• An, S., E. Tziperman, Y. M. Okumura, and T. Li, 2021: ENSO irregularity and asymmetry. El Niño Southern Oscillation in a Changing Climate, Geophys. Monogr., Vol. 253, Wiley, 153172.

    • Search Google Scholar
    • Export Citation
  • Bellenger, H., E. Guilyardi, J. Leloup, M. Lengaigne, and J. Vialard, 2014: ENSO representation in climate models: From CMIP3 to CMIP5. Climate Dyn., 42, 19992018, https://doi.org/10.1007/s00382-013-1783-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bjerknes, J., 1969: Atmospheric teleconnections from the equatorial Pacific. Mon. Wea. Rev., 97, 163172, https://doi.org/10.1175/1520-0493(1969)097<0163:ATFTEP>2.3.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Burls, N., L. Muir, E. M. Vincent, and A. Fedorov, 2017: Extra-tropical origin of equatorial Pacific cold bias in climate models with links to cloud albedo. Climate Dyn., 49, 20932113, https://doi.org/10.1007/s00382-016-3435-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Capotondi, A., and Coauthors, 2015: Understanding ENSO diversity. Bull. Amer. Meteor. Soc., 96, 921938, https://doi.org/10.1175/BAMS-D-13-00117.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Capotondi, A., C. Deser, A. S. Phillips, Y. Okumura, and S. M. Larson, 2020: ENSO and Pacific decadal variability in the Community Earth System Model version 2. J. Adv. Model. Earth Syst., 12, e2019MS002022, https://doi.org/10.1029/2019MS002022.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, D., and Coauthors, 2015: Strong influence of westerly wind bursts on El Niño diversity. Nat. Geosci., 8, 339345, https://doi.org/10.1038/ngeo2399.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chiodi, A. M., and D. E. Harrison, 2015: Equatorial Pacific easterly wind surges and the onset of La Niña events. J. Climate, 28, 776792, https://doi.org/10.1175/JCLI-D-14-00227.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chiodi, A. M., D. E. Harrison, and G. A. Vecchi, 2014: Subseasonal atmospheric variability and El Niño waveguide warming: Observed effects of the Madden–Julian oscillation and westerly wind events. J. Climate, 27, 36193642, https://doi.org/10.1175/JCLI-D-13-00547.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Choi, J., S.-I. An, S.-W. Yeh, and J.-Y. Yu, 2013: ENSO-like and ENSO-induced tropical Pacific decadal variability in CGCMs. J. Climate, 26, 14851501, https://doi.org/10.1175/JCLI-D-12-00118.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chu, P.-S., 1988: Extratropical forcing and the burst of equatorial westerlies in the western Pacific: A synoptic study. J. Meteor. Soc. Japan, 66, 549564, https://doi.org/10.2151/jmsj1965.66.4_549.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dee, D. P., and Coauthors, 2011: The ERA‐Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597, https://doi.org/10.1002/qj.828.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Delcroix, T., G. Eldin, M. McPhaden, and A. Morlière, 1993: Effects of westerly wind bursts upon the western equatorial Pacific Ocean, February–April 1991. J. Geophys. Res., 98, 16 379–16 385, https://doi.org/10.1029/93JC01261.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • DiNezio, P. N., C. Deser, Y. Okumura, and A. Karspeck, 2017: Predictability of 2-year La Niña events in a coupled general circulation model. Climate Dyn., 49, 42374261, https://doi.org/10.1007/s00382-017-3575-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Eisenman, I., L. Yu, and E. Tziperman, 2005: Westerly wind bursts: ENSO’s tail rather than the dog? J. Climate, 18, 52245238, https://doi.org/10.1175/JCLI3588.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fedorov, A. V., 2002: The response of the coupled tropical ocean–atmosphere to westerly wind bursts. Quart. J. Roy. Meteor. Soc., 128, 123, https://doi.org/10.1002/qj.200212857901.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fedorov, A. V., and S. G. Philander, 2000: Is El Niño changing? Science, 288, 19972002, https://doi.org/10.1126/science.288.5473.1997.

