• Abatzoglou, J. T., S. Z. Dobrowski, S. A. Parks, and K. C. Hegewisch, 2018: TerraClimate, a high-resolution global dataset of monthly climate and climatic water balance from 1958–2015. Sci. Data, 5, 170191, https://doi.org/10.1038/sdata.2017.191.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • AghaKouchak, A., and Coauthors, 2021: Anthropogenic drought: Definition, challenges, and opportunities. Rev. Geophys., 59, e2019RG000683, https://doi.org/10.1029/2019RG000683.

    • Crossref
    • Export Citation
  • Allen, M. R., and S. F. B. Tett, 1999: Checking for model consistency in optimal fingerprinting. Climate Dyn., 15, 419434, https://doi.org/10.1007/s003820050291.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Allen, M. R., and P. A. Stott, 2003: Estimating signal amplitudes in optimal fingerprinting, part I: Theory. Climate Dyn., 21, 477491, https://doi.org/10.1007/s00382-003-0313-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Allen, R. G., L. S. Pereira, D. Raes, and M. Smith, 1998: Crop evapotranspiration—Guidelines for computing crop water requirements. FAO Irrigation and Drainage Paper 56, Food and Agriculture Organization of the United Nations, 300 pp., http://www.fao.org/docrep/X0490E/X0490E00.htm.

    • Crossref
    • Export Citation
  • Beaudoing, H., and M. Rodell, 2019: GLDAS Noah Land Surface Model L4 monthly 0.25 × 0.25 degree V2.0, Goddard Earth Sciences Data and Information Services Center (GES DISC), accessed 2020, https://doi.org/10.5067/9SQ1B3ZXP2C5.

