• Abbot, D. S., and I. Halevy, 2010: Dust aerosol important for Snowball Earth deglaciation. J. Climate, 23, 41214132, https://doi.org/10.1175/2010JCLI3378.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Abbot, D. S., and R. T. Pierrehumbert, 2010: Mudball: Surface dust and Snowball Earth deglaciation. J. Geophys. Res., 115, D03104, https://doi.org/10.1029/2009JD012007.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Abbot, D. S., A. Voigt, and D. Koll, 2011: The Jormungand global climate state and implications for Neoproterozoic glaciations. J. Geophys. Res., 116, D18103, https://doi.org/10.1029/2011JD015927.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Abbot, D. S., A. Voigt, M. Branson, R. T. Pierrehumbert, D. Pollard, G. Le Hir, and D. D. B. Koll, 2012: Clouds and Snowball Earth deglaciation. Geophys. Res. Lett., 39, 2012GL052861, https://doi.org/10.1029/2012GL052861.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bechtold, P., M. Koehler, T. Jung, F. Doblas-Reyes, M. Leutbecher, M. J. Rodwell, F. Vitart, and G. Balsamo, 2008: Advances in simulating atmospheric variability with the ECMWF model: From synoptic to decadal time-scales. Quart. J. Roy. Meteor. Soc., 134, 13371351, https://doi.org/10.1002/qj.289.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Boucher, O. , and Coauthors, 2013: Clouds and aerosols. Climate Change 2013: The Physical Science Basis, T. F. Stocker et al., Eds., Cambridge University Press, 571657.

    • Search Google Scholar
    • Export Citation
  • Braun, C., J. Hörner, A. Voigt, and J. G. Pinto, 2022: Ice-free tropical waterbelt for Snowball Earth events questioned by uncertain clouds. Nat. Geosci., 15, 489493, https://doi.org/10.1038/s41561-022-00950-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Collins, W. D., and Coauthors, 2004: Description of the NCAR Community Atmosphere Model (CAM 3.0). NCAR Tech. Note NCAR/TN-464+STR, 214 pp., https://doi.org/10.5065/D63N21CH.

    • Search Google Scholar
    • Export Citation
  • de Rooy, W. C., and Coauthors, 2013: Entrainment and detrainment in cumulus convection: An overview. Quart. J. Roy. Meteor. Soc., 139 (670), 119, https://doi.org/10.1002/qj.1959.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dipankar, A., B. Stevens, R. Heinze, C. Moseley, G. Zängl, M. Giorgetta, and S. Brdar, 2015: Large eddy simulation using the general circulation model ICON. J. Adv. Model. Earth Syst., 7, 963986, https://doi.org/10.1002/2015MS000431.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Drugé, T., P. Nabat, M. Mallet, and S. Somot, 2021: Future evolution of aerosols and implications for climate change in the Euro-Mediterranean region using the CNRM-ALADIN63 regional climate model. Atmos. Chem. Phys., 21, 76397669, https://doi.org/10.5194/acp-21-7639-2021.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Feulner, G., C. Hallmann, and H. Kienert, 2015: Snowball cooling after algal rise. Nat. Geosci., 8, 659662, https://doi.org/10.1038/ngeo2523.

  • Field, P. R. , and Coauthors, 2017: Secondary ice production: Current state of the science and recommendations for the future. Ice Formation and Evolution in Clouds and Precipitation: Measurement and Modeling Challenges, Meteor. Monogr., Vol. 58, Amer. Meteor. Soc., https://doi.org/10.1175/AMSMONOGRAPHS-D-16-0014.1.

    • Search Google Scholar
    • Export Citation
  • Giorgetta, M. A., and Coauthors, 2018: ICON-A, the atmosphere component of the ICON Earth system model: I. Model description. J. Adv. Model. Earth Syst., 10, 16131637, https://doi.org/10.1029/2017MS001242.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Giorgi, F., 2019: Thirty years of regional climate modeling: Where are we and where are we going next? J. Geophys. Res. Atmos., 124, 56965723, https://doi.org/10.1029/2018JD030094.