  • Fedorov, A. V., S. L. Harper, S. G. Philander, B. Winter, and A. Wittenberg, 2003: How predictable is El Niño? Bull. Amer. Meteor. Soc., 84, 911920, https://doi.org/10.1175/BAMS-84-7-911.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fedorov, A. V., S. Hu, M. Lengaigne, and E. Guilyardi, 2015: The impact of westerly wind bursts and ocean initial state on the development, and diversity of El Niño events. Climate Dyn., 44, 13811401, https://doi.org/10.1007/s00382-014-2126-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fedorov, A. V., S. Hu, A. T. Wittenberg, A. F. Z. Levine, and C. Deser, 2021: ENSO low-frequency modulation and mean state interactions. El Niño Southern Oscillation in a Changing Climate. Geophy. Monogr., Vol. 253, Wiley, 173198.

    • Search Google Scholar
    • Export Citation
  • Feng, J., and T. Lian, 2018: Assessing the relationship between MJO and equatorial Pacific WWBs in observations and CMIP5 models. J. Climate, 31, 63936410, https://doi.org/10.1175/JCLI-D-17-0526.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gebbie, G., and E. Tziperman, 2009: Incorporating a semi-stochastic model of ocean-modulated westerly wind bursts into an ENSO prediction model. Theor. Appl. Climatol., 97, 6573, https://doi.org/10.1007/s00704-008-0069-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gebbie, G., I. Eisenman, A. Wittenberg, and E. Tziperman, 2007: Modulation of westerly wind bursts by sea surface temperature: A semistochastic feedback for ENSO. J. Atmos. Sci., 64, 32813295, https://doi.org/10.1175/JAS4029.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gelaro, R., and Coauthors, 2017: The Modern-Era Retrospective Analysis for Research and Applications, version 2 (MERRA-2). J. Climate, 30, 54195454, https://doi.org/10.1175/JCLI-D-16-0758.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Guilyardi, E., W. Cai, M. Collins, A. Fedorov, F.-F. Jin, A. Kumar, D.-Z. Sun, and A. Wittenberg, 2012: New strategies for evaluating ENSO processes in climate models. Bull. Amer. Meteor. Soc., 93, 235238, https://doi.org/10.1175/BAMS-D-11-00106.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Harrison, D. E., 1984: The appearance of sustained equatorial surface westerlies during the 1982 Pacific warm event. Science, 224, 10991102, https://doi.org/10.1126/science.224.4653.1099.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Harrison, D. E., and D. S. Luther, 1990: Surface winds from tropical Pacific islands—Climatological statistics. J. Climate, 3, 251271, https://doi.org/10.1175/1520-0442(1990)003<0251:SWFTPI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Harrison, D. E., and B. S. Giese, 1991: Episodes of surface westerly winds as observed from islands in the western tropical Pacific. J. Geophys. Res., 96, 32213237, https://doi.org/10.1029/90JC01775.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hartten, L. M., 1996: Synoptic settings of westerly wind bursts. J. Geophys. Res., 101, 16 99717 019, https://doi.org/10.1029/96JD00030.