    • Crossref
    • Export Citation
  • Berg, A., and K. A. McColl, 2021: No projected global drylands expansion under greenhouse warming. Nat. Climate Change, 11, 331337, https://doi.org/10.1038/s41558-021-01007-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Berg, A., J. Sheffield, and P. C. D. Milly, 2017: Divergent surface and total soil moisture projections under global warming. Geophys. Res. Lett., 44, 236244, https://doi.org/10.1002/2016GL071921.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Burrell, A. L., J. P. Evans, and M. G. De Kauwe, 2020: Anthropogenic climate change has driven over 5 million km2 of drylands towards desertification. Nat. Commun., 11, 3853, https://doi.org/10.1038/s41467-020-17710-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, H., and J. Sun, 2017: Contribution of human influence to increased daily precipitation extremes over China. Geophys. Res. Lett., 44, 24362444, https://doi.org/10.1002/2016GL072439.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, J., Y. Liu, T. Pan, Y. Liu, F. Sun, and Q. Ge, 2018: Population exposure to droughts in China under the 1.5°C global warming target. Earth Syst. Dyn., 9, 10971106, https://doi.org/10.5194/esd-9-1097-2018.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, L., and Coauthors, 2021: Future drought in CMIP6 projections and the socioeconomic impacts in China. Int. J. Climatol., 41, 41514170, https://doi.org/10.1002/joc.7064.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cheng, S., and J. Huang, 2016: Enhanced soil moisture drying in transitional regions under a warming climate. J. Geophys. Res. Atmos., 121, 25422555, https://doi.org/10.1002/2015JD024559.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cheng, S., X. Guan, J. Huang, F. Ji, and R. Guo, 2015: Long-term trend and variability of soil moisture over East Asia. J. Geophys. Res. Atmos., 120, 86588670, https://doi.org/10.1002/2015JD023206.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cook, B. I., J. E. Smerdon, R. Seager, and S. Coats, 2014: Global warming and 21st century drying. Climate Dyn., 43, 26072627, https://doi.org/10.1007/s00382-014-2075-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cui, J., S. Piao, C. Huntingford, X. Wang, X. Lian, A. Chevuturi, A. G. Turner, and G. J. Kooperman, 2020: Vegetation forcing modulates global land monsoon and water resources in a CO2-enriched climate. Nat. Commun., 11, 5184, https://doi.org/10.1038/s41467-020-18992-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dai, A., 2013: Increasing drought under global warming in observations and models. Nat. Climate Change, 3, 5258, https://doi.org/10.1038/nclimate1633.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dai, A., T. Zhao, and J. Chen, 2018: Climate change and drought: A precipitation and evaporation perspective. Curr. Climate Change Rep., 4, 301312, https://doi.org/10.1007/s40641-018-0101-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Donat, M. G., A. L. Lowry, L. V. Alexander, P. A. O’Gorman, and N. Maher, 2016: More extreme precipitation in the world’s dry and wet regions. Nat. Climate Change, 6, 508513, https://doi.org/10.1038/nclimate2941.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ekström, M., P. D. Jones, H. J. Fowler, G. Lenderink, T. A. Buishand, and D. Conway, 2007: Regional climate model data used within the SWURVE project—1: Projected changes in seasonal patterns and estimation of PET. Hydrol. Earth Syst. Serv., 11, 10691083, https://doi.org/10.5194/hess-11-1069-2007.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Feng, S., and Q. Fu, 2013: Expansion of global drylands under a warming climate. Atmos. Chem. Phys., 13, 10 08110 094, https://doi.org/10.5194/acp-13-10081-2013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fensholt, R., and Coauthors, 2012: Greenness in semi-arid areas across the globe 1981–2007—An Earth Observing Satellite based analysis of trends and drivers. Remote Sens. Environ., 121, 144158, https://doi.org/10.1016/j.rse.2012.01.017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fu, Q., and S. Feng, 2014: Responses of terrestrial aridity to global warming. J. Geophys. Res. Atmos., 119, 78637875, https://doi.org/10.1002/2014JD021608.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fyfe, J. C., V. V. Kharin, B. D. Santer, J. N. S. Cole, and N. P. Gillett, 2021: Significant impact of forcing uncertainty in a large ensemble of climate model simulations. Proc. Natl. Acad. Sci. USA, 118, e2016549118, https://doi.org/10.1073/pnas.2016549118.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Greve, P., B. Orlowsky, B. Mueller, J. Sheffield, M. Reichstein, and S. I. Seneviratne, 2014: Global assessment of trends in wetting and drying over land. Nat. Geosci., 7, 716721, https://doi.org/10.1038/ngeo2247.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gu, X., J. Li, Y. D. Chen, D. Kong, and J. Liu, 2019a: Consistency and discrepancy of global surface soil moisture changes from multiple model-based data sets against satellite observations. J. Geophys. Res. Atmos., 124, 14741495, https://doi.org/10.1029/2018JD029304.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gu, X., Q. Zhang, J. Li, V. P. Singh, J. Liu, P. Sun, and C. Cheng, 2019b: Attribution of global soil moisture drying to human activities: A quantitative viewpoint. Geophys. Res. Lett., 46, 25732582, https://doi.org/10.1029/2018GL080768.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gu, X., Q. Zhang, J. Li, V. P. Singh, J. Liu, P. Sun, C. He, and J. Wu, 2019c: Intensification and expansion of soil moisture drying in warm season over Eurasia under global warming. J. Geophys. Res. Atmos., 124, 37653782, https://doi.org/10.1029/2018JD029776.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gudmundsson, L., S. I. Seneviratne, and X. Zhang, 2017a: Anthropogenic climate change detected in European renewable freshwater resources. Nat. Climate Change, 7, 813816, https://doi.org/10.1038/nclimate3416.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gudmundsson, L., S. I. Seneviratne, and X. Zhang, 2017b: Anthropogenic climate change detected in European renewable freshwater resources. Nat. Climate Change, 7, 813816, https://doi.org/10.1038/nclimate3416.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Harris, I., T. J. Osborn, P. Jones, and D. Lister, 2020: Version 4 of the CRU TS monthly high-resolution gridded multivariate climate dataset. Sci. Data, 7, 109, https://doi.org/10.1038/s41597-020-0453-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • He, B., S. Wang, L. Guo, and X. Wu, 2019: Aridity change and its correlation with greening over drylands. Agric. For. Meteor., 278, 107663, https://doi.org/10.1016/j.agrformet.2019.107663.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hu, C., J. Xia, D. She, L. Li, Z. Song, and S. Hong, 2021: A new framework for the identification of flash drought: Multivariable and probabilistic statistic perspectives. Int. J. Climatol., 41, 58625878, https://doi.org/10.1002/joc.7157.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huang, J., H. Yu, X. Guan, G. Wang, and R. Guo, 2016: Accelerated dryland expansion under climate change. Nat. Climate Change, 6, 166171, https://doi.org/10.1038/nclimate2837.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huang, J., and Coauthors, 2017: Dryland climate change: Recent progress and challenges. Rev. Geophys., 55, 719778, https://doi.org/10.1002/2016RG000550.