    • Search Google Scholar
    • Export Citation
  • Hande, L., C. Engler, C. Hoose, and I. Tegen, 2015: Seasonal variability of Saharan desert dust and ice nucleating particles over Europe. Atmos. Chem. Phys., 15, 43894397, https://doi.org/10.5194/acp-15-4389-2015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Heinze, R., and Coauthors, 2017: Large-eddy simulations over Germany using ICON: A comprehensive evaluation. Quart. J. Roy. Meteor. Soc., 143, 69100, https://doi.org/10.1002/qj.2947.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hoffman, P. F., 2016: Cryoconite pans on Snowball Earth: Supraglacial oases for Cryogenian eukaryotes? Geobiology, 14, 531542, https://doi.org/10.1111/gbi.12191.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hoffman, P. F., A. J. Kaufman, G. P. Halverson, and D. P. Schrag, 1998: A Neoproterozoic Snowball Earth. Science, 281, 13421346, https://doi.org/10.1126/science.281.5381.1342.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hoffman, P. F., and Coauthors, 2017: Snowball Earth climate dynamics and Cryogenian geology-geobiology. Sci. Adv., 3, e1600983, https://doi.org/10.1126/sciadv.1600983.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hohenegger, C., L. Kornblueh, D. Klocke, T. Becker, G. Cioni, J. F. Engels, U. Schulzweida, and B. Stevens, 2020: Climate statistics in global simulations of the atmosphere, from 80 to 2.5 km grid spacing. J. Meteor. Soc. Japan, 98, 2020005, https://doi.org/10.2151/jmsj.2020-005.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hoose, C., and O. Möhler, 2012: Heterogeneous ice nucleation on atmospheric aerosols: A review of results from laboratory experiments. Atmos. Chem. Phys., 12, 98179854, https://doi.org/10.5194/acp-12-9817-2012.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hourdin, F., and Coauthors, 2017: The art and science of climate model tuning. Bull. Amer. Meteor. Soc., 98, 589602, https://doi.org/10.1175/BAMS-D-15-00135.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hyde, W. T., T. J. Crowley, S. K. Baum, and W. R. Peltier, 2000: Neoproterozoic ‘snowball Earth’ simulations with a coupled climate/ice-sheet model. Nature, 405, 425429, https://doi.org/10.1038/35013005.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kageyama, M., and Coauthors, 2017: The PMIP4 contribution to CMIP6–Part 4: Scientific objectives and experimental design of the PMIP4-CMIP6 Last Glacial Maximum experiments and PMIP4 sensitivity experiments. Geosci. Model Dev., 10, 40354055, https://doi.org/10.5194/gmd-10-4035-2017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kanji, Z. A., L. A. Ladino, H. Wex, Y. Boose, M. Burkert-Kohn, D. J. Cziczo, and M. Krämer, 2017: Overview of ice nucleating particles. Ice Formation and Evolution in Clouds and Precipitation: Measurement and Modeling Challenges, Meteor. Monogr., No. 58, Amer. Meteor. Soc., https://doi.org/10.1175/AMSMONOGRAPHS-D-16-0006.1.

    • Search Google Scholar
    • Export Citation
  • Kirschvink, J. L., 1992: Late Proterozoic low-latitude global glaciation: The snowball Earth. The Proterozoic Biosphere: A Multidisciplinary Study, J. W. Schopf, C. Klein, and D. Des Maris, Eds., Cambridge University Press, 5152.

    • Search Google Scholar
    • Export Citation
  • Klein, S. A., A. Hall, J. R. Norris, and R. Pincus, 2017: Low-cloud feedbacks from cloud-controlling factors: A review. Surv. Geophys., 38, 13071329, https://doi.org/10.1007/s10712-017-9433-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Korolev, A. , and Coauthors, 2017: Mixed-phase clouds: Progress and challenges. Ice Formation and Evolution in Clouds and Precipitation: Measurement and Modeling Challenges, Meteor. Monogr., No. 58, https://doi.org/10.1175/AMSMONOGRAPHS-D-17-0001.1.