  • Hayashi, M., and M. Watanabe, 2016: Asymmetry of westerly and easterly wind events: Observational evidence. SOLA, 12, 4245, https://doi.org/10.2151/sola.2016-009.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hayashi, M., and M. Watanabe, 2017: ENSO complexity induced by state dependence of westerly wind events. J. Climate, 30, 34013420, https://doi.org/10.1175/JCLI-D-16-0406.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hu, S., and A. V. Fedorov, 2016: Exceptionally strong easterly wind burst stalling El Niño of 2014. Proc. Natl. Acad. Sci. USA, 113, 20052010, https://doi.org/10.1073/pnas.1514182113.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hu, S., and A. V. Fedorov, 2019: The extreme El Niño of 2015–2016: The role of westerly and easterly wind bursts, and preconditioning by the failed 2014 event. Climate Dyn., 52, 73397357, https://doi.org/10.1007/s00382-017-3531-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hu, S., A. V. Fedorov, M. Lengaigne, and E. Guilyardi, 2014: The impact of westerly wind bursts on the diversity and predictability of El Niño events: An ocean energetics perspective. Geophys. Res. Lett., 41, 46544663, https://doi.org/10.1002/2014GL059573.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hurrell, J. W., and Coauthors, 2013: The Community Earth System Model: A framework for collaborative research. Bull. Amer. Meteor. Soc., 94, 13391360, https://doi.org/10.1175/BAMS-D-12-00121.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jin, F.-F., L. Lin, A. Timmermann, and J. Zhao, 2007: Ensemble‐mean dynamics of the ENSO recharge oscillator under state‐dependent stochastic forcing. Geophys. Res. Lett., 34, L03807, https://doi.org/10.1029/2006GL027372.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Keen, R. A., 1982: The role of cross-equatorial tropical cyclone pairs in the Southern Oscillation. Mon. Wea. Rev., 110, 14051416, https://doi.org/10.1175/1520-0493(1982)110<1405:TROCET>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kohyama, T., D. L. Hartmann, and D. S. Battisti, 2017: La Niña–like mean-state response to global warming and potential oceanic roles. J. Climate, 30, 42074225, https://doi.org/10.1175/JCLI-D-16-0441.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kug, J.-S., F.-F. Jin, and S.-I. An, 2009: Two types of El Niño events: Cold tongue El Niño and warm pool El Niño. J. Climate, 22, 14991515, https://doi.org/10.1175/2008JCLI2624.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Larson, S. M., and B. P. Kirtman, 2015: An alternate approach to ensemble ENSO forecast spread: Application to the 2014 forecast. Geophys. Res. Lett., 42, 94119415, https://doi.org/10.1002/2015GL066173.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Latif, M., J. Biercamp, and H. von Storch, 1988: The response of a coupled ocean–atmosphere general circulation model to wind bursts. J. Atmos. Sci., 45, 964979, https://doi.org/10.1175/1520-0469(1988)045<0964:TROACO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lau, K.-M., P. Li, C. H. Sui, and T. Nakazawa, 1989: Dynamics of super cloud clusters, westerly wind bursts, 30–60 day oscillations and ENSO: An unified view. J. Meteor. Soc. Japan, 67, 205219, https://doi.org/10.2151/jmsj1965.67.2_205.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lengaigne, M., J.-P. Boulanger, C. Menkes, S. Masson, G. Madec, and P. Delecluse, 2002: Ocean response to the March 1997 westerly wind event. J. Geophys. Res., 107, 8015, https://doi.org/10.1029/2001JC000841.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lengaigne, M., E. Guilyardi, J.-P. Boulanger, C. Menkes, P. Delecluse, P. Inness, J. Cole, and J. Slingo, 2004: Triggering of El Niño by westerly wind events in a coupled general circulation model. Climate Dyn., 23, 601620, https://doi.org/10.1007/s00382-004-0457-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Levine, A. F. Z., and F.-F. Jin, 2010: Noise-induced instability in the ENSO recharge oscillator. J. Atmos. Sci., 67, 529542, https://doi.org/10.1175/2009JAS3213.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Levine, A. F. Z., and M. J. McPhaden, 2016: How the July 2014 easterly wind burst gave the 2015–2016 El Niño a head start. Geophys. Res. Lett., 43, 65036510, https://doi.org/10.1002/2016GL069204.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Levine, A. F. Z., F.-F. Jin, and M. J. McPhaden, 2016: Extreme noise-extreme El Niño: How state-dependent noise forcing creates El Niño–La Niña asymmetry. J. Climate, 29, 54835499, https://doi.org/10.1175/JCLI-D-16-0091.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Levine, A. F. Z., F.