    • Search Google Scholar
    • Export Citation
  • Kasprzyk, J. R., P. M. Reed, B. R. Kirsch, and G. W. Characklis, 2009: Managing population and drought risks using many-objective water portfolio planning under uncertainty. Water Resour. Res., 45, W12401, https://doi.org/10.1029/2009WR008121.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kong, D., X. Gu, J. Li, G. Ren, and J. Liu, 2020: Contributions of global warming and urbanization to the intensification of human-perceived heatwaves over China. J. Geophys. Res. Atmos., 125, e2019JD032175, https://doi.org/10.1029/2019JD032175.

    • Crossref
    • Export Citation
  • Koutroulis, A. G., 2019: Dryland changes under different levels of global warming. Sci. Total Environ., 655, 482511, https://doi.org/10.1016/j.scitotenv.2018.11.215.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lau, W. K. M., K.-M. Kim, and L. Ruby Leung, 2017: Changing circulation structure and precipitation characteristics in Asian monsoon regions: Greenhouse warming vs. aerosol effects. Geosci. Lett., 4, 28, https://doi.org/10.1186/s40562-017-0094-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, C., B. Fu, S. Wang, L. C. Stringer, Y. Wang, Z. Li, Y. Liu, and W. Zhou, 2021: Drivers and impacts of changes in China’s drylands. Nat. Rev. Earth Environ., 2, 858873, https://doi.org/10.1038/s43017-021-00226-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, R., N. Chen, X. Zhang, L. Zeng, X. Wang, S. Tang, D. Li, and D. Niyogi, 2020: Quantitative analysis of agricultural drought propagation process in the Yangtze River Basin by using cross wavelet analysis and spatial autocorrelation. Agric. For. Meteor., 280, 107809, https://doi.org/10.1016/j.agrformet.2019.107809.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lian, X., and Coauthors, 2021: Multifaceted characteristics of dryland aridity changes in a warming world. Nat. Rev. Earth Environ., 2, 232250, https://doi.org/10.1038/s43017-021-00144-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, J., J. Zhang, D. Kong, X. Feng, S. Feng, and M. Xiao, 2021: Contributions of anthropogenic forcings to evapotranspiration changes over 1980–2020 using GLEAM and CMIP6 simulations. J. Geophys. Res. Atmos., 126, e2021JD035367, https://doi.org/10.1029/2021JD035367.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, M., X. Xu, B. R. Scanlon, A. Y. Sun, and K. Wang, 2021: A modified evaporation model indicates that the effects of air warming on global drying trends have been overestimated. J. Geophys. Res. Atmos., 126, e2021JD035153, https://doi.org/10.1029/2021JD035153.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, W., F. Sun, W. H. Lim, J. Zhang, H. Wang, H. Shiogama, and Y. Zhang, 2018: Global drought and severe drought-affected populations in 1.5°C and 2°C warmer worlds. Earth Syst. Dyn., 9, 267283, https://doi.org/10.5194/esd-9-267-2018.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Madakumbura, G. D., C. W. Thackeray, J. Norris, N. Goldenson, and A. Hall, 2021: Anthropogenic influence on extreme precipitation over global land areas seen in multiple observational datasets. Nat. Commun., 12, 3944, https://doi.org/10.1038/s41467-021-24262-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marvel, K., B. I. Cook, C. J. W. Bonfils, P. J. Durack, J. E. Smerdon, and A. P. Williams, 2019: Twentieth-century hydroclimate changes consistent with human influence. Nature, 569, 5965, https://doi.org/10.1038/s41586-019-1149-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Min, S.-K., X. Zhang, F. W. Zwiers, and G. C. Hegerl, 2011: Human contribution to more-intense precipitation extremes. Nature, 470, 378381, https://doi.org/10.1038/nature09763.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Monerie, P.-A., C. M. Wainwright, M. Sidibe, and A. A. Akinsanola, 2020: Model uncertainties in climate change impacts on Sahel precipitation in ensembles of CMIP5 and CMIP6 simulations. Climate Dyn., 55, 13851401, https://doi.org/10.1007/s00382-020-05332-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Padrón, R. S., and Coauthors, 2020: Observed changes in dry-season water availability attributed to human-induced climate change. Nat. Geosci., 13, 477481, https://doi.org/10.1038/s41561-020-0594-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Paik, S., S. K. Min, X. Zhang, M. G. Donat, A. D. King, and Q. Sun, 2020: Determining the anthropogenic greenhouse gas contribution to the observed intensification of extreme precipitation. Geophys. Res. Lett., 47, e2019GL086875, https://doi.org/10.1029/2019GL086875.