• Adames, A. F., J. Patoux, and R. C. Foster, 2014: The contribution of extratropical waves to the MJO wind field. J. Atmos. Sci., 71, 155176, https://doi.org/10.1175/JAS-D-13-084.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Andersen, J. A., and Z. Kuang, 2012: Moist static energy budget of MJO-like disturbances in the atmosphere of a zonally symmetric aquaplanet. J. Climate, 25, 27822804, https://doi.org/10.1175/JCLI-D-11-00168.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bao, J.-W., S. A. Michelson, P. J. Neiman, F. M. Ralph, and J. M. Wilczak, 2006: Interpretation of enhanced integrated water vapor bands associated with extratropical cyclones: Their formation and connection to tropical moisture. Mon. Wea. Rev., 134, 10631080, https://doi.org/10.1175/MWR3123.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Baranowski, D. B., and Coauthors, 2020: Social-media and newspaper reports reveal large-scale meteorological drivers of floods on Sumatra. Nat. Commun., 11, 2503, https://doi.org/10.1038/s41467-020-16171-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chang, C.-P., and K. M. W. Lau, 1980: Northeasterly cold surges and near-equatorial disturbances over the winter MONEX area during December 1974. Part II: Planetary-scale aspects. Mon. Wea. Rev., 108, 298312, https://doi.org/10.1175/1520-0493(1980)108<0298:NCSANE>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Charney, J. G., 1969: A further note on large-scale motions in the tropics. J. Atmos. Sci., 26, 182185, https://doi.org/10.1175/1520-0469(1969)026<0182:AFNOLS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cheng, Y.-M., C. D. Thorncroft, and G. N. Kiladis, 2019: Two contrasting African easterly wave behaviors. J. Atmos. Sci., 76, 17531768, https://doi.org/10.1175/JAS-D-18-0300.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Compo, G. P., G. N. Kiladis, and P. J. Webster, 1999: The horizontal and vertical structure of East Asian winter monsoon pressure surges. Quart. J. Roy. Meteor. Soc., 125, 2954, https://doi.org/10.1002/qj.49712555304.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Das, U., and C. Pan, 2016: Equatorial atmospheric Kelvin waves during El Niño episodes and their effect on stratospheric QBO. Sci. Total Environ., 544, 908918, https://doi.org/10.1016/j.scitotenv.2015.12.009.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dee, D. P., and Coauthors, 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597, https://doi.org/10.1002/qj.828.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dias, J., and G. N. Kiladis, 2014: Influence of the basic state zonal flow on convectively coupled equatorial waves. Geophys. Res. Lett., 41, 69046913, https://doi.org/10.1002/2014GL061476.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dias, J., M. Gehne, G. N. Kiladis, N. Sakaeda, P. Bechtold, and T. Haiden, 2018: Equatorial waves and the skill of NCEP and ECMWF numerical weather prediction systems. Mon. Wea. Rev., 146, 17631784, https://doi.org/10.1175/MWR-D-17-0362.1.

    • Search Google Scholar
    • Export Citation
  • Dias, J., S. N. Tulich, M. Gehne, and G. N. Kiladis, 2021: Tropical origins of weeks 2–4 forecast errors during the Northern Hemisphere cool season. Mon. Wea. Rev., 149, 29752991, https://doi.org/10.1175/MWR-D-21-0020.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fischer, M. S., B. H. Tang, and K. L. Corbosiero, 2017: Assessing the influence of upper-tropospheric troughs on tropical cyclone intensification rates after genesis. Mon. Wea. Rev., 145, 12951313, https://doi.org/10.1175/MWR-D-16-0275.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fröhlich, L., P. Knippertz, A. H. Fink, and E. Hohberger, 2013: An objective climatology of tropical plumes. J. Climate, 26, 50445060, https://doi.org/10.1175/JCLI-D-12-00351.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Funatsu, B. M., and D. W. Waugh, 2008: Connections between potential vorticity intrusions and convection in the eastern tropical Pacific. J. Atmos. Sci., 65, 9871002, https://doi.org/10.1175/2007JAS2248.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gehne, M., and R. Kleeman, 2012: Spectral analysis of tropical atmospheric dynamical variables using a linear shallow-water modal decomposition. J. Atmos. Sci., 69, 23002316, https://doi.org/10.1175/JAS-D-10-05008.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gill, A. E., 1980: Some simple solutions for heat-induced tropical circulation. Quart. J. Roy. Meteor. Soc., 106, 447462, https://doi.org/10.1002/qj.49710644905.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Guo, Y., X. Jiang, and D. E. Waliser, 2014: Modulation of the convectively coupled Kelvin waves over South America and the tropical Atlantic Ocean in association with the Madden–Julian oscillation. J. Atmos. Sci., 71, 13711388, https://doi.org/10.1175/JAS-D-13-0215.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Haertel, P., 2021: Kelvin/Rossby wave partition of Madden–Julian oscillation circulations. Climate, 9, 2, https://doi.org/10.3390/cli9010002.

  • Hendon, H. H., and M. C. Wheeler, 2008: Some space–time spectral analyses of tropical convection and planetary-scale waves. J. Atmos. Sci., 65, 29362948, https://doi.org/10.1175/2008JAS2675.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hersbach, H., and Coauthors, 2020: The ERA5 global reanalysis. Quart. J. Roy. Meteor. Soc., 146, 19992049, https://doi.org/10.1002/qj.3803.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hoskins, B. J., and D. J. Karoly, 1981: The steady linear response of a spherical atmosphere to thermal and orographic forcing. J. Atmos. Sci., 38, 11791196, https://doi.org/10.1175/1520-0469(1981)038<1179:TSLROA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hoskins, B. J., and G.-Y. Yang, 2000: The equatorial response to higher-latitude forcing. J. Atmos. Sci., 57, 11971213, https://doi.org/10.1175/1520-0469(2000)057<1197:TERTHL>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hoskins, B. J., I. Draghici, and H. C. Davies, 1978: A new look at the ω-equation. Quart. J. Roy. Meteor. Soc., 104, 3138, https://doi.org/10.1002/qj.49710443903.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hoskins, B. J., I. N. James, and G. H. White, 1983: The shape, propagation and mean-flow interaction of large-scale weather systems. J. Atmos. Sci., 40, 15951612, https://doi.org/10.1175/1520-0469(1983)040<1595:TSPAMF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huaman, L., C. Schumacher, and G. N. Kiladis, 2020: Eastward-propagating disturbances in the tropical Pacific. Mon. Wea. Rev., 148, 37133728, https://doi.org/10.1175/MWR-D-20-0029.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huang, P., and R. Huang, 2011: Climatology and interannual variability of convectively coupled equatorial waves activity. J. Climate, 24, 44514465, https://doi.org/10.1175/2011JCLI4021.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huffman, G. J., and Coauthors, 2007: The TRMM Multisatellite Precipitation Analysis (TMPA): Quasi-global, multiyear, combined-sensor precipitation estimates at fine scales. J. Hydrometeor., 8, 3855, https://doi.org/10.1175/JHM560.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huffman, G. J., and Coauthors, 2020: Integrated multi-satellite retrievals for the global precipitation measurement (GPM) mission (IMERG). Satellite Precipitation Measurement, V. Levizzani et al., Eds., Springer, 343–353 pp., https://doi.org/10.1007/978-3-030-24568-9_19.

    • Crossref
    • Export Citation
  • Iskenderian, H., 1995: A 10-year climatology of Northern Hemisphere tropical cloud plumes and their composite flow patterns. J. Climate, 8, 16301637, https://doi.org/10.1175/1520-0442(1995)008<1630:AYCONH>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • James, I. N., 1994: Introduction to Circulating Atmospheres. Cambridge University Press, 448 pp.

    • Crossref
    • Export Citation
  • Judt, F., 2020: Atmospheric predictability of the tropics, middle latitudes, and polar regions explored through global storm-resolving simulations. J. Atmos. Sci., 77, 257276, https://doi.org/10.1175/JAS-D-19-0116.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Karoly, D. J., 1983: Rossby wave propagation in a barotropic atmosphere. Dyn. Atmos. Oceans, 7, 111125, https://doi.org/10.1016/0377-0265(83)90013-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kiladis, G. N., 1998: Observations of Rossby waves linked to convection over the eastern tropical Pacific. J. Atmos. Sci., 55, 321339, https://doi.org/10.1175/1520-0469(1998)055<0321:OORWLT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kiladis, G. N., and K. M. Weickmann, 1992: Extratropical forcing of tropical Pacific convection during northern winter. Mon. Wea. Rev., 120, 19241939, https://doi.org/10.1175/1520-0493(1992)120<1924:EFOTPC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kiladis, G. N., and M. Wheeler, 1995: Horizontal and vertical structure of observed tropospheric equatorial Rossby waves. J. Geophys. Res., 100, 22 98122 997, https://doi.org/10.1029/95JD02415.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kiladis, G. N., G. A. Meehl, and K. M. Weickmann, 1994: Large-scale circulation associated with westerly wind bursts and deep convection over the western equatorial Pacific. J. Geophys. Res., 99, 18 52718 544, https://doi.org/10.1029/94JD01486.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kiladis, G. N., C. D. Thorncroft, and N. M. J. Hall, 2006: Three-dimensional structure and dynamics of African easterly waves. Part I: Observations. J. Atmos. Sci., 63, 22122230, https://doi.org/10.1175/JAS3741.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kiladis, G. N., M. C. Wheeler, P. T. Haertel, K. H. Straub, and P. E. Roundy, 2009: Convectively coupled equatorial waves. Rev. Geophys., 47, RG2003, https://doi.org/10.1029/2008RG000266.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kiladis, G. N., J. Dias, and M. Gehne, 2016: The relationship between equatorial mixed Rossby–gravity and eastward inertio-gravity waves. Part I. J. Atmos. Sci., 73, 21232145, https://doi.org/10.1175/JAS-D-15-0230.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Knippertz, P., 2005: Tropical–extratropical interactions associated with an Atlantic tropical plume and subtropical jet streak. Mon. Wea. Rev., 133, 27592776, https://doi.org/10.1175/MWR2999.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Knippertz, P., 2007: Tropical–extratropical interactions related to upper-level troughs at low latitudes. Dyn. Atmos. Oceans, 43, 3662, https://doi.org/10.1016/j.dynatmoce.2006.06.003.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Knippertz, P., and Coauthors, 2022: The intricacies of identifying equatorial waves. Quart. J. Roy. Meteor. Soc., 148, 28142852, https://doi.org/10.1002/qj.4338.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Latos, B., and Coauthors, 2021: Equatorial waves triggering extreme rainfall and floods in southwest Sulawesi, Indonesia. Mon. Wea. Rev., 149, 13811401, https://doi.org/10.1175/MWR-D-20-0262.1.

    • Search Google Scholar
    • Export Citation
  • Liebmann, B., and D. L. Hartmann, 1984: An observational study of tropical–midlatitude interaction on intraseasonal time scales during winter. J. Atmos. Sci., 41, 33333350, https://doi.org/10.1175/1520-0469(1984)041<3333:AOSOTI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liebmann, B., and C. A. Smith, 1996: Description of a complete (interpolated) outgoing longwave radiation dataset. Bull. Amer. Meteor. Soc., 77, 12751277, https://doi.org/10.1175/1520-0477-77.6.1274.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liebmann, B., G. N. Kiladis, L. M. V. Carvalho, C. Jones, C. S. Vera, I. Bladé, and D. Allured, 2009: Origin of convectively coupled Kelvin waves over South America. J. Climate, 22, 300315, https://doi.org/10.1175/2008JCLI2340.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Livezey, R. E., and W. Y. Chen, 1983: Statistical field significance and its determination by Monte Carlo techniques. Mon. Wea. Rev., 111, 4659, https://doi.org/10.1175/1520-0493(1983)111<0046:SFSAID>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Magaña, V., and M. Yanai, 1995: Mixed Rossby–gravity waves triggered by lateral forcing. J. Atmos. Sci., 52, 14731486, https://doi.org/10.1175/1520-0469(1995)052<1473:MRWTBL>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mak, M.-K., 1969: Laterally driven stochastic motions in the tropics. J. Atmos. Sci., 26, 4164, https://doi.org/10.1175/1520-0469(1969)026<0041:LDSMIT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Matthews, A. J., 2021: Dynamical propagation and growth mechanisms for convectively coupled equatorial Kelvin waves over the Indian Ocean. Quart. J. Roy. Meteor. Soc., 147, 43104336, https://doi.org/10.1002/qj.4179.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Matthews, A. J., and G. N. Kiladis, 1999a: Interactions between ENSO, transient circulation, and tropical convection over the Pacific. J. Climate, 12, 30623086, https://doi.org/10.1175/1520-0442(1999)012<3062:IBETCA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Matthews, A. J., and G. N. Kiladis, 1999b: The tropical–extratropical interaction between high-frequency transients and the Madden–Julian oscillation. Mon. Wea. Rev., 127, 661677, https://doi.org/10.1175/1520-0493(1999)127<0661:TTEIBH>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Matthews, A. J., and G. N. Kiladis, 2000: A model of Rossby waves linked to submonthly convection over the eastern tropical Pacific. J. Atmos. Sci., 57, 37853798, https://doi.org/10.1175/1520-0469(2000)057<3785:AMORWL>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mayta, V. C., G. N. Kiladis, J. Dias, P. L. S. Dias, and M. Gehne, 2021: Convectively coupled Kelvin waves over tropical South America. J. Climate, 34, 65316547, https://doi.org/10.1175/JCLI-D-20-0662.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McGuirk, J. P., A. H. Thompson, and N. R. Smith, 1987: Moisture bursts over the tropical Pacific Ocean. Mon. Wea. Rev., 115, 787798, https://doi.org/10.1175/1520-0493(1987)115<0787:MBOTTP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ralph, F. M., P. J. Neiman, G. N. Kiladis, K. Weickmann, and D. W. Reynolds, 2011: A multiscale observational case study of a Pacific atmospheric river exhibiting tropical–extratropical connections and a mesoscale frontal wave. Mon. Wea. Rev., 139, 11691189, https://doi.org/10.1175/2010MWR3596.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Randel, W. J., and I. M. Held, 1991: Phase speed spectra of transient eddy fluxes and critical layer absorption. J. Atmos. Sci., 48, 688697, https://doi.org/10.1175/1520-0469(1991)048<0688:PSSOTE>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ray, P., and C. Zhang, 2010: A case study of the mechanics of extratropical influence on the initiation of the Madden–Julian oscillation. J. Atmos. Sci., 67, 515528, https://doi.org/10.1175/2009JAS3059.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ren, P., D. Kim, M.-S. Ahn, D. Kang, and H.-L. Ren, 2021: Intercomparison of MJO column moist static energy and water vapor budget among six modern reanalysis products. J. Climate, 34, 29773001, https://doi.org/10.1175/JCLI-D-20-0653.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Roundy, P. E., 2015: On the interpretation of EOF analysis of ENSO, atmospheric Kelvin waves, and the MJO. J. Climate, 28, 11481165, https://doi.org/10.1175/JCLI-D-14-00398.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Roundy, P. E., and W. M. Frank, 2004: A climatology of waves in the equatorial region. J. Atmos. Sci., 61, 21052132, https://doi.org/10.1175/1520-0469(2004)061<2105:ACOWIT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ryoo, J.-M., Y. Kaspi, D. W. Waugh, G. N. Kiladis, D. E. Waliser, E. J. Fetzer, and J. Kim, 2013: Impact of Rossby wave breaking on U.S. west coast winter precipitation during ENSO events. J. Climate, 26, 63606382, https://doi.org/10.1175/JCLI-D-12-00297.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sakaeda, N., and P. E. Roundy, 2014: The role of interactions between multiscale circulations on the observed zonally averaged zonal wind variability associated with the Madden–Julian oscillation. J. Atmos. Sci., 71, 38163836, https://doi.org/10.1175/JAS-D-13-0304.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sakaeda, N., and P. E. Roundy, 2015: The development of upper-tropospheric wind over the Western Hemisphere in association with MJO convective initiation. J. Atmos. Sci., 72, 31383160, https://doi.org/10.1175/JAS-D-14-0293.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sakaeda, N., and P. E. Roundy, 2016: The development of upper-tropospheric geopotential height anomaly in the Western Hemisphere during MJO convective initiations. Quart. J. Roy. Meteor. Soc., 142, 942956, https://doi.org/10.1002/qj.2696.