    • Search Google Scholar
    • Export Citation
  • Lebo, Z., and H. Morrison, 2015: Effects of horizontal and vertical grid spacing on mixing in simulated squall lines and implications for convective strength and structure. Mon. Wea. Rev., 143, 43554375, https://doi.org/10.1175/MWR-D-15-0154.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lee, L., K. Pringle, C. Reddington, G. Mann, P. Stier, D. Spracklen, J. Pierce, and K. Carslaw, 2013: The magnitude and causes of uncertainty in global model simulations of cloud condensation nuclei. Atmos. Chem. Phys., 13, 88798914, https://doi.org/10.5194/acp-13-8879-2013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Le Hir, G., Y. Donnadieu, G. Krinner, and G. Ramstein, 2010: Toward the Snowball Earth deglaciation. Climate Dyn., 35, 285297, https://doi.org/10.1007/s00382-010-0748-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, D., and R. T. Pierrehumbert, 2011: Sea glacier flow and dust transport on Snowball Earth. Geophys. Res. Lett., 38, L17501, https://doi.org/10.1029/2011GL048991.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, P., Y. Liu, Y. Peng, J.-F. Lamarque, M. Wang, and Y. Hu, 2020: Large influence of dust on the Precambrian climate. Nat. Commun., 11, 4427, https://doi.org/10.1038/s41467-020-18258-2.

    • Search Google Scholar
    • Export Citation
  • Liu, Y., P. Liu, D. Li, Y. Peng, and Y. Hu, 2021: Influence of dust on the initiation of Neoproterozoic snowball Earth events. J. Climate, 34, 66736689, https://doi.org/10.1175/JCLI-D-20-0803.1.

    • Search Google Scholar
    • Export Citation
  • Love, G. D., and Coauthors, 2009: Fossil steroids record the appearance of Demospongiae during the Cryogenian period. Nature, 457, 718721, https://doi.org/10.1038/nature07673.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Macdonald, F. A., and R. Wordsworth, 2017: Initiation of Snowball Earth with volcanic sulfur aerosol emissions. Geophys. Res. Lett., 44, 19381946, https://doi.org/10.1002/2016GL072335.

    • Search Google Scholar
    • Export Citation
  • Madonna, E., H. Wernli, H. Joos, and O. Martius, 2014: Warm conveyor belts in the ERA-Interim dataset (1979–2010). Part I: Climatology and potential vorticity evolution. J. Climate, 27, 326, https://doi.org/10.1175/JCLI-D-12-00720.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McCoy, D. T., D. L. Hartmann, M. D. Zelinka, P. Ceppi, and D. P. Grosvenor, 2015: Mixed-phase cloud physics and Southern Ocean cloud feedback in climate models. J. Geophys. Res. Atmos., 120, 95399554, https://doi.org/10.1002/2015JD023603.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McGraw, Z., T. Storelvmo, R. O. David, and N. Sagoo, 2020: Global radiative impacts of mineral dust perturbations through stratiform clouds. J. Geophys. Res. Atmos., 125, https://doi.org/10.1029/2019JD031807.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mironov, D., B. Ritter, J.-P. Schulz, M. Buchhold, M. Lange, and E. MacHulskaya, 2012: Parameterisation of sea and lake ice in numerical weather prediction models of the German Weather Service. Tellus, 64A, 17330, https://doi.org/10.3402/tellusa.v64i0.17330.

    • Search Google Scholar
    • Export Citation
  • Mlawer, E. J., S. J. Taubman, P. D. Brown, M. J. Iacono, and S. A. Clough, 1997: Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the longwave. J. Geophys. Res., 102, 16 66316 682, https://doi.org/10.1029/97JD00237.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Morris, J. L., and Coauthors, 2018: The timescale of early land plant evolution. Proc. Natl. Acad. Sci. USA, 115, E2274E2283, https://doi.org/10.1073/pnas.1719588115.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Phillips, V. T., P. J. DeMott, and C. Andronache, 2008: An empirical parameterization of heterogeneous ice nucleation for multiple chemical species of aerosol. J. Atmos. Sci., 65, 27572783, https://doi.org/10.1175/2007JAS2546.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pierrehumbert, R., D. Abbot, A. Voigt, and D. Koll, 2011: Climate of the Neoproterozoic. Annu. Rev. Earth Planet. Sci., 39, 417460, https://doi.org/10.1146/annurev-earth-040809-152447.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Prill, F., D. Reinert, D. Rieger, and G. Zängl, 2020: Working with the ICON Model: Practical exercises for NWP mode and ICON-ART. Deutscher Wetterdienst Tech. Rep., https://code.mpimet.mpg.de/attachments/download/19568/ICON_tutorial_2019.pdf.