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Park, C.-E., and Coauthors, 2018: Keeping global warming within 1.5°C constrains emergence of aridification. Nat. Climate Change, 8, 7074, https://doi.org/10.1038/s41558-017-0034-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pfahl, S., P. A. O’Gorman, and E. M. Fischer, 2017: Understanding the regional pattern of projected future changes in extreme precipitation. Nat. Climate Change, 7, 423427, https://doi.org/10.1038/nclimate3287.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Piao, S., and Coauthors, 2020: Characteristics, drivers and feedbacks of global greening. Nat. Rev. Earth Environ., 1, 1427, https://doi.org/10.1038/s43017-019-0001-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pokhrel, Y., and Coauthors, 2021: Global terrestrial water storage and drought severity under climate change. Nat. Climate Change, 11, 226233, https://doi.org/10.1038/s41558-020-00972-w.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Polson, D., M. Bollasina, G. C. Hegerl, and L. J. Wilcox, 2014: Decreased monsoon precipitation in the Northern Hemisphere due to anthropogenic aerosols. Geophys. Res. Lett., 41, 60236029, https://doi.org/10.1002/2014GL060811.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Qian, C., and X. Zhang, 2015: Human influences on changes in the temperature seasonality in mid- to high-latitude land areas. J. Climate, 28, 59085921, https://doi.org/10.1175/JCLI-D-14-00821.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reynolds, J. F., and Coauthors, 2007: Global desertification: Building a science for dryland development. Science, 316, 847851, https://doi.org/10.1126/science.1131634.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Riahi, K., and Coauthors, 2017: The Shared Socioeconomic Pathways and their energy, land use, and greenhouse gas emissions implications: An overview. Global Environ. Change, 42, 153168, https://doi.org/10.1016/j.gloenvcha.2016.05.009.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rodell, M., and Coauthors, 2004: The Global Land Data Assimilation System. Bull. Amer. Meteor. Soc., 85, 381394, https://doi.org/10.1175/BAMS-85-3-381.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Samir, K. C., and W. Lutz, 2017: The human core of the shared socioeconomic pathways: Population scenarios by age, sex and level of education for all countries to 2100. Global Environ. Change, 42, 181192, https://doi.org/10.1016/j.gloenvcha.2014.06.004.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Scheff, J., and D. M. W. Frierson, 2014: Scaling potential evapotranspiration with greenhouse warming. J. Climate, 27, 15391558, https://doi.org/10.1175/JCLI-D-13-00233.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schlaepfer, D. R., and Coauthors, 2017: Climate change reduces extent of temperate drylands and intensifies drought in deep soils. Nat. Commun., 8, 14196, https://doi.org/10.1038/ncomms14196.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sheffield, J., G. Goteti, and E. F. Wood, 2006: Development of a 50-year high-resolution global dataset of meteorological forcings for land surface modeling. J. Climate, 19, 30883111, https://doi.org/10.1175/JCLI3790.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Skeie, R. B., T. K. Berntsen, G. Myhre, K. Tanaka, M. M. Kvalevåg, and C. R. Hoyle, 2011: Anthropogenic radiative forcing time series from pre-industrial times until 2010. Atmos. Chem. Phys., 11, 11 82711 857, https://doi.org/10.5194/acp-11-11827-2011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Song, C., Y. Sheng, S. Zhan, J. Wang, L. Ke, and K. Liu, 2020: Impact of amplified evaporation due to lake expansion on the water budget across the inner Tibetan Plateau. Int. J. Climatol., 40, 20912105, https://doi.org/10.1002/joc.6320.