-F. Jin, and M. F. Stuecker, 2017: A simple approach to quantifying the noise–ENSO interaction. Part II: The role of coupling between the warm pool and equatorial zonal wind anomalies. Climate Dyn., 48, 1937, https://doi.org/10.1007/s00382-016-3268-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, G., and S.-P. Xie, 2014: Tropical biases in CMIP5 multimodel ensemble: The excessive equatorial Pacific cold tongue and double ITCZ problems. J. Climate, 27, 17651780, https://doi.org/10.1175/JCLI-D-13-00337.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lian, T., D. Chen, Y. Tang, and Q. Wu, 2014: Effects of westerly wind bursts on El Niño: A new perspective. Geophys. Res. Lett., 41, 35223527, https://doi.org/10.1002/2014GL059989.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lian, T., and Coauthors, 2018a: Westerly wind bursts simulated in CAM4 and CCSM4. Climate Dyn., 50, 13531371, https://doi.org/10.1007/s00382-017-3689-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lian, T., D. Chen, Y. Tang, X. Liu, J. Feng, and L. Zhou, 2018b: Linkage between westerly wind bursts and tropical cyclones. Geophys. Res. Lett., 45, 11 43111 438, https://doi.org/10.1029/2018GL079745.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liang, Y., and A. V. Fedorov, 2021: Linking the Madden–Julian oscillation, tropical cyclones and westerly wind bursts as part of El Niño development. Climate Dyn., 57, 10391060, https://doi.org/10.1007/s00382-021-05757-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lin, J.-L., 2007: The double-ITCZ problem in IPCC AR4 coupled GCMs: Ocean–atmosphere feedback analysis. J. Climate, 20, 44974525, https://doi.org/10.1175/JCLI4272.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lopez, H., and B. P. Kirtman, 2013: Westerly wind bursts and the diversity of ENSO in CCSM3 and CCSM4. Geophys. Res. Lett., 40, 47224727, https://doi.org/10.1002/grl.50913.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lopez, H., and B. P. Kirtman, 2014: WWBs, ENSO predictability, the spring barrier and extreme events. J. Geophys. Res. Atmos., 119, 10 11410 138, https://doi.org/10.1002/2014JD021908.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lopez, H., B. P. Kirtman, E. Tziperman, and G. Gebbie, 2013: Impact of interactive westerly wind bursts on CCSM3. Dyn. Atmos. Oceans, 59, 2451, https://doi.org/10.1016/j.dynatmoce.2012.11.001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Love, G., 1985: Cross-equatorial influence of winter hemisphere subtropical cold surges. Mon. Wea. Rev., 113, 14871498, https://doi.org/10.1175/1520-0493(1985)113<1487:CEIOWH>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Luther, D. S., D. E. Harrison, and R. A. Knox, 1983: Zonal winds in the central equatorial Pacific and El Niño. Science, 222, 327330, https://doi.org/10.1126/science.222.4621.327.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McPhaden, M. J., 1999: Genesis and evolution of the 1997–98 El Niño. Science, 283, 950954, https://doi.org/10.1126/science.283.5404.950.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McPhaden, M. J., and X. Yu, 1999: Equatorial waves and the 1997–98 El Niño. Geophys. Res. Lett., 26, 29612964, https://doi.org/10.1029/1999GL004901.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McPhaden, M. J., H. P. Freitag, S. P. Hayes, B. A. Taft, Z. Chen, and K. Wyrtki, 1988: The response of the equatorial Pacific Ocean to a westerly wind burst in May 1986. J. Geophys. Res., 93, 10 58910 603, https://doi.org/10.1029/JC093iC09p10589.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mechoso, C. R., and Coauthors, 1995: The seasonal cycle over the tropical Pacific in coupled ocean–atmosphere general circulation models. Mon. Wea. Rev., 123, 28252838, https://doi.org/10.1175/1520-0493(1995)123<2825:TSCOTT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Meinen, C. S., and M. J. McPhaden, 2000: Observations of warm water volume changes in the equatorial Pacific and their relationship to El Niño and La Niña. J. Climate, 13, 35513559, https://doi.org/10.1175/1520-0442(2000)013<3551:OOWWVC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Moore, A. M., and R. Kleeman, 1999: Stochastic forcing of ENSO by the intraseasonal oscillation. J. Climate, 12, 11991220, https://doi.org/10.1175/1520-0442(1999)012<1199:SFOEBT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nitta, T., 1989: Development of a twin cyclone and westerly bursts during the initial phase of the 1986-87 El Niño. J. Meteor. Soc. Japan, 67, 677681, https://doi.org/10.2151/jmsj1965.67.4_677.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ogata, T., S.