    • Search Google Scholar
    • Export Citation
  • Raschendorfer, M., 2001: The new turbulence parameterization of LM. COSMO Newsletter, No. 1, Consortium for Small-Scale Modelling, Offenbach, Germany, 8997, http://www.cosmo-model.org/content/model/documentation/newsLetters/newsLetter01/newsLetter_01.pdf.

    • Search Google Scholar
    • Export Citation
  • Rauterkus, R., and C. Ansorge, 2020: Cloud-top entrainment in mixed-phase stratocumulus and its process-level representation in large-eddy simulation. J. Atmos. Sci., 77, 41094127, https://doi.org/10.1175/JAS-D-19-0221.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rodehacke, C. B., A. Voigt, F. Ziemen, and D. S. Abbot, 2013: An open ocean region in Neoproterozoic glaciations would have to be narrow to allow equatorial ice sheets. Geophys. Res. Lett., 40, 55035507, https://doi.org/10.1002/2013GL057582.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rose, B. E. J., 2015: Stable “Waterbelt” climates controlled by tropical ocean heat transport: A nonlinear coupled climate mechanism of relevance to Snowball Earth. J. Geophys. Res. Atmos., 120, 14041423, https://doi.org/10.1002/2014JD022659.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sagoo, N., and T. Storelvmo, 2017: Testing the sensitivity of past climates to the indirect effects of dust. Geophys. Res. Lett., 44, 58075817, https://doi.org/10.1002/2017GL072584.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sakradzija, M., A. Seifert, and A. Dipankar, 2016: A stochastic scale-aware parameterization of shallow cumulus convection across the convective gray zone. J. Adv. Model. Earth Syst., 8, 786812, https://doi.org/10.1002/2016MS000634.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Segal, Y., and A. Khain, 2006: Dependence of droplet concentration on aerosol conditions in different cloud types: Application to droplet concentration parameterization of aerosol conditions. J. Geophys. Res., 111, D15204, https://doi.org/10.1029/2005JD006561.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Seifert, A., and K. D. Beheng, 2006: A two-moment cloud microphysics parameterization for mixed-phase clouds. Part 1: Model description. Meteor. Atmos. Phys., 92, 4566, https://doi.org/10.1007/s00703-005-0112-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Seifert, A., C. Köhler, and K. Beheng, 2011: Aerosol-cloud-precipitation effects over Germany as simulated by a convective-scale numerical weather prediction model. Atmos. Chem. Phys., 11, 203220, https://doi.org/10.5194/acpd-11-20203-2011.