    • Search Google Scholar
    • Export Citation
  • Stavi, I., and Coauthors, 2021: Food security among dryland pastoralists and agropastoralists: The climate, land-use change, and population dynamics nexus. Anthropocene Rev., https://doi.org/10.1177/20530196211007512, in press.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sun, Q., C. Miao, Q. Duan, H. Ashouri, S. Sorooshian, and K.-L. Hsu, 2018: A review of global precipitation data sets: Data sources, estimation, and intercomparisons. Rev. Geophys., 56, 79107, https://doi.org/10.1002/2017RG000574.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Taylor, K. E., R. J. Stouffer, and G. A. Meehl, 2012: An overview of CMIP5 and the experiment design. Bull. Amer. Meteor. Soc., 93, 485498, https://doi.org/10.1175/BAMS-D-11-00094.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Touma, D., S. Stevenson, F. Lehner, and S. Coats, 2021: Human-driven greenhouse gas and aerosol emissions cause distinct regional impacts on extreme fire weather. Nat. Commun., 12, 212, https://doi.org/10.1038/s41467-020-20570-w.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ukkola, A. M., I. C. Prentice, T. F. Keenan, A. I. J. M. Van Dijk, N. R. Viney, R. B. Myneni, and J. Bi, 2016: Reduced streamflow in water-stressed climates consistent with CO2 effects on vegetation. Nat. Climate Change, 6, 7578, https://doi.org/10.1038/nclimate2831.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vicente-Serrano, S. M., S. M. Quiring, M. Peña-Gallardo, S. Yuan, and F. Domínguez-Castro, 2020: A review of environmental droughts: Increased risk under global warming? Earth-Sci. Rev., 201, 102953, https://doi.org/10.1016/j.earscirev.2019.102953.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wilcox, L. J., E. J. Highwood, and N. J. Dunstone, 2013: The influence of anthropogenic aerosol on multi-decadal variations of historical global climate. Environ. Res. Lett., 8, 24033, https://doi.org/10.1088/1748-9326/8/2/024033.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Willmott, C. J., and K. Matsuura, 2018: Terrestrial air temperature and precipitation: 1900–2017 Gridded Monthly Time Series (V 5.01), accessed 2020, http://climate.geog.udel.edu/∼climate/html_pages/Global2017/README.GlobalTsT2017.html.

    • Crossref
    • Export Citation
  • Wu, P., R. Wood, J. Ridley, and J. Lowe, 2010: Temporary acceleration of the hydrological cycle in response to a CO2 rampdown. Geophys. Res. Lett., 37, L12705, https://doi.org/10.1029/2010GL043730.

    • Search Google Scholar
    • Export Citation
  • Wu, P., N. Christidis, and P. Stott, 2013: Anthropogenic impact on Earth’s hydrological cycle. Nat. Climate Change, 3, 807810, https://doi.org/10.1038/nclimate1932.

    • Search Google Scholar
    • Export Citation
  • Yang, Y., M. L. Roderick, S. Zhang, T. R. McVicar, and R. J. Donohue, 2019: Hydrologic implications of vegetation response to elevated CO2 in climate projections. Nat. Climate Change, 9, 4448, https://doi.org/10.1038/s41558-018-0361-0.

    • Search Google Scholar
    • Export Citation
  • Yao, J., H. Liu, J. Huang, Z. Gao, G. Wang, D. Li, H. Yu, and X. Chen, 2020: Accelerated dryland expansion regulates future variability in dryland gross primary production. Nat. Commun., 11, 1665, https://doi.org/10.1038/s41467-020-15515-2.