-P. Xie, A. Wittenberg, and D.-Z. Sun, 2013: Interdecadal amplitude modulation of El Niño–Southern Oscillation and its impact on tropical Pacific decadal variability. J. Climate, 26, 72807297, https://doi.org/10.1175/JCLI-D-12-00415.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Park, J., C. R. Lindberg, and F. L. Vernon, 1987: Multitaper spectral analysis of high‐frequency seismograms. J. Geophys. Res., 92, 12 67512 684, https://doi.org/10.1029/JB092iB12p12675.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Penland, C., and P. D. Sardeshmukh, 1995: The optimal growth of tropical sea surface temperature anomalies. J. Climate, 8, 19992024, https://doi.org/10.1175/1520-0442(1995)008<1999:TOGOTS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Perez, C. L., A. M. Moore, J. Zavala-Garay, and R. Kleeman, 2005: A comparison of the influence of additive and multiplicative stochastic forcing on a coupled model of ENSO. J. Climate, 18, 50665085, https://doi.org/10.1175/JCLI3596.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Perigaud, C. M., and C. Cassou, 2000: Importance of oceanic decadal trends and westerly wind bursts for forecasting El Niño. Geophys. Res. Lett., 27, 389392, https://doi.org/10.1029/1999GL010781.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Picaut, J., and T. Delcroix, 1995: Equatorial wave sequence associated with warm pool displacements during the 1986–1989 El Niño–La Niña. J. Geophys. Res., 100, 18 39318 408, https://doi.org/10.1029/95JC01358.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Puy, M., J. Vialard, M. Lengaigne, and E. Guilyardi, 2016: Modulation of equatorial Pacific westerly/easterly wind events by the Madden–Julian oscillation and convectively-coupled Rossby waves. Climate Dyn., 46, 21552178, https://doi.org/10.1007/s00382-015-2695-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Puy, M., and Coauthors, 2019: Influence of westerly wind events stochasticity on El Niño amplitude: The case of 2014 vs. 2015. Climate Dyn., 52, 7435–7454, https://doi.org/10.1007/s00382-017-3938-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rodgers, K. B., P. Friederichs, and M. Latif, 2004: Tropical Pacific decadal variability and its relation to decadal modulations of ENSO. J. Climate, 17, 37613774, https://doi.org/10.1175/1520-0442(2004)017<3761:TPDVAI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Seiki, A., and Y. N. Takayabu, 2007a: Westerly wind bursts and their relationship with intraseasonal variations and ENSO. Part I: Statistics. Mon. Wea. Rev., 135, 33253345, https://doi.org/10.1175/MWR3477.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Seiki, A., and Y. N. Takayabu, 2007b: Westerly wind bursts and their relationship with intraseasonal variations and ENSO. Part II: Energetics over the western and central Pacific. Mon. Wea. Rev., 135, 33463361, https://doi.org/10.1175/MWR3503.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Seiki, A., Y. N. Takayabu, T. Yasuda, N. Sato, C. Takahashi, K. Yoneyama, and R. Shirooka, 2011: Westerly wind bursts and their relationship with ENSO in CMIP3 models. J. Geophys. Res., 116, D03303, https://doi.org/10.1029/2010JD015039.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stuecker, M. F., A. Timmermann, F.-F. Jin, S. McGregor, and H.-L. Ren, 2013: A combination mode of the annual cycle and the El Niño/Southern Oscillation. Nat. Geosci., 6, 540544, https://doi.org/10.1038/ngeo1826.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tan, X., Y. Tang, T. Lian, Z. Yao, X. Li, and D. Chen, 2020a: A study of the effects of westerly wind bursts on ENSO based on CESM. Climate Dyn., 54, 885899, https://doi.org/10.1007/s00382-019-05034-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tan, X., Y. Tang, T. Lian, S. Zhang, T. Liu, and D. Chen, 2020b: Effects of semistochastic westerly wind bursts on ENSO predictability. Geophys. Res. Lett., 47, e2019GL086828, https://doi.org/10.1029/2019GL086828.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thomas, M. D., and A. V. Fedorov, 2017: The eastern subtropical Pacific origin of the equatorial cold bias in climate models: A Lagrangian perspective. J. Climate, 30, 58855900, https://doi.org/10.1175/JCLI-D-16-0819.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thompson, C. J., and D. S. Battisti, 2001: A linear stochastic dynamical model of ENSO. Part II: Analysis. J. Climate, 14, 445466, https://doi.org/10.1175/1520-0442(2001)014<0445:ALSDMO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thomson, D. J., 1982: Spectrum estimation and harmonic analysis. Proc. IEEE, 70, 10551096, https://doi.org/10.1109/PROC.1982.12433.

