased CCJP. Our results highlight both the tropical and extratropical teleconnection pathways of the North Atlantic SST anomalies affecting the CCJP. This suggests an important seasonal predictor of the regional climate.

Significance Statement

July is the peak rainy month of central China, with heavy precipitation occurring frequently and often causing serious impacts on the local production and livelihood of millions of people. This study finds that the spring tripole sea surface temperature anomalies in North Atlantic induced by the North Atlantic Oscillation can exert significant impacts on the following July precipitation over central China through both the tropical and extratropical pathways. This improves our understanding of the causes of the surplus July precipitation over central China and has important implications for the seasonal predictability of the regional climate.

© 2022 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Gen Li, ligen@hhu.edu.cn

Supplementary Materials

    • Supplemental Materials (PDF 1.11 MB)
Save