    • Search Google Scholar
    • Export Citation
  • Zhang, C., Y. Yang, D. Yang, and X. Wu, 2021: Multidimensional assessment of global dryland changes under future warming in climate projections. J. Hydrol., 592, 125618, https://doi.org/10.1016/j.jhydrol.2020.125618.

    • Search Google Scholar
    • Export Citation
  • Zhang, X., N. Chen, J. Li, Z. Chen, and D. Niyogi, 2017: Multi-sensor integrated framework and index for agricultural drought monitoring. Remote Sens. Environ., 188, 141163, https://doi.org/10.1016/j.rse.2016.10.045.

    • Search Google Scholar
    • Export Citation
  • Zhang, X., and Coauthors, 2019: Urban drought challenge to 2030 sustainable development goals. Sci. Total Environ., 693, 133536, https://doi.org/10.1016/j.scitotenv.2019.07.342.

    • Search Google Scholar
    • Export Citation
  • Zhu, Z., and Coauthors, 2016: Greening of the Earth and its drivers. Nat. Climate Change, 6, 791795, https://doi.org/10.1038/nclimate3004.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 831 831 157
Full Text Views 394 394 14
PDF Downloads 461 461 29

Greenhouse Gas Emissions Drive Global Dryland Expansion but Not Spatial Patterns of Change in Aridification

Shuyun FengaDepartment of Atmospheric Science, School of Environmental Studies, China University of Geosciences, Wuhan, China
bKey Laboratory of Environmental Change and Natural Disaster, Ministry of Education, Beijing Normal University, Beijing, China

Search for other papers by Shuyun Feng in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0002-1924-9282
,
Xihui GuaDepartment of Atmospheric Science, School of Environmental Studies, China University of Geosciences, Wuhan, China
cHubei Key Laboratory of Yangtze Catchment Environmental Aquatic Science, School of Environmental Studies, China University of Geosciences, Wuhan, China
dSchool of Geography and the Environment, University of Oxford, Oxford, United Kingdom
eCollaborative Innovation Center for Western Ecological Safety, Lanzhou University, Lanzhou, China
fState Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, CAS, Xi’an, China

Search for other papers by Xihui Gu in
Current site
Google Scholar
PubMed
Close
,
Sijia LuoaDepartment of Atmospheric Science, School of Environmental Studies, China University of Geosciences, Wuhan, China

Search for other papers by Sijia Luo in
Current site
Google Scholar
PubMed
Close
,
Ruihan LiuaDepartment of Atmospheric Science, School of Environmental Studies, China University of Geosciences, Wuhan, China

Search for other papers by Ruihan Liu in
Current site
Google Scholar
PubMed
Close
,
Aminjon GulakhmadovgResearch Center of Ecology and Environment in Central Asia, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China
hInstitute of Water Problems, Hydropower and Ecology of the National Academy of Sciences of Tajikistan, Dushanbe, Tajikistan

Search for other papers by Aminjon Gulakhmadov in
Current site
Google Scholar
PubMed
Close
,
Louise J. SlaterdSchool of Geography and the Environment, University of Oxford, Oxford, United Kingdom

Search for other papers by Louise J. Slater in
Current site
Google Scholar
PubMed
Close
,
Jianfeng LiiDepartment of Geography, Hong Kong Baptist University, Hong Kong, China

Search for other papers by Jianfeng Li in
Current site
Google Scholar
PubMed
Close
,
Xiang ZhangjNational Engineering Research Center of Geographic Information System, School of Geography and Information Engineering, China University of Geosciences, Wuhan, China

Search for other papers by Xiang Zhang in
Current site
Google Scholar
PubMed
Close
, and
Dongdong KongaDepartment of Atmospheric Science, School of Environmental Studies, China University of Geosciences, Wuhan, China