  • Thual, S., A. J. Majda, N. Chen, and S. N. Stechmann, 2016: Simple stochastic model for El Niño with westerly wind bursts. Proc. Natl. Acad. Sci. USA, 113, 10 24510 250, https://doi.org/10.1073/pnas.1612002113.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tian, B., and X. Dong, 2020: The double‐ITCZ bias in CMIP3, CMIP5, and CMIP6 models based on annual mean precipitation. Geophys. Res. Lett., 47, e2020GL087232, https://doi.org/10.1029/2020GL087232.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tziperman, E., and L. Yu, 2007: Quantifying the dependence of westerly wind bursts on the large-scale tropical Pacific SST. J. Climate, 20, 27602768, https://doi.org/10.1175/JCLI4138a.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vecchi, G. A., and D. E. Harrison, 2000: Tropical Pacific sea surface temperature anomalies, El Niño, and equatorial westerly wind events. J. Climate, 13, 18141830, https://doi.org/10.1175/1520-0442(2000)013<1814:TPSSTA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, B., and S. An, 2002: A mechanism for decadal changes of ENSO behavior: Roles of background wind changes. Climate Dyn., 18, 475486, https://doi.org/10.1007/s00382-001-0189-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wyrtki, K., 1975: El Niño—the dynamic response of the equatorial Pacific Ocean to atmospheric forcing. J. Phys. Oceanogr., 5, 572584, https://doi.org/10.1175/1520-0485(1975)005<0572:ENTDRO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yu, L., and M. M. Rienecker, 1998: Evidence of an extratropical atmospheric influence during the onset of the 1997–98 El Niño. Geophys. Res. Lett., 25, 35373540, https://doi.org/10.1029/98GL02628.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yu, L., R. A. Weller, and T. W. Liu, 2003: Case analysis of a role of ENSO in regulating the generation of westerly wind bursts in the western equatorial Pacific. J. Geophys. Res., 108, 3128, https://doi.org/10.1029/2002JC001498.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yu, S., and A. V. Fedorov, 2020: The role of westerly wind bursts during different seasons versus ocean heat recharge in the development of extreme El Niño in climate models. Geophys. Res. Lett., 47, e2020GL088381, https://doi.org/10.1029/2020GL088381.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zavala-Garay, J., A. M. Moore, C. L. Perez, and R. Kleeman, 2003: The response of a coupled model of ENSO to observed estimates of stochastic forcing. J. Climate, 16, 28272842, https://doi.org/10.1175/1520-0442(2003)016<2827:TROACM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zavala-Garay, J., C. Zhang, A. M. Moore, A. T. Wittenberg, M. J. Harrison, A. Rosati, J. Vialard, and R. Kleeman, 2008: Sensitivity of hybrid ENSO models to unresolved atmospheric variability. J. Climate, 21, 37043721, https://doi.org/10.1175/2007JCLI1188.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, T., X. Shao, and S. Li, 2017: Impacts of atmospheric processes on ENSO asymmetry: A comparison between CESM1 and CCSM4. J. Climate, 30, 97439762, https://doi.org/10.1175/JCLI-D-17-0360.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhao, B., and A. Fedorov, 2020: The effects of background zonal and meridional winds on ENSO in a coupled GCM The effects of background zonal and meridional winds on ENSO in a coupled GCM. J. Climate, 33, 20752091, https://doi.org/10.1175/JCLI-D-18-0822.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 554 554 29
Full Text Views 122 122 15
PDF Downloads 153 153 13