    • Search Google Scholar
    • Export Citation
  • Senf, F., A. Voigt, N. Clerbaux, A. Hünerbein, and H. Deneke, 2020: Increasing resolution and resolving convection improve the simulation of cloud-radiative effects over the North Atlantic. J. Geophys. Res. Atmos., 125, e2020JD032667, https://doi.org/10.1029/2020JD032667.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sherwood, S. C., S. Bony, and J.-L. Dufresne, 2014: Spread in model climate sensitivity traced to atmospheric convective mixing. Nature, 505, 3742, https://doi.org/10.1038/nature12829.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sledd, A., and T. L’Ecuyer, 2019: How much do clouds mask the impacts of Arctic sea ice and snow cover variations? Different perspectives from observations and reanalyses. Atmosphere, 10, 12, https://doi.org/10.3390/atmos10010012.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smagorinsky, J., 1963: General circulation experiments with the primitive equations: I. The basic experiment. Mon. Wea. Rev., 91, 99164, https://doi.org/10.1175/1520-0493(1963)091<0099:GCEWTP>2.3.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stevens, B., and Coauthors, 2020: The added value of large-eddy and storm-resolving models for simulating clouds and precipitation. J. Meteor. Soc. Japan, 98, 395435, https://doi.org/10.2151/jmsj.2020-021.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stevens, D. E., A. S. Ackerman, and C. S. Bretherton, 2002: Effects of domain size and numerical resolution on the simulation of shallow cumulus convection. J. Atmos. Sci., 59, 32853301, https://doi.org/10.1175/1520-0469(2002)059<3285:EODSAN>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Storelvmo, T., and I. Tan, 2015: The Wegener–Bergeron–Findeisen process—Its discovery and vital importance for weather and climate. Meteor. Z., 24, 455461, https://doi.org/10.1127/metz/2015/0626.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tiedtke, M., 1989: A comprehensive mass flux scheme for cumulus parameterization in large-scale models. Mon. Wea. Rev., 117, 17791800, https://doi.org/10.1175/1520-0493(1989)117<1779:ACMFSF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Twomey, S., 1977: The influence of pollution on the shortwave albedo of clouds. J. Atmos. Sci., 34, 11491152, https://doi.org/10.1175/1520-0469(1977)034<1149:TIOPOT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vergara-Temprado, J. , and Coauthors, 2018: Strong control of Southern Ocean cloud reflectivity by ice-nucleating particles. Proc. Natl. Acad. Sci. USA, 115, 26872692, https://doi.org/10.1073/pnas.1721627115.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Walsh, A., T. Ball, and D. M. Schultz, 2019: Extreme sensitivity in Snowball Earth formation to mountains on PaleoProterozoic supercontinents. Sci. Rep., 9, 2349, https://doi.org/10.1038/s41598-019-38839-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Weisman, M. L., W. C. Skamarock, and J. B. Klemp, 1997: The resolution dependence of explicitly modeled convective systems. Mon. Wea. Rev., 125, 527548, https://doi.org/10.1175/1520-0493(1997)125<0527: TRDOEM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wilson, T. W., and Coauthors, 2015: A marine biogenic source of atmospheric ice-nucleating particles. Nature, 525, 234238, https://doi.org/10.1038/nature14986.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wood, R., and C. S. Bretherton, 2006: On the relationship between stratiform low cloud cover and lower-tropospheric stability. J. Climate, 19, 64256432, https://doi.org/10.1175/JCLI3988.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, J., Y. Liu, and Z. Zhao, 2021: How should snowball Earth deglaciation start. J. Geophys. Res. Atmos., 126, e2020JD033833, https://doi.org/10.1029/2020JD033833.

    • Search Google Scholar
    • Export Citation
  • Zängl, G., D. Reinert, P. Rípodas, and M. Baldauf, 2015: The ICON (ICOsahedral Non-hydrostatic) modelling framework of DWD and MPI-M: Description of the non-hydrostatic dynamical core. Quart. J.. Roy. Meteor. Soc., 141, 563579, https://doi.org/10.1002/qj. 2378.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 394 394 19
Full Text Views 96 96 13
PDF Downloads 105 105 14

Controls on Subtropical Cloud Reflectivity during a Waterbelt Scenario for the Cryogenian Glaciations

Christoph BraunaInstitute of Meteorology and Climate Research, Karlsruhe Institute of Technology, Karlsruhe, Germany

Search for other papers by Christoph Braun in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0002-8939-6501
,
Aiko VoigtbDepartment of Meteorology and Geophysics, University of Vienna, Vienna, Austria

Search for other papers by Aiko Voigt in
Current site
Google Scholar
PubMed
Close
,
Corinna HooseaInstitute of Meteorology and Climate Research, Karlsruhe Institute of Technology, Karlsruhe, Germany

Search for other papers by Corinna Hoose in
Current site
Google Scholar
PubMed
Close
,
Annica M. L. EkmancDepartment of Meteorology and Bolin Center for Climate Research, Stockholm University, Stockholm, Sweden

Search for other papers by Annica M. L. Ekman in
Current site
Google Scholar
PubMed
Close
, and
Joaquim G. PintoaInstitute of Meteorology and Climate Research, Karlsruhe Institute of Technology, Karlsruhe, Germany