Search for other papers by Dongdong Kong in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Drylands play an essential role in Earth’s environment and human systems. Although dryland expansion has been widely investigated in previous studies, there is a lack of quantitative evidence supporting human-induced changes in dryland extent. Here, using multiple observational datasets and model simulations from phase 6 of the Coupled Model Intercomparison Project, we employ both correlation-based and optimal fingerprinting approaches to conduct quantitative detection and attribution of dryland expansion. Our results show that spatial changes in atmospheric aridity (i.e., the aridity index defined by the ratio of precipitation to potential evapotranspiration) between the recent period 1990–2014 and the past period 1950–74 are unlikely to have been caused by greenhouse gas (GHG) emissions. However, it is very likely (at least 95% confidence level) that dryland expansion at the global scale was driven principally by GHG emissions. Over the period 1950–2014, global drylands expanded by 3.67% according to observations, and the dryland expansion attributed to GHG emissions is estimated as ∼4.5%. Drylands are projected to continue expanding, and their populations to increase until global warming reaches ∼3.5°C above preindustrial temperature under the middle- and high-emission scenarios. If warming exceeds ∼3.5°C, a reduction in population density would drive a decrease in dryland population. Our results for the first time provide quantitative evidence for the dominant effects of GHG emissions on global dryland expansion, which is helpful for anthropogenic climate change adaptation in drylands.

Significance Statement

In the past decades, global drylands have been reported to show changes in space and time, based on atmospheric aridity (i.e., aridity index defined by the ratio of precipitation to potential evapotranspiration). Using two detection and attribution methods, the spatial change patterns of atmospheric aridity between 1990–2014 and 1950–74 are unlikely to be driven by greenhouse gas (GHG) emissions, whereas the temporal expansion of global drylands (i.e., 3.67% from 1950 to 2014) is principally attributed to GHG emissions (contribution: ∼122%). Quantitative evidence from the detection and attribution analysis supports the dominant role of greenhouse gas emissions in global dryland expansion, which will increase the population suffering from water shortages under future warming unless climate adaptation is adopted.

© 2022 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding authors: Xihui Gu, guxh@cug.edu.cn; Dongdong Kong, kongdongdong@cug.edu.cn

Abstract

Drylands play an essential role in Earth’s environment and human systems. Although dryland expansion has been widely investigated in previous studies, there is a lack of quantitative evidence supporting human-induced changes in dryland extent. Here, using multiple observational datasets and model simulations from phase 6 of the Coupled Model Intercomparison Project, we employ both correlation-based and optimal fingerprinting approaches to conduct quantitative detection and attribution of dryland expansion. Our results show that spatial changes in atmospheric aridity (i.e., the aridity index defined by the ratio of precipitation to potential evapotranspiration) between the recent period 1990–2014 and the past period 1950–74 are unlikely to have been caused by greenhouse gas (GHG) emissions. However, it is very likely (at least 95% confidence level) that dryland expansion at the global scale was driven principally by GHG emissions. Over the period 1950–2014, global drylands expanded by 3.67% according to observations, and the dryland expansion attributed to GHG emissions is estimated as ∼4.5%. Drylands are projected to continue expanding, and their populations to increase until global warming reaches ∼3.5°C above preindustrial temperature under the middle- and high-emission scenarios. If warming exceeds ∼3.5°C, a reduction in population density would drive a decrease in dryland population. Our results for the first time provide quantitative evidence for the dominant effects of GHG emissions on global dryland expansion, which is helpful for anthropogenic climate change adaptation in drylands.

Significance Statement

In the past decades, global drylands have been reported to show changes in space and time, based on atmospheric aridity (i.e., aridity index defined by the ratio of precipitation to potential evapotranspiration). Using two detection and attribution methods, the spatial change patterns of atmospheric aridity between 1990–2014 and 1950–74 are unlikely to be driven by greenhouse gas (GHG) emissions, whereas the temporal expansion of global drylands (i.e., 3.67% from 1950 to 2014) is principally attributed to GHG emissions (contribution: ∼122%). Quantitative evidence from the detection and attribution analysis supports the dominant role of greenhouse gas emissions in global dryland expansion, which will increase the population suffering from water shortages under future warming unless climate adaptation is adopted.

© 2022 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding authors: Xihui Gu, guxh@cug.edu.cn; Dongdong Kong, kongdongdong@cug.edu.cn

Supplementary Materials

    • Supplemental Materials (PDF 977 KB)
Save