The Essential Role of Westerly Wind Bursts in ENSO Dynamics and Extreme Events Quantified in Model “Wind Stress Shaving” Experiments

Sungduk YuaDepartment of Earth and Planetary Sciences, Yale University, New Haven, Connecticut

Search for other papers by Sungduk Yu in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0002-4506-3887
and
Alexey V. FedorovaDepartment of Earth and Planetary Sciences, Yale University, New Haven, Connecticut
bLOCEAN/IPSL, Sorbonne University, Paris, France

Search for other papers by Alexey V. Fedorov in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Westerly wind bursts (WWBs)—brief but strong westerly wind anomalies in the equatorial Pacific—are believed to play an important role in El Niño–Southern Oscillation (ENSO) dynamics, but quantifying their effects is challenging. Here, we investigate the cumulative effects of WWBs on ENSO characteristics, including the occurrence of extreme El Niño events, via modified coupled model experiments within Community Earth System Model (CESM1) in which we progressively reduce the impacts of wind stress anomalies associated with model-generated WWBs. In these “wind stress shaving” experiments we limit momentum transfer from the atmosphere to the ocean above a preset threshold, thus “shaving off” wind bursts. To reduce the tropical Pacific mean state drift, both westerly and easterly wind bursts are removed, although the changes are dominated by WWB reduction. As we impose progressively stronger thresholds, both ENSO amplitude and the frequency of extreme El Niño decrease, and ENSO becomes less asymmetric. The warming center of El Niño shifts westward, indicating less frequent and weaker eastern Pacific (EP) El Niño events. Removing most wind burst–related wind stress anomalies reduces ENSO mean amplitude by 22%. The essential role of WWBs in the development of extreme El Niño events is highlighted by the suppressed eastward migration of the western Pacific warm pool and hence a weaker Bjerknes feedback under wind shaving. Overall, our results reaffirm the importance of WWBs in shaping the characteristics of ENSO and its extreme events and imply that WWB changes with global warming could influence future ENSO.

© 2022 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Sungduk Yu, sungduk.yu@yale.edu

Abstract

Westerly wind bursts (WWBs)—brief but strong westerly wind anomalies in the equatorial Pacific—are believed to play an important role in El Niño–Southern Oscillation (ENSO) dynamics, but quantifying their effects is challenging. Here, we investigate the cumulative effects of WWBs on ENSO characteristics, including the occurrence of extreme El Niño events, via modified coupled model experiments within Community Earth System Model (CESM1) in which we progressively reduce the impacts of wind stress anomalies associated with model-generated WWBs. In these “wind stress shaving” experiments we limit momentum transfer from the atmosphere to the ocean above a preset threshold, thus “shaving off” wind bursts. To reduce the tropical Pacific mean state drift, both westerly and easterly wind bursts are removed, although the changes are dominated by WWB reduction. As we impose progressively stronger thresholds, both ENSO amplitude and the frequency of extreme El Niño decrease, and ENSO becomes less asymmetric. The warming center of El Niño shifts westward, indicating less frequent and weaker eastern Pacific (EP) El Niño events. Removing most wind burst–related wind stress anomalies reduces ENSO mean amplitude by 22%. The essential role of WWBs in the development of extreme El Niño events is highlighted by the suppressed eastward migration of the western Pacific warm pool and hence a weaker Bjerknes feedback under wind shaving. Overall, our results reaffirm the importance of WWBs in shaping the characteristics of ENSO and its extreme events and imply that WWB changes with global warming could influence future ENSO.

© 2022 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Sungduk Yu, sungduk.yu@yale.edu

Supplementary Materials

    • Supplemental Materials (PDF 3.33 MB)
Save