    • Search Google Scholar
    • Export Citation
  • Sardeshmukh, P. D., and B. J. Hoskins, 1988: The generation of global rotational flow by steady idealized tropical divergence. J. Atmos. Sci., 45, 12281251, https://doi.org/10.1175/1520-0469(1988)045<1228:TGOGRF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shapiro, M. A., H. Wernli, N. A. Bond, and R. Langland, 2001: The influence of the 1997–99 El Niño southern oscillation on extratropical baroclinic life cycles over the eastern North Pacific. Quart. J. Roy. Meteor. Soc., 127, 331342, https://doi.org/10.1002/qj.49712757205.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stan, C., D. M. Straus, J. S. Frederiksen, H. Lin, E. D. Maloney, and C. Schumacher, 2017: Review of tropical–extratropical teleconnections on intraseasonal time scales. Rev. Geophys., 55, 902937, https://doi.org/10.1002/2016RG000538.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Straub, K. H., and G. N. Kiladis, 2002: Observations of a convectively coupled Kelvin wave in the eastern Pacific ITCZ. J. Atmos. Sci., 59, 3053, https://doi.org/10.1175/1520-0469(2002)059<0030:OOACCK>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Straub, K. H., and G. N. Kiladis, 2003a: Extratropical forcing of convectively coupled Kelvin waves during austral winter. J. Atmos. Sci., 60, 526543, https://doi.org/10.1175/1520-0469(2003)060<0526:EFOCCK>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Straub, K. H., and G. N. Kiladis, 2003b: The observed structure of convectively coupled Kelvin waves: Comparison with simple models of coupled wave instability. J. Atmos. Sci., 60, 16551668, https://doi.org/10.1175/1520-0469(2003)060<1655:TOSOCC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Straus, D. M., and R. S. Lindzen, 2000: Planetary-scale baroclinic instability and the MJO. J. Atmos. Sci., 57, 36093626, https://doi.org/10.1175/1520-0469(2000)057<3609:PSBIAT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Takayabu, Y. N., 1994: Large-scale cloud disturbances associated with equatorial waves. J. Meteor. Soc. Japan, 72, 433449, https://doi.org/10.2151/jmsj1965.72.3_433.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thorncroft, C. D., B. J. Hoskins, and M. E. McIntyre, 1993: Two paradigms of baroclinic-wave life-cycle behaviour. Quart. J. Roy. Meteor. Soc., 119, 1755, https://doi.org/10.1002/qj.49711950903.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tomas, R. A., and P. J. Webster, 1994: Horizontal and vertical structure of cross-equatorial wave propagation. J. Atmos. Sci., 51, 14171430, https://doi.org/10.1175/1520-0469(1994)051<1417:HAVSOC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tulich, S. N., and G. N. Kiladis, 2021: On the regionality of moist Kelvin waves and the MJO: The critical role of the background zonal flow. J. Adv. Model. Earth Syst., 13, e2021MS002528, https://doi.org/10.1029/2021MS002528.

    • Search Google Scholar
    • Export Citation
  • Ventrice, M. J., C. D. Thorncroft, and M. A. Janiga, 2012: Atlantic tropical cyclogenesis: A three-way interaction between an African easterly wave, diurnally varying convection, and a convectively coupled atmospheric Kelvin wave. Mon. Wea. Rev., 140, 11081124, https://doi.org/10.1175/MWR-D-11-00122.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, H., Y. Pan, A. Kumar, and W. Wang, 2013: Modulation of convectively coupled Kelvin wave activity in the tropical Pacific by ENSO. J. Meteor. Res., 27, 295307, https://doi.org/10.1007/s13351-013-0306-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, L., and L. Chen, 2016: Interannual variation of convectively-coupled equatorial waves and their association with environmental factors. Dyn. Atmos. Oceans, 76, 116126, https://doi.org/10.1016/j.dynatmoce.2016.10.004.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Webster, P. J., and J. R. Holton, 1982: Cross-equatorial response to middle-latitude forcing in a zonally varying basic state. J. Atmos. Sci., 39, 722733, https://doi.org/10.1175/1520-0469(1982)039<0722:CERTML>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wheeler, M. C., and G. N. Kiladis, 1999: Convectively coupled equatorial waves: Analysis of clouds and temperature in the wavenumber–frequency domain. J. Atmos. Sci., 56, 374399, https://doi.org/10.1175/1520-0469(1999)056<0374:CCEWAO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wheeler, M. C., and H. H. Hendon, 2004: An all-season real-time multivariate MJO index: Development of an index for monitoring and prediction. Mon. Wea. Rev., 132, 19171932, https://doi.org/10.1175/1520-0493(2004)132<1917:AARMMI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yanai, M., and M.-M. Lu, 1983: Equatorially trapped waves at the 200 mb level and their association with meridional convergence of wave energy flux. J. Atmos. Sci., 40, 27852803, https://doi.org/10.1175/1520-0469(1983)040<2785:ETWATM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yang, G.-Y., and B. J. Hoskins, 1996: Propagation of Rossby waves of nonzero frequency. J. Atmos. Sci., 53, 23652378, https://doi.org/10.1175/1520-0469(1996)053<2365:PORWON>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yang, G.-Y., and B. J. Hoskins, 2013: ENSO impact on Kelvin waves and associated tropical convection. J. Atmos. Sci., 70, 35133532, https://doi.org/10.1175/JAS-D-13-081.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yang, G.-Y., and B. J. Hoskins, 2016: ENSO-related variation of equatorial MRG and Rossby waves and forcing from higher latitudes. Quart. J. Roy. Meteor. Soc., 142, 24882504, https://doi.org/10.1002/qj.2842.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yang, G.-Y., B. J. Hoskins, and J. Slingo, 2003: Convectively coupled equatorial waves: A new methodology for identifying wave structures in observational data. J. Atmos. Sci., 60, 16371654, https://doi.org/10.1175/1520-0469(2003)060<1637:CCEWAN>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yang, G.-Y., J. Methven, S. Woolnough, K. Hodges, and B. Hoskins, 2018: Linking African easterly wave activity with equatorial waves and the influence of Rossby waves from the Southern Hemisphere. J. Atmos. Sci., 75, 17831809, https://doi.org/10.1175/JAS-D-17-0184.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ying, Y., and F. Zhang, 2017: Practical and intrinsic predictability of multiscale weather and convectively coupled equatorial waves during the active phase of an MJO. J. Atmos. Sci., 74, 37713785, https://doi.org/10.1175/JAS-D-17-0157.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zangvil, A., and M. Yanai, 1980: Upper tropospheric waves in the tropics. Part I: Dynamical analysis in the wavenumber–frequency domain. J. Atmos. Sci., 37, 283298, https://doi.org/10.1175/1520-0469(1980)037<0283:UTWITT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, C., 1993: Laterally forced equatorial perturbations in a linear model. Part II: Mobile forcing. J. Atmos. Sci., 50, 807821, https://doi.org/10.1175/1520-0469(1993)050<0807:LFEPIA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Zhang, C., and P. J. Webster, 1992: Laterally forced equatorial perturbations in a linear model. Part I: Stationary transient forcing. J. Atmos. Sci., 49, 585607, https://doi.org/10.1175/1520-0469(1992)049<0585:LFEPIA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 483 483 71
Full Text Views 231 230 15
PDF Downloads 254 254 18

Two Extratropical Pathways to Forcing Tropical Convective Disturbances

Yuan-Ming ChengaNOAA/Physical Sciences Laboratory, Boulder, Colorado

Search for other papers by Yuan-Ming Cheng in
Current site
Google Scholar
PubMed
Close
,
Stefan TulichbCIRES, University of Colorado and NOAA/Physical Sciences Laboratory, Boulder, Colorado

Search for other papers by Stefan Tulich in
Current site
Google Scholar
PubMed
Close
,
George N. KiladisaNOAA/Physical Sciences Laboratory, Boulder, Colorado

Search for other papers by George N. Kiladis in
Current site
Google Scholar
PubMed
Close
, and
Juliana DiasaNOAA/Physical Sciences Laboratory, Boulder, Colorado