Search for other papers by Joaquim G. Pinto in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Waterbelt climate states with an ice-free tropical ocean provide a straightforward explanation for the survival of advanced marine species during the Cryogenian glaciations (720–635 million years ago). Previous work revealed that stable waterbelt states require the presence of highly reflective low-level mixed-phase clouds with a high abundance of supercooled liquid in the subtropics. However, the high uncertainty associated with representing mixed-phase clouds in coarse-scale general circulation models (GCMs) that parameterize atmospheric convection has prohibited assessment of whether waterbelt states are a robust feature of Earth’s climate. Here we investigate whether resolving convective-scale motion at length scales of hectometers helps us to assess the plausibility of a waterbelt scenario. First, we show that substantial differences in cloud reflectivity among GCMs do not arise from the resolved atmospheric circulation. Second, we conduct a hierarchy of simulations using the Icosahedral Nonhydrostatic (ICON) modeling framework, ranging from coarse-scale GCM simulations with parameterized convection to large-eddy simulations that explicitly resolve atmospheric convective-scale motions. Our hierarchy of simulations supports the existence of highly reflective subtropical clouds if we apply moderate ice nucleating particle (INP) concentrations. Third, we test the sensitivity of cloud reflectivity to the INP concentration. In the presence of high but justifiable INP concentrations, cloud reflectivity is strongly reduced. Hence, the existence of stable waterbelt states is controlled by the abundance of INPs. We conclude that explicitly resolving convection can help to constrain Cryogenian cloud reflectivity, but limited knowledge concerning Cryogenian aerosol conditions hampers strong constraints. Thus, waterbelt states remain an uncertain feature of Earth’s climate.

Significance Statement

The purpose of this study is to assess the impact of atmospheric convection and small airborne ice nucleating particles on the reflectivity of mixed-phase clouds over a subtropical ice margin. This is important as these clouds can determine whether the Cryogenian Earth (720–635 million years ago) was in a hard “snowball” state with a fully ice-covered ocean or a habitable waterbelt state with an ice-free tropical ocean. Our results indicate a clear impact of convection but neither confirm nor deny the existence of a waterbelt state since cloud reflectivity depends critically on the abundance of ice nucleating particles. Therefore, a Cryogenian waterbelt scenario remains uncertain, which calls for more comprehensive Earth system modeling approaches in future studies.

© 2022 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding authors: Aiko Voigt, aiko.voigt@univie.ac.at; Christoph Braun, chris.braun90@web.de

Abstract

Waterbelt climate states with an ice-free tropical ocean provide a straightforward explanation for the survival of advanced marine species during the Cryogenian glaciations (720–635 million years ago). Previous work revealed that stable waterbelt states require the presence of highly reflective low-level mixed-phase clouds with a high abundance of supercooled liquid in the subtropics. However, the high uncertainty associated with representing mixed-phase clouds in coarse-scale general circulation models (GCMs) that parameterize atmospheric convection has prohibited assessment of whether waterbelt states are a robust feature of Earth’s climate. Here we investigate whether resolving convective-scale motion at length scales of hectometers helps us to assess the plausibility of a waterbelt scenario. First, we show that substantial differences in cloud reflectivity among GCMs do not arise from the resolved atmospheric circulation. Second, we conduct a hierarchy of simulations using the Icosahedral Nonhydrostatic (ICON) modeling framework, ranging from coarse-scale GCM simulations with parameterized convection to large-eddy simulations that explicitly resolve atmospheric convective-scale motions. Our hierarchy of simulations supports the existence of highly reflective subtropical clouds if we apply moderate ice nucleating particle (INP) concentrations. Third, we test the sensitivity of cloud reflectivity to the INP concentration. In the presence of high but justifiable INP concentrations, cloud reflectivity is strongly reduced. Hence, the existence of stable waterbelt states is controlled by the abundance of INPs. We conclude that explicitly resolving convection can help to constrain Cryogenian cloud reflectivity, but limited knowledge concerning Cryogenian aerosol conditions hampers strong constraints. Thus, waterbelt states remain an uncertain feature of Earth’s climate.

Significance Statement

The purpose of this study is to assess the impact of atmospheric convection and small airborne ice nucleating particles on the reflectivity of mixed-phase clouds over a subtropical ice margin. This is important as these clouds can determine whether the Cryogenian Earth (720–635 million years ago) was in a hard “snowball” state with a fully ice-covered ocean or a habitable waterbelt state with an ice-free tropical ocean. Our results indicate a clear impact of convection but neither confirm nor deny the existence of a waterbelt state since cloud reflectivity depends critically on the abundance of ice nucleating particles. Therefore, a Cryogenian waterbelt scenario remains uncertain, which calls for more comprehensive Earth system modeling approaches in future studies.

© 2022 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding authors: Aiko Voigt, aiko.voigt@univie.ac.at; Christoph Braun, chris.braun90@web.de
Save