Search for other papers by Juliana Dias in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Observational evidence of two extratropical pathways to forcing tropical convective disturbances is documented through a statistical analysis of satellite-derived OLR and ERA5 reanalysis. The forcing mechanism and the resulting disturbances are found to strongly depend on the structure of the background zonal wind. Although Rossby wave propagation is prohibited in easterlies, modeling studies have shown that extratropical forcing can still excite equatorial waves through resonance between the tropics and extratropics. Here this “remote” forcing pathway is investigated for the first time in the context of convectively coupled Kelvin waves over the tropical Pacific during northern summer. The extratropical forcing is manifested by eddy momentum flux convergence that arises when extratropical eddies propagate into the subtropics and encounter their critical line. This nonlinear forcing has similar wavenumbers and frequencies with Kelvin waves and excites them by projecting onto their meridional eigenstructure in zonal wind, as a form of resonance. This resonance is also evidenced by a momentum budget analysis, which reveals the nonlinear forcing term is essential for maintenance of the waves, while the remaining linear terms are essential for propagation. In contrast, the “local” pathway of extratropical forcing entails the presence of a westerly duct during northern winter that permits Rossby waves to propagate into the equatorial east Pacific, while precluding any sort of resonance with Kelvin waves due to Doppler shifting effects. The intruding disturbances primarily excite tropical “cloud plumes” through quasigeostrophic forcing, while maintaining their extratropical nature. This study demonstrates the multiple roles of the extratropics in forcing in tropical circulations and illuminates how tropical–extratropical interactions and extratropical basic states can provide be a source of predictability at the S2S time scale.

Significance Statement

This study seeks to understand how circulations in the midlatitudes excite the weather systems in the tropics. Results show that the mechanisms, as well as the types of tropical weather systems excited, are strongly dependent on the mean large-scale wind structure. In particular, when the large-scale wind blows from east to west, a special type of eastward-moving tropical weather system, the Kelvin wave, is excited owing to its resonance with remote eastward-moving weather systems in the extratropics. On the contrary, when the average wind blows from west to east, midlatitude systems are observed to intrude into the lower latitudes and directly force tropical convection, the cloud plumes, while maintaining their extratropical nature. These results speak to how the midlatitudes can excite distinct types of tropical weather systems under different climatological wind regimes. Understanding these tropical weather systems and their interactions with the midlatitudes may ultimately help to improve predictions of weather beyond 2 weeks.

© 2022 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Yuan-Ming Cheng, yuan-ming.cheng@noaa.gov

Abstract

Observational evidence of two extratropical pathways to forcing tropical convective disturbances is documented through a statistical analysis of satellite-derived OLR and ERA5 reanalysis. The forcing mechanism and the resulting disturbances are found to strongly depend on the structure of the background zonal wind. Although Rossby wave propagation is prohibited in easterlies, modeling studies have shown that extratropical forcing can still excite equatorial waves through resonance between the tropics and extratropics. Here this “remote” forcing pathway is investigated for the first time in the context of convectively coupled Kelvin waves over the tropical Pacific during northern summer. The extratropical forcing is manifested by eddy momentum flux convergence that arises when extratropical eddies propagate into the subtropics and encounter their critical line. This nonlinear forcing has similar wavenumbers and frequencies with Kelvin waves and excites them by projecting onto their meridional eigenstructure in zonal wind, as a form of resonance. This resonance is also evidenced by a momentum budget analysis, which reveals the nonlinear forcing term is essential for maintenance of the waves, while the remaining linear terms are essential for propagation. In contrast, the “local” pathway of extratropical forcing entails the presence of a westerly duct during northern winter that permits Rossby waves to propagate into the equatorial east Pacific, while precluding any sort of resonance with Kelvin waves due to Doppler shifting effects. The intruding disturbances primarily excite tropical “cloud plumes” through quasigeostrophic forcing, while maintaining their extratropical nature. This study demonstrates the multiple roles of the extratropics in forcing in tropical circulations and illuminates how tropical–extratropical interactions and extratropical basic states can provide be a source of predictability at the S2S time scale.

Significance Statement

This study seeks to understand how circulations in the midlatitudes excite the weather systems in the tropics. Results show that the mechanisms, as well as the types of tropical weather systems excited, are strongly dependent on the mean large-scale wind structure. In particular, when the large-scale wind blows from east to west, a special type of eastward-moving tropical weather system, the Kelvin wave, is excited owing to its resonance with remote eastward-moving weather systems in the extratropics. On the contrary, when the average wind blows from west to east, midlatitude systems are observed to intrude into the lower latitudes and directly force tropical convection, the cloud plumes, while maintaining their extratropical nature. These results speak to how the midlatitudes can excite distinct types of tropical weather systems under different climatological wind regimes. Understanding these tropical weather systems and their interactions with the midlatitudes may ultimately help to improve predictions of weather beyond 2 weeks.

© 2022 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Yuan-Ming Cheng, yuan-ming.cheng@noaa